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Supervised Learning

´ Data: (x, y)
x is input, y is output/response (label) 

´ Goal: Learn a function to map x -> y 

´ Examples: 
´ Classification, 

´ regression, 

´ object detection,

´ semantic segmentation,

´ image captioning, etc. Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

So far… Supervised Learning
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Today: Reinforcement Learning

´ Problems involving an agent 
´ interacting with an environment, 
´ which provides numeric reward signals 

´ Goal: 
´ Learn how to take actions in order to maximize reward 

in dynamic scenariosReinforcement learning

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Agent and environment interact at discrete time steps:  t = 0,1, 2,K
     Agent observes state at step t:    St ∈
     produces action at step t :   At ∈ (St )
     gets resulting reward:    Rt+1 ∈

     and resulting next state:  St+1 ∈

At
Rt+1St At+1

Rt+2St+1 At+2

Rt+3St+2 At+3
St+3. . . . . .
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Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)
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R

! = s0, a0, s1, a1, . . .

The other random variables are a function of this sequence. The transitional
target rt+1 is a function of st, at, and st+1. The termination condition �t,
terminal target zt, and prediction yt, are functions of st alone.

R(n)
t = rt+1 + �t+1zt+1 + (1� �t+1)R

(n�1)
t+1

R(0)
t = yt

R�
t = (1� �)

1X

n=1

�n�1R(n)
t

⇢t =
⇡(st, at)

b(st, at)

�wo↵(!) = �won(!)
1Y

i=1

⇢i

�wt = ↵t(CtR
�
t � yt)rwyt

�wt = ↵t(R̄
�
t � yt)rwyt
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Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R, and
finds itself in a new state, St+1.3 Figure 3.1 diagrams the agent–environment
interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.
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Playing games against human champions

The Deep Learning Tsunami

Why now?

Where are the Intellectuals?

Relevant Theoretical Approaches

Course Structure

The Sudden Emergence of Deep Learning

What’s Driving the Tsunami?

Intellectual Significance

Human Impact

Reaching Human Level Performance

1997 2004

2017
D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?

The Deep Learning Tsunami

Why now?

Where are the Intellectuals?
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The Sudden Emergence of Deep Learning
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Intellectual Significance

Human Impact

Reaching Human Level Performance

1997 2004

2017
D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?AlphaGo “LEE” 2016

AlphaGo ”ZERO” D Silver et al. Nature 550, 354–359 (2017) doi:10.1038/nature24270

Deep Blue in 1997



Markov Decision Process /Dynamic 
Programming in Economics

´ The Sveriges Riksbank Prize in Economic Sciences in 
Memory of Alfred Nobel 1995 was awarded to 
Robert E. Lucas Jr. "for having developed and 
applied the hypothesis of rational expectations, and 
thereby having transformed macroeconomic 
analysis and deepened our understanding of 
economic policy".

´ Thomas John Sargent was awarded the Nobel 
Memorial Prize in Economics in 2011 together 
with Christopher A. Sims for their "empirical research 
on cause and effect in the macroeconomy"



What supervision does an agent need to learn 
purposeful behaviors in dynamic environments? 

´ Rewards: 
´ sparse feedback from the environment whether the desired goal is achieved e.g., 

game is won, car has not crashed, agent is out of the maze etc.
´ Rewards can be intrinsic, i.e., generated by the agent and guided by its curiosity as 

opposed to an external task 

´ Learning from rewards
´ Reward: jump as high as possible: It took years for athletes to find the right behavior to 

achieve this 

´ Learns from demonstrations
´ It was way easier for athletes to perfection the jump, once someone showed the right 

general trajectory 

´ Learns from specifications of optimal behavior 
´ For novices, it is much easier to replicate this behavior if additional guidance is provided 

based on specifications: where to place the foot, how to time yourself etc. 

GO



How learning goal-seeking behaviors is 
different to supervised learning paradigms? 

´ The agent’s actions affect the data she will receive in the future 

´ The reward (whether the goal of the behavior is achieved) is far in the future: 
´ Temporal credit assignment: which actions were important and which were not, is 

hard to know 

´ Isn’t it the same with loss of multi-layer deep networks?

´ No: here the horizon involves acting in the environment, rather than going from one 
neural layer to the next, we cannot apply chain rule to back propagate the gradient
of rewards.

´ But another way of “Back Propagation”: Bellman’s Dynamic Programing principle

´ Actions take time to carry out in the real world, and thus this may limit the 
amount of experience 
´ We can use simulated experience with multiple agents.



Outline

´ What is Reinforcement Learning? 

´ Markov Decision Processes

´ Bellman Equation as Linