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Supervised Learning

» Data: (X, y)
X is input, y is output/response (label)

» Goal: Learn a functfion fo map x>y

=» Examples:
» Classification,
= regression,
» object detection,
®» semantic segmentation,

®» mage capftioning, etc.




Today: Reinforcement Learning

» Problems involving an agent

» nferacting with an environment, Reinforcement &
Learning
» which provides numeric reward signals o cine

» Goal:

» | earn how fo take actions in order fo maximize reward
in dynamic scenarios

reward
R

environment




Playing games against human champions

May 11th, 1997
Computer won world champion of chess dvn
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Recursive

Markov Decision Process /DynamicC mEisess

Economic

Programming in Economics Dynamics §

» The Sveriges Riksbank Prize in ECconomic Sciences in
Memory of Alfred Nobel 1995 was awarded to
Robert E. Lucas Jr. "for having developed and
applied the hypothesis of rational expectations, and
thereby having transformed macroeconomic
analysis and deepened our understanding of
economic policy".

» Thomas John Sargent was awarded the Nobel
Memorial Prize in ECconomics in 2011 together
with Christopher A. Sims for their "empirical research
on cause and effect in the macroeconomy”




What supervision does an agent need to learn
purposeful behaviors in dynamic environmentse

» Rewards:

» sparse feedback from the environment whether the desired goal is achieved e.g.,
game is won, car has not crashed, agent is out of the maze eftc.

» Rewards can be intrinsic, i.e., generated by the agent and guided by its curiosity as
opposed to an external task

® | earning from rewards

» Reward: jump as high as possible: It fook years for athletes to find the right behavior to
achieve this

» | carns from demonstrations

» |t was way easier for athletes to perfection the jump, once someone showed the right
general trajectory

® | earns from specifications of optimal behavior

» [For novices, it is much easier to replicate this behavior if additional guidance is provided
based on specifications: where to place the foot, how to time yourself etc.




How learning goal-seeking behaviors is
different to supervised learning paradigms?

» The agent’s actions affect the data she will receive in the future

= The reward (whether the goal of the behavior is achieved) is far in the future:

» Temporal credit assignment: which actions were important and which were not, is
hard to know

= |sn’t it the same with loss of multi-layer deep networks?

= No: here the horizon involves acting in the environment, rather than going from one
neural layer to the next, we cannot apply chain rule to back propagate the gradient
of rewards.

» But another way of “Back Propagation”: Bellman’s Dynamic Programing principle

» Actions take fime to carry out in the real world, and thus this may limit the
amount of experience

» We can use simulated experience with multiple agents.



Ovutline

» What is Reinforcement Learninge
» Markov Decision Processes
» Bellman Equation as Linear Programming

» Q-Learning

» Policy Gradients
» Actor-Critics (Q-learning+Policy gradient)
» Examples:

» Deep RL for quantitative trading

= QOrder Book Optimization via Discrete Q-Learning by Prof. Michael Kearns




Reinforcement Learning

Agent

Environment
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Agent

Reward r,
Next state s, .

Environment

Action a,



Car-Pole Control Problem

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart
Reward: 1 at each time step if the pole is upright
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Go Game
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Objective: Win the game!
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State: Position of all pieces
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise
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Mathematical Formulation of
Reinforcement Learning

A Markov Decision Process is a tuple (S, 4, R, P,~)
» S is a set of states
» A is a set of actions

» R is a distribution of reward given (state, action) pair
Rip1 ~R[ | S =s,4; = d

» PP is a state transition probability function, satisfying the Markov
Property:

P[Riy1 =1,841 =5 | S, Ay
— IED[Rt—i—l =T, St—l—l = ‘ S())AO7R17 . '7St—17At—17Rt7St7At]

> ~ is a discount factor v € [0, 1]



Dynamics:

» At time step =0, environment samples initial state so~ p(so)

» Then, for t=0 unftil done:
» Agent selects action at

®» Environment samples reward ri~ R . | st, Ot

®» Environment samples next state st+1~ P( . | st; ai)

» Agent receives reward ri and next state st+1

» A policy 7:5->A is a map from S to A that specifies what action to take in
each state, which might be stochastic as a distribution on A

» Obijective: find policy that maximizes the cumulated discounted reward




Rewards

» They are scalar values (not vector rewards) provided by the environment to the
agent that indicate whether goals have been achieved, e.g., 1 if goal is
achieved, 0 otherwise, or -1 for overtime step the goal is not achieved

» Episodic tasks: A sequence of interactions based on which the reward will be
judged at the end is called episode. Interaction breaks naturally intfo episodes,
e.g., plays of a game, trips through a maze.

» Goal-seeking behavior of an agent can be formalized as the behavior that
seeks maximization of the expected value of the cumulative sum of (potentially
time discounted) rewards, we call it return. We want to maximize returns.

= Refurn in Finite horizon: Gi = Ris1 + Riyo+ -+ + Ry
» Return (discounted) in infinite horizon:

Gy =Riy1 +7Rip2+ ... = Z’}/th+k+1 v E [07 1]
k=0

r(s,a) = E|[Ri11|St = s, At = a]




Dynamics of Environment or Model

» How the states and rewards change given the actions of the agent

p(s,r|s,a) =P{S, =5, R, =r|S,_,=s,A,_| =a}
» Transition function or next step function:
T(s'|s,a) =p(s’|s,a) = P{S,=5'|S,_; =5, tl—a}—Zp(s r|s,a)
reR

» Model-based RL: dynamics are known or are estimated, and are used for
learning the policy

» Model-free RL: we do not know the dynamics, and we do not attempt to
estimate them




Policy

» A mapping function from states to actions of the end effectors, e.g.
stochastic actions:

m(a|s) = P|A; = a|S; = $]

» |t can be a shallow or deep network, or involving a tree look-ahead search




The optimal policy n*
We want to find optimal policy it* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?
Maximize the expected sum of rewards!

Formally: * = argmfrlxIE {Z 'ytrtlw} with sg ~ p(8g), a; ~ 7(-|8¢), Se11 ~ p(-|8¢, az)

>0




A simple MDP: Grid World

actions = { states
1. right — *
2. left <+— Set a negative “reward”
3. u I * for each transition
- (e.9.r=-1)
4. down I
}

Objective: reach one of terminal states (greyed out) in
least number of actions




A simple MDP: Grid World

* X 1
+++* Pl ] %
Sisseaes ISR

Random Policy Optimal Policy

» Finding the optimal policy: Bellman’s Principle of Dynamic Programming

» Begin with the terminal states, find the nearest neighbors (depth-1) states with their
optimal move (policy);

» From depth-1 neighbor cells, find the optimal move (policy) of depth-2 neighbor cells;

®» And so on recursively...




Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s, a,, r,, s;, a,, I, ---

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s:
VT(s) =E Z’ytrt|so =8,

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

Q" (s,a) =E [Z 'ytrt|so = 8,aq¢ = a, ’/T]

>0




Bellman Equation of Optimal Value:
finite states and actions

Optimal Value Function V* : § — R = z* satisfied the following nonlinear fixed point equation

(i) = max (1) + ’YZPa(iyj)x*(j)
JES

where a policy 7* is an optimal policy if and only if it attains the optimality of the Bellman
equation.

In the continuous-time analog of MDP, 1.e., stochastic optimal control, the Bellman equation
1s the Hamilton-Jacobi-Bellman (HJB)
Exact solution methods: value iteration, policy iteration, variational analysis
What makes things hard:
Curse of dimensionality + Modeling Uncertainty



Example: the sfudent MDP

The Student MDP

Facebook
R=-1
-
Quit Facebook
R=0 R=-1

Study
R=+10

Value function
v (8) = Zw(a|s) Zp(s', rls, a) [7‘ + 'va(s’)}

a s’,r

74=05%(1+02%-13+04%27+04%7.4)
+0.5%10

Facebook
R=-1

Study



Bellman Equation as LP (Farias and Van Roy, 2003)

The Bellman equation is equivalent to

minimize elz

subject to (I —yP,)x —1re, >0, a€ A, Z )=1,e>0.

o Exact policy iteration is a form of simplex method and exhibits strongly
polynomial performance (Ye 2011)

e Again, curse of dimensionality:
e Variable dimension = |S].

o Number of constraints = |S| x | A|.




Duality between Value Function and Policy

Let A; , > 0 be the multiplier associated with the ¢-th row of the primal constraint vP,z+r, < x.
The dual problem is

maximize A7, a€ A

subject to Z(I —vPHX,=¢e, X >0, ac A
acA

where the dual variable is high-dimensional A\ = (A\g)qea € RMISI

The optimal dual solution \* = (A} ,)ies,ac is sparse and has exact |S| nonzeros. It
satisfies

* T \—1
(Ai,u*(i));gs = (I —aPy) e,
and X}, =0 if a # u"(i).

Finding the optimal policy u* = Finding the basis of the dual solution \*



Stochastic Primal-Dual Value-Policy Iteration
(Mengdi Wang (2019), Mathematics of Operations Research,
45(2):517-546. arXiv:1704.01869)

Stochastic primal-dual (value-policy) algorithm

e Input: Simulation Oracle M, n=|S|, m=|A|, a € (0,1).
o Initialize x(©) and X\ = (AE,O) : u € A) arbitrarily.
e Fork =1,2,..., T

e Sample i, uniformly from S and sample u, uniformly from A.
Sample next state jx and immediate reward g; j ,, conditioned on (i, ux) from M.
Update the iterates by

W(k=3) — (k=1) _ 7k( — e+ mAE,l,i_l) —amn (AE'/;_I) ' eik) ej">’

(k—3) (k—1)

Auy = Ay, myg (X(k_l) —an (X(k_l) ' ejk) Ci — Nk jy ug eik)’

1
A VA T

Project the iterates orthogonally to some regularization constraints
1 1
x(F) = nyxtk=2) 2B = naak=2),

o Ouput: Averaged dual iterate A = % ZkT:1 A(K)




Near Optimal Primal-Dual Algorithms

Method Setting Sample Complexity | Run-Time Complexity | Space Complexity | Reference
Phased Q-Learning ~ discount factor, (1|‘_Sg)“§|€2 In 5 (1|‘_9|7|)“§|€2 In 3 |S||A] [17]
e-optimal value
Model-Based Q-Learning | ~ discount factor, (1|fU;§L2 In ‘S!“‘” NA |S|2| A 1]
e-optimal value
Randomized P-D ~ discount factor, % % |S||A| [25]
e-optimal policy
Randomized P-D ~ discount fac- 74% 74% |S||A| [25]
tor, T-stationary,
e-optimal policy
Randomized VI ~ discount factor, (E!;ﬁ'é (Euﬁﬂég |S|| A [23]
e-optimal policy
Primal-Dual 7 Learning | 7-stationary, (T't’ﬁ”i);'SHA' (T't:””e);'s”A' |S||A| This Paper
ty,ip-mixing,
e-optimal policy

Table 1: Complexity Results for Sampling-Based Methods for MDP. The sample complexity is
measured by the number of queries to the SO. The run-time complexity is measured by the total
run-time complexity under the assumption that each query takes (’j(l) time. The space complexity
is the additional space needed by the algorithm in addition to the input.

Mengdi Wang, Primal-Dual 1 Learning, arXiv:1710.0610




Approaches of Deep RL: approximate
dynamic programming

» Value-based RL

» | earn an optimal value function Q«(s,a) or V«(s)

» |mplicit derivation of policy

» Deep Q-Learning (DQN), Double DQN, Dueling DQN
» Policy-based RL

» |[earn directly an optimal policy 11«

» This is the policy achieving maximum future reward
» Policy Gradient (PG)
» Actor-Critic RL
®» | earn a value function and a policy
» A2C, SAC

» Model-based RL (not here)
» Build a model of the environment

Value Function Policy

Actor
Critic

Value-Based Policy-Based

» Plan (e.g. by look-ahead) using model



Q-Learning

Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(Saa) — m?*X]E Z’Yt’f't|80 =S8,ap0=a,T
t>0

Q* satisfies the following Bellman equation:
Q"(5,0) = Eone [r+7max @ (',0)ls,

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+vQ*(s',a’)

The optimal policy m* corresponds to taking the best action in any state as specified by Q*



Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
/!
Qit1(s,0) = E |r + ymax Qi(s',')[s, a
a

Q. will converge to Q* as i -> infinity

What's the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network!




Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s,a;0) =~ Q*(s,a)

If the function approximator is a deep neural network => deep g-learning!




Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
Q*(5,0) = Egne |1 +7maxQ*(s',a)]s,a]

Forward Pass
Loss function: L;(6;) = Eg anp(y [(¥i — Q(s, a5 6;))7]

where y; = Eg g ["”'I'Wma;XQ(S'aa’;@i—l”S, a]
a

Backward Pass
Gradient update (with respect to Q-function parameters 06):

VOZL’L(H'I,) — Es,arvp(-);s'rvg [T T n}za,x Q(S,a a"; 92-_1) - Q(Sa a, 02))V91Q(S, a, 02):|




Yet, such a fraining might bbe unstable ...

» | earning from batches of consecutive samples is problematic:

» Samples are correlated => inefficient learning

» Current Q-network parameters determines next training samples (e.q. if

maximizing action is to move left, fraining samples will be dominated by samples
from left-hand size) => can lead to bad feedback loops

» Experience replay will help!




DQN: Experience Replay

To remove correlations, build a replay memory data-set D from agent’s own experience

51,4d1,M2,52

/
52,4d2,13,53 — S,a,rns
53,43, /4,54

Sty dty lt+1, St+1

Sample random mini-batch of tfransitions (s,a.r,s') from D, instead of consecutive samples
Compute Q-learning targets w.r.t. old, fixed parameters w-

Optimize MSE between Q-network and Q-learning target by SGD, where each fransition
can also contribute to multiple weight updates => greater data efficiency

Li ( Wi) = ]Es,a,r,s’N’D;

2
(r + 7y max Q(S', a: Wi_) — Q(s, a; w,-)) ]

\ ~ /X J

Q-learning target Q-network




[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do
With probability € select a random action a,
otherwise select a; = max, Q*(¢(s¢),a;0)
Execute action a, in emulator and observe reward r; and image x; ;
Set 8441 = 84, a¢, Ty41 and preprocess ¢y1 = P(S¢41)
Store transition (¢y, ay, 7y, $y4+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
S { T for terminal ¢,
Y=Y o . : :
r; + Yymaxy Q(¢j+1,a’;0) for non-terminal ¢,

Perform a gradient descent step on (y; — Q(¢;, a;; 0))2 according to equation 3
end for
end for




[Mnih et al. NIPS Workshop 2013; Nature 2015]

Case Study: Playing Atari Games

L O ¢ N — T ——

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step




[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(s,a;0):

FC-4 (Q-values) <« last FC. layer has 4-d
neural network output (if 4 actions),
with weights @ FC-256 corresponding to Q(s,,

a,), Q(s, a,), Q(s, a,),
Q(s,,a,)
A single feedforward pass voa
to compute Q-values for all
actions fron_w .the current o Number of actions between 4-18
state => efficient! 10— depending on Atari game

|

Current state s: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)




Example

» Google DeepMind's Deep Q-learning playing Atari Breakout:
» hitps://www.youtube.com/watch2v=V1eYniJORNk

» Google DeepMind created an artificial intelligence program using deep
reinforcement learning that plays Atari games and improves itself to a
superhuman level. It is capable of playing many Atari games and uses @
combination of deep arfificial neural networks and reinforcement learning. After
presenting their initial results with the algorithm, Google almost immediately
acquired the company for several hundred million dollars, hence the name
Google DeepMind. Please enjoy the footage and let me know if you have any
questions regarding deep learning!




Prioritized Replay: importance sampling
[Schaul, Quan, Antonoglou, Silver, ICLR 201 6]

» Current Q-network w is used o select actions

» QOlder Q-network w—is used to evaluate actions

Action evaluation: w—

A
e 2
E ( +7Q(S', argmax Q(s', &', w),w™) — Q(s, a, W))
N\
.

Action selection: w ’r +v max Q(s’,a’,w™) — Q(s, a, w)‘
a/
J

N

.
» |mportance Weight experience according to " “surprise” (or error): P() = 2
» Store experience in priority according to DQN error: Zk p‘,;‘

» o determines how much prioritization is used, with @ = 0 corresponding to the uniform
case.



Maximization Bias

» We often need to maximize over our value estimates. The estimated
maxima suffer from maximization bias

» Consider a state for which all ground-truth Q.(s,a)=0. Our estimates Q(s,q)
are uncertain, some are positive and some negative. Q(s,.argmax,(Q(s.a)) is
positive while Q.(s,argmax,(Q=(s,a))=0.




Double Q-Learning (DDQN|)

» Train 2 action-value functions, Q1 and Q2

» Do Q-learning on both, but
®» never on the same time steps (Q1 and Q2 are independent)
» pick Q1 or Q2 at random to be updated on each step

» |f ypdating Q1, use Q2 for the value of the next state:

Q1(St, At) « Q1(St, Ar) +
- Rep1 +Qa(Sii1, argmax Qi (Si11,a)) — Q1(Sk, Ar))

» Acftion selections are with respect to the sum of Q1 and Q2



Double DQN:

Initialize Q1(s,a) and Q2(s,a),Vs € §,a € A(s), arbitrarily
Initialize Q1 (terminal-state,-) = Q2 (terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @)1 and Qs (e.g., e-greedy in Q1 + Q)
Take action A, observe R, S’
With 0.5 probabilility:

Q1(8,4) « Qu(S, 4) + a( R +7Qs(S', argmax, Q1 (5", 0)) — Qu(S, 4))
else:

Qa(S, 4) « Qs(S, 4) + (R +7Q: (', argmax, Qa(S", a)) — Qa(S, 4))
S 5

until S is terminal




Summary of Q-Learning

» We have introduced Q-learning with several variants:
= DQN, Double DQN, and Dueling DQN (next)
» Experience replay, priorifization

» Whatis a problem with Q-learninge

» The Q-function can be very complicated!

» Example: arobot grasping an object has a very high-dimensional state => hard
to learn exact value of every (state, action) pair

» But the policy can be much simpler: just close your hand

» Can we learn a policy directly, e.g. finding the best policy from a collection
of policies?




Policy Gradients




Policy Gradients

Formally, let’s define a class of parametrized policies: II = {mg,0 € R™}

For each policy, define its value:

J(0) =E

We want to find the optimal policy 6* = arg max J(0)

How can we do this?

2

Gradient ascent on policy parameters!

fytrt 7o



REINFORCE algorithm

Mathematically, we can write:
J(0) = Ernp(r;0) [r(7)]

= /r('r)p('r; 0)dr

T

Where () is the reward of a trajectory 7 = (sq, ag, Tg, S1, - - -)




Expected reward: J(0) = Ernp(rio) [7(7)]

= [rr(T)p(T; 0)dr

Now let’s differentiate this: V4.J () =/T(T)V9p(7;9)d7 Intractable! Gradient of an

expectation is problematic when p
T depends on 6

However, we can use a nice trick: Vop(T;0) = p(;6) Vop(T;0)
If we inject this back: p(7;0)

VoJ(0) = / (r(m)Veglog p(7;8)) p(7; 0)dr

T

= p(1;0)Vglogp(7;0)

Can estimate with
— ]ETNp(T;g) [T(T)Vg logp(’r; 9)] Monte Carlo sampling




VoJ(6) = / (r(r) Vo log p(r;0)) p(r; 0)dr

REINFORCE algorithm _E, 0 [r(r) Vo log p(7 0)]

Can we compute those quantities without knowing the transition probabilities?

We have: p(r;60) = [ | p(si1lse, ar)mo(axls:)

£>0
Thus: logp(T;0) = Zlogp(st+1|st, at) + log me(az|st)

t>0 Doesn’t depend on

And when differentiating: Ve logp(r;6) =Y Vologmo(atls:)  ransition probabilities!
t>0

Therefore when sampling a trajectory 7, we can estimate J(0) with

VoJ(6) = ) r(1)Vglogmo(as|st)

t>0



Intuition

Gradient estimator: ~ VJ(6) ~ Z r(7)Ve log me(at|st)
£>0

Interpretation:
- If r(z) is high, push up the probabilities of the actions seen
- If r(z) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is
really hard. Can we help the estimator?




Variance reduction

Gradient estimator:  VJ(0) =~ Z r(7)Ve log me(at|st)
t>0

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

VeJ(0) = Z (Z rtr) Vo log me(az|st)

t>0 \t/'>t

Second idea: Use discount factor y to ignore delayed effects

VoJ (0 Z (Z Nty ) Vo log mg(as|st)

t>0 \t'>t




Variance reduction: Baseline

Problem: The raw value of a trajectory isn’t necessarily meaningful. For
example, if rewards are all positive, you keep pushing up probabilities of
actions.

What is important then? Whether a reward is better or worse than what you
expect to get

Idea: Introduce a baseline function dependent on the state.
Concretely, estimator is now:

VoJ (6 Z (Z 'yt ey — b(sy) ) Vo logmg(az|st)

t>0 \t'>t



How to choose the baseline?

t>0 \t/>t

VGJ(H) ~ y: (y: 'yt’_tv“tf — b(St)) V@ log 7r9(at|st)

A simple baseline: constant moving average of rewards experienced so far
from all trajectories

Variance reduction techniques seen so far are typically used in “Vanilla
REINFORCE”




How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from

that state.

Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action a, in a state s if Q™ (s¢,at) — V" (s¢)
is large. On the contrary, we are unhappy with an action if it's small.

Using this, we get the estimator: VyJ(6) = Z(Q“"(st, at) — V7™ (s))Vglogmg(a|st)

t>0




Actor-Critic Algorithm

Problem: we don’t know Q and V. Can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning
by training both an actor (the policy) and a critic (the Q-function).

- The actor decides which action to take, and the critic tells the actor
how good its action was and how it should adjust
- Also alleviates the task of the critic as it only has to learn the values
of (state, action) pairs generated by the policy
- Can also incorporate Q-learning tricks e.g. experience replay
- Remark: we can define by the advantage function how much an
action was better than expected A™(s,a) = Q" (s,a) — V™ ()




Actor-Critic Model

» | earn both actor (policy m) and critic (value Q and V)
= Actor decides which action to take 719 (GJ’S)

» Advantage function in crific tells how much an action might be better than expected:

AT (s, a;w) = Q™ (s, a;w) — V7 (s;w)

» Policy gradient:

VoJ(0) =E, [Vglogmg(s,a)A™ (s,a)]

» Stochastic Advantage can be approximated by TD-error (Temporal-Difference error)

6™ = r+~yV™(s") — V™(s)




One-step Actor—Critic (episodic), for estimating mg =~ 7,

Input: a differentiable policy parameterization 7(als, )
Input: a differentiable state-value function parameterization v(s,w)
Parameters: step sizes a® > 0, a% > 0
Initialize policy parameter 6 € R4 and state-value weights w € R? (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

I«+1
Loop while S is not terminal (for each time step):
A~ 7(-]S,0)
Take action A, observe S’, R
0+ R+ ~yo(S",w) —v(S,w) (if S’ is terminal, then 0(S’,w) = 0)

W w+aVoVo(S,w)
0—6+a°I6VIinn(A|S,0)
I ~I

S« S




Dueling DQN ) B
[Wang et.al., ICML, 2016 ] ==

V. . |
= Split Q-network into two channels: C% I pueling Retworks
» Action-independent value function V(s; w) '

» Action-dependent advantage function A(s, a; w)

A" (s,a) = Q" (s,a) — V7 (s)

= Dueling DQN learns Q-function using

1
O(s,a;w) = V(s; w) + (A(s, a,w) — m ZA(S, a’; W)>




PG Summary

» Policy Gradient:

Vﬂ'(Atlst, 9t)
7r(At|St, Ot)

Oir1 = 0 + aGy

» Policy Gradient with Baseline:
V?T(Atlst, gt)
'/T(At|St, Ht)

0,1 =6, + a(Gt _ b(St)>

» Actor-Critic Policy Gradient:

VW(At|St7 91‘)

Ousr = 01+ (R +78(Senn) = 9(5)~ o=



Maximal Enfropy RL

» Promofing the stochastic policies

T
r* = argmax [ Z R(s,,a)+oH(x( - |s,))
T
=1 = ~~ ~ b ~ B
t reward entropy

» Whye
» Befter exploration
®» | earning alternative ways of accomplishing the task

» Better generalization, e.g., in the presence of obstacles a stochastic policy may
still succeed.




» “Soft” Bellman Equation:

Q" (s,a) =7(s,a) + Eg o [Q7 (s',a") —log (7 (a' | 5))]
» “Soft"” Value function:

V(s) = Eanr [Q(s,0) —log 7 (a | 5)]




Soft version of actor-critic model

= Learn the following value and policy functions: V, (s,) Ous,a) mya,ls)

» Gradient for the state-value function V:

Jv (¥) = Esinp [é (Vio(st) — Eagmmy [Qo(se, ar) — log 7f¢(at|8t)])2]

Vi dv (¥) = VyVi(se) (Vis(se) — Qo(se, ac) + log ms(aclst))

» Gradient for the state-action value Q-function:

1 A 2]
To() = Eqe o |5 (Qolst,a0) - Qlsv,a0))

Q(Staat) — T‘(St, at) + 7ES¢+1~P [VJ;(St+1):

vaJQ(O) = VaQo(at,St) (Qo(Sz,at) - T(St,at) - ’TVJJ(StH))




» “Soft” Policy gradient:

exp (Qo(St, ')))]

Jr(¢) = Es,np [DKL (7%( ‘Ise) Zg(st)

7T¢(ar | 5,)
exp(Qy(s; a;))

Vol ol ®) =V 4 E epE g r als 108




Soft Actor-Critic

» Different to openAl implementation which is essentially SoftDDQN:

®» Nhttps://spinningup.openai.com/en/latest/algorithms/sac.html

Algorithm 1 Soft Actor-Critic

Initialize parameter vectors 1, 1, 6, ¢.
for each iteration do
for each environment step do
a; ~ Ty(ag|se)
St+1 ~ P(St+1/8¢,a¢)
D < DU {(s¢,a¢,7(st,a¢),8¢41)}
end for
for each gradient step do
Y=Y = AvVydv(¥)
0; < 0; — A\qV, Jo(#;) fori € {1,2}
(}2 — ¢ — )\WV¢,J,,(?)
VeTY+(1—T)¢
end for
end for




More policy gradients: AlphaGo

Overview:

Mix of supervised learning and reinforcement learning
Mix of old methods (Monte Carlo Tree Search) and
recent ones (deep RL)

How to beat the Go world champion:

Featurize the board (stone color, move legality, bias, ...)
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Initialize policy network with supervised training from professional go games,
then continue training using policy gradient (play against itself from random

previous iterations, +1 / -1 reward for winning / losing)
Also learn value network (critic)

Finally, combine combine policy and value networks in a Monte Carlo Tree [Silver et al.,

Search algorithm to select actions by lookahead search

Nature 2016]



Summary

» Q-learning: does not always work but when it works, usually more sample-
efficient. Challenge: exploration

» Policy gradients: very general but suffer from high variance so requires a lot
of samples. Challenge: sample-efficiency

» Guarantees:

» Policy Gradients: Converges to a local minima, often good enough!

= Q-learning: Zero guarantees since you are approximating Bellman equation with
a complicated function approximater




REINFORCE in action: Recurrent Attention Model (RAM)

Objective: Image Classification

image, to predict class
- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

Take a sequence of “glimpses” selectively focusing on regions of the
3"

State: Glimpses seen so far
Action: (x,y) coordinates (center of glimpse) of where to look next in image
Reward: 1 at the final timestep if image correctly classified, 0 otherwise

glimpse

Glimpsing is a non-differentiable operation => learn policy for how to take glimpse actions using REINFORCE
Given state of glimpses seen so far, use RNN to model the state and output next action

[Mnih et al. 2014]




REINFORCE in action: Recurrent Attention Model (RAM)

(X5, Ys3) (X4 Yy) (Xs, Ys)

(X;5 ;) (X5 Y,)

Input y=2

o L

b

image ‘

.J

[Mnih et al. 2014]
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Pytorch Implementation

» Nhitps://github.com/kevinzakka/recurrent-visual-attention

» A Pytorch implementation for the paper, Recurrent Models of Visual
Attention by Volodymyr Mnih, Nicolas Heess, Alex Graves and Koray

Kavukcuoglu, NIPS 2014.
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Reinforcement Learning for
Quantitative Trading

FinRL: A deep reinforcement learning library for automated stock trading in
quantitative finance, Liu et al. Deep RL Workshop, NeurlPS 2020.

hitps://aithub.com/Al4Finance-Foundation/FinRL

FinRL: A Deep Reinforcement Learning Library for Automated
Trading in Quantitative Finance
Xiao-Yang Liu**, Bruce Yang**, Zihan Ding*®, Christina Dan Wang**, Anwar Walid**

*AldFinance LLC., *Columbia University, *Princeton University, *New York University

hitpns sithub.com/AlaFinance- 110/ FinRIL-1Librar



Why RL for Tradinge

1. Modern Portfolio Theory (MPT) performs not well in out-of-sample data, sensitive
to outliers and only based on stock returns.

2.  Goal of stock trading: maximize returns.

3. DRL solves optimization problems by maximizing the expected total reward
defined as future returns, without human labels




Trading Markov Decision Process

» Trading agent is modeled as a Markov Decision Process (MDP)
= Note that this Markov process might not be stationary or static
» Components:
» State
»s = [p, h, f, b], p: stock prices, f: features, h: stock shares, b: remaining balance
» Action
»Three actions: a € {-1, 0, 1}, where -1, 0O, 1 represent selling, holding, and buying one stock.

» Multiple action space a € {-k, ..., =1,0, 1, ..., k}, where k denotes the number of shares.

» An action can be carried upon multiple shares. For example, "Buy 10 shares of AAPL" or "Sell
10 shares of AAPL" are 10 or =10, respectively. Resulting in (2k+1)9 actions for d stocks.

=» Reward

» 1(s,a,s'): the direct reward of acting a at state s and arriving at the new state s', e.g. the
change of the portfolio value when action a is taken at state s and arriving at new state s', i.e.,
r(s, a,s’) =v' — v, where v’ and v represent the portfolio values at state s' and s, respectively'.

» Q-value function

» (. (s, a): the expected reward of acting a at state s following policy



State Space

» State Space

Balance: available amount of money left in the account currently
Price: current adjusted close price of each stock

Shares: shares owned of each stock

ADX: Average Directional Index, is a trend strength indicator.

MACD: Moving Average Convergence Divergence, is a trend-following momentum
indicator that shows the relationship between two moving averages of a security’s price. The
MACD is calculated by subtracting the 26-period exponential moving average ?I/EI\/\A) from
the 12-period EMA.

RSI: Relative Strength Index, is classified as a momentum oscillator, measuring the velocity
and magnitude of directional price movements

CCIl: Commodity Channel Index, is a momentum-based oscillator used to help determine
when an investment vehicle is reaching a condition of being overbought or oversold.

One could use language models such as LSTM to extract more features.



Action space

» Action

»Three actions: a € {-1, 0, 1}, where -1, 0, 1 represent selling, holding, and
buying one stock.

» Multiple action space a € {-k, ..., -1, 0, 1, ..., k}, where k denotes the number of
shares one can buy or sell.

= An action can be carried upon multiple stocks. Therefore the size of the enire
action space is (2k+1)9 where d is the number of stocks.

»For example, "Buy 10 shares of AAPL" or "Sell 10 shares of AAPL" are a=10 or
a=-10, respectively.




Reward function

= Reward
» 1(s,as'): the direct reward of acting a at state s and arriving at the new state s’

» [or example, the change of the portfolio value when action ais taken at state s
and arriving at new state s', i.e., r(s, a, s') = v' — v, where v’ and v represent the
portfolio values at state s’ and s, respectively’

» Transaction cost is usually involved

®» One can also use Sharpe ratio as reward,

The Formula for Sharpe Ratio Is
Sharpe Ratio = u
Tp

where:
R, = return of portfolio
R; = risk-free rate

o, = standard deviation of the portfolio’s excess return




Constraints

= Market liquidity:

»  Assume that stock market will not be affected by our reinforcement trading
agent

= Nonnegative balance:

» fthe allowed actions should not result in a negative balance.

=» Transaction cost:
®» fragnsaction costs are incurred for each trade.
» Risk-aversion for market crash:

» cmploy the financial turbulence index that measures extreme asset price
movements.




Learning Algorithms

» Critic-only approach
» Q-learning, DQN, etc
®» Actor-only approach

» Policy Gradient

» Actor-critic approach
» A2C
= PPO
=» DDPG
= SAC



Datac

» Dow 30 constituents:

»  ['AXP', 'AMGN’, 'AAPL’, BA', 'CAT, 'CSCQO’, 'CVX', 'GS’, 'HD', 'HON', 'IBM’, 'INTC’, 'UNJ', 'KO', 'JPM’,
'‘MCD', MMM, 'MRK', 'MSFT', 'NKE', 'PG’, TRV, 'UNH', 'CRM', 'VZ', 'V', 'WBA', 'WMT', 'DIS’, ' DOW']

= Training
» Daily OHLC prices and features from ‘2009-01-01’ to '2020-07-071’
» N = 83897

» BackTest trading
» Daily OHLC prices and features from '2020-07-01" to '2021-07-06'

» N =7/337

» Baseline: Dow Jones Index (DJI)




A successtul SAC agent |

» SAC:
» Annual return 0.409532
» Cumulative returns 0.411453
» Annual volatility 0.149417
= Sharpe ratio 2.382402
» Baseline: DJI
» Annual return 0.335107
» Cumulative returns 0.336639
» Annual volatility 0.145596
» Sharpe ratio 2.066650

Cumulative retur
=

Cumulative returns

1404

1.10 1

--------------

Rolling volatility (6-month)

= Volatility
=~ Benchmark volatility
= = Average volatility

Rolling Sharpe ratio (6-month)

| — Sharpe
1 == Average




Good

» Resulfs:

» Annuglreturn 0.409532

» Cupnulafive returns 0.411453
nnual volatility 0.149417

Sharpe ratio 2.382402

RL may be highly instable:
two SAC runs

Bad

» Results

= Annual return 0.250596

» Cumulative refurns 0.251707
» Annual volatility 0.148737

» Sharpe ratio 1.584268
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Case: Hierarchical Reinforced Trader (HRT)

(Zhao & Welsch, arXiv: 2410.14927)

» Hijerarchical Reinforced Trader (HRT): A Bi-Level

Approach for Optimizing Stock Selection and
Execution, by Zhao and Welsch,
hitps://arxiv.org/abs/2410.14927

= High Level Controller (HLC): defermine the
subset of stocks to buy, sell, or hold, executing
stock selection

= Low Level Controller (LLC): optimize the trade
volumes for the selected stocks, thereby
determining the optimal number of shares to
transact

arXiv:2410.14927v1 [g-fin.TR] 19 Oct 2024

Hierarchical Reinforced Trader (HRT): A Bi-Level Approach for
Optimizing Stock Selection and Execution

Zijie Zhao
Massachusetts Institute of Technology
Cambridge, MA, USA
zijiezha@mit.edu

ABSTRACT

Leveraging Deep Reinforcement Learning (DRL) in automated stock
trading has shown promising results, yet its application faces sig-
nificant challenges, including the curse of dimensionality, inertia in
trading actions, and insufficient portfolio diversification. Address-
ing these challenges, we introduce the Hierarchical Reinforced
‘Trader (HRT), a novel trading strategy employing a bi-level Hier-
archical Reinforcement Learning framework. The HRT integrates a
Proximal Policy Optimization (PPO)-based High-Level Controller
(HILC) for strategic stock selection with a Deep Deterministic Policy
Gradient (DDPG)-based Low-Level Controller (LLC) tasked with
optimizing trade executions to enhance portfolio value. In our em-
pirical analysis, comparing the HRT agent with standalone DRL
models and the S&P 500 benchmark during both bullish and bearish
market conditions, we achieve a positive and higher Sharpe ratio.
‘This advancement not only underscores the efficacy of incorporat-
ing hierarchical structures into DRL strategies but also mitigates
the aforementioned challenges, paving the way for designing more
profitable and robust trading algorithms in complex markets.

CCS CONCEPTS

+ Computing methodologies —» Reinforcement learning,

KEYWORDS
Deep Reinforcement Learning, Markov Decision Process, Auto-
mated Stock Trading, Hierarchical Reinforcement Learning

1 INTRODUCTION
Profitable automated stock trading strategies are pivotal for in-
vestment companies and hedge funds. A classical method is Harry
Markowitz's Modern Portfolio Theory (MPT) [12], which deter-
mines the optimal portfolio allocation by calculating the expected
returns and the covariance matrix of stock prices. This optimization
aims to either maximize returns for a given risk level or minimize
risk for a specified return range. However, implementing MPT can
be complex, especially when portfolio managers wish to dynam-
ically adjust decisions at each time step and consider additional
factors. An alternative approach models the stock trading problem
as a Markov Decision Process (MDP) [1], solved using dynamic
programming. Nevertheless, this model's scalability is constrained
by the expansive state spaces inherent in real stock markets.
Recent research has turned to Deep Reinforcement Learning
(DRL) methods for stock trading [4, 22]. DRL overcomes scalability
issues by using deep neural networks to approximate complex func-
tions, solving MDPs without the limitations of traditional models.
Liu, Xiao-Yang, et al. [9] formalize the stock trading problem as an
MDP and employ Deep Deterministic Policy Gradient (DDPG) [7]

Roy E. Welsch
Massachusetts Institute of Technology
Cambridge, MA, USA
rwelsch@mit.edu

to discover optimal trading strategies that yield higher cumulative
returns and Sharpe ratios in the volatile stock market. Subsequent
research integrates the strengths of DDPG, Proximal Policy Opti-
mization (PPO) [18], and Advantage Actor Critic (A2C) [14] into
an ensemble strategy [22], adapting robustly to varying market
conditions. Despite these advancements, several challenges persist
in applying DRL to stock trading:

« Curse of Dimensionality: The computational complexity,
sample inefficiency, and potential training instability escalate
as the number of stocks increases, expanding the dimension-
ality of data and the state and action spaces exponentially.
For instance, if the action for a single stock is defined as
a€{-k...,=1,0,1,..., k}, representing sell hold, and buy
actions, the action space becomes (2xk+1), where N is the
number of market stocks. This complexity has limited the
validation of current research to a small asset scale, ranging
from Dow Jones 30 constituent stocks to only tens of assets.

« Inertia or Momentum Effect: DRL agents tend to repeat

a previous action (buy, sell, or hold) based on the reward
received, without necessarily considering the currently most
profitable action. If an agent receives a large reward for a
particular action (buy, sell, or hold), it may exploit this action
in subsequent steps. Even though DDPG introduces action
exploration through the addition of noise to the actions se-
lected by its deterministie policy, we still abserve crowded or
clustered trading operations in Figure 1 under the example
of Dow Jones 30 constituent stocks portfolio.

Insufficient Diversification: Diversification, a core prin-
ciple of finance aimed at risk mitigation, is compromised
when DRL agents focus repeatedly on a narrow selection
of stocks. This behavior, evidenced in Figure 1, increases
exposure to sector-specific risks, making the portfolio more
susceptible to adverse developments within those sectors.

To mitigate the three issues mentioned above and to enhance
performance and deliver superior trading strategies, we introduce
the Hierarchical Reinforced Trader (HRT), an innovative approach
to stock trading that utilizes a Hierarchical Reinforcement Learning
(HRL) framework [16]. Our HRT agent is structured around two
principal components, each serving distinct but complementary
roles in the trading strategy: (1) High-Level Controller (HLC):
Positioned at the strategic apex of the hierarchy, the HLC's mandate
s to determine the subset of stocks to buy, sell, or hold, effectively
executing stock selection. (2) Low-Level Controller (LLC): ol-
lowing the HLC's directives, the LLC is tasked with refining these
decisions by optimizing the trade volumes for the selected stocks,
thereby determining the optimal number of shares to transact. By
dividing the trading strategy into high-level stock selection and



HRT scheme
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Figure 2: Overview of the Hierarchical Reinforced Trader (HRT) architecture. Interactions between the HLC and LLC are indicated
by the red arrows.

Note: Transformer Encoders and LLaMA 2 13B sentiment analysis are used.



Summary

» Model-free reinforcement learning frading

= RL agentis unstable:
» The reward is highly noisy
®» The environment in stock prices is not stationary
= RL itself might not be stable

» Perhaps consider multiple agents



Optimized Execution, Market Microstructure
and Reinforcement Learning

[Y. Nevmyvaka. Y. Feng, MK; ICML 2006]
[IMK, Y. Nevmyvaka; In “High Frequency Trading”, O'Hara et al.
eds, Risk Books 2013]

Michael Kearns, University of Pennsylvania, ICML 2014, Beijing




A Brief Field Guide to Wall Street

= “Buy Side”: Attempt to outperform market via proprietary research
= |ncludes hedge funds, mutual funds, statistical arbitrage, HFT, prop trading groups

May or may not be quantitative and automated

»

®» Have investors but not clients
» Take and hold positions - risk
»

Generation of “alpha” still more art than science

“Sell Side”: Provide brokerage and execution services
» |ncludes bank and independent brokerages, exchanges

» Almost entirely quantitative and automated

= Clients are the buy side

= Do not hold risk; paid via fees/commissions/etc.
= |n reality, alpha and execution are blurred

» Especially at shorter holding periods (e.g. HFT)




A Canonical Trading Problem

= Goal (buy side to sell side): Sell V shares in T time steps; maximize revenue

» Strategy Evaluation Metric Benchmarks:
= \/olume Weighted Average Price (VWAP)
= Time Weighted Average Price (TWAP)
» |mplementation Shortfall (midpoint of bid-ask spread at beginning)
= Natural to view as a problem of state-based control (RL)
= State variables: inventory V and time remaining T (discretized)

» Features capturing market activity?




Market Microstructure

ietiesh | _island home | gisolaimet | _bels « Continuous double auction with limit orders: buy
orders decreasing; sell orders increasin

7 MSFT MSFT_| . J _ o '9
Sumbol Sezren « Volatile and dynamic; sub-millisecond time scale

« Cancellations, revisions, partial executions

LASTMATCH  TODAYSACTVITY »  How do individual orders (micro) influence

Price 237790 Orders 1,630

Time 90155514 Volume 44839 aggregate market behavior (macro)?

» Tradeoff between immediacy and price
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Policies Learned: Time and Volume Remaining
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» Experimental framework
— Full historical order book reconstruction and simulation
— Learn optimal policy on 1 year training; test on following 6 months
— Pitfalls: directional drift, “counterfactual” market impact

« Overall shape is consistent and sensible
— Become more aggressive (spread crossing) as time runs out or inventory is too large
— Learning optimizes this qualitative schedule




Additional Improvement From Order Book Features

Bid Volume -0.06% | Ask Volume -0.28%
Bid-Ask Volume Misbalance 0.13% | Bid-Ask Spread 7.97%
Price Level 0.26% | Immediate Market Order Cost 4.26%
Signed Transaction Volume 2.81% | Price Volatility -0.55%
Spread Volatility 1.89% | Signed Incoming Volume 0.59%
Spread + Immediate Cost 8.69% | Spread+ImmCost+Signed Vol 12.85%




Some ldealized Trading Scenarios and Risks

Assume all the transactions cross the bid/ask spread at approximate midpoint
(median) price

= Example: V={1,0,-1} (long/nothing/short), T=1 min
Return maximization with no-regret sequential (online) strategies:
= Compete with best single strategy in hindsight
= Unfortunately methods work poorly in practice
Could ask for no-regret to best strategy in risk-adjusted metrics:
» Sharpe Ratio: p(returns)/o(returns)
= Mean-Variance: u(returns) - o(returns)
Yet strong negative results in risk-adjusted metrics:
= No-regret provably impossible
= 1 + ¢ lower bound on competitive ratio

Intuition: Volatility terms ¢ introduce additional costs that one has to pay
Loss design should incorporate risk measurements, or internalize risks in strategies



Online Tutorials

» A GitHub repo for deep reinforcement learning strategies and
environments for quantitative trading

» hitps:.//qithub.com/Ceruleanacg/Personae/blob/master/README.md

» This is a good start for the application of deep reinforcement learning in
algorithmic trading

®» Can you reproduce the results theree¢




Job post from Jump Trading

® Full-time QD's link:
Posts by Zoey https://Inkd.in/gPP-mMBw

f Zoey Zhao « 1st

Trader Team Lead at Jump Trading - Hiring! o o

. ® Full-time QR's link:

Jump Trading Group is hiring both full-time QD, QR and interns in the Hong Kong httDS //lnkd ln/ngq _U7h

office:

Full-time QD's link: ; .
https://Inkd.in/gPP-mMBw Intern's link:

https://Inkd.in/gyNmDa%h

Full-time QR's link:
https://Inkd.in/gdYqg-U7h

umptrading

https://Inkd.in/gyNmDa9h

< Allroles Quantitative Researcher, Trading team
ot Traing View all obe)
. . Hong Kong
Quantitative Researcher, Trading team Quantitative N
Researcher, Trading Py s Conte
jumptrading jumptrading.com team
ong Kong e s s, s
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https:/ /werw.jumptrading.com/careers/6098760/

Apply for thisJoo ~ Reau red

3 Apply With Linkedin

Intern's link:
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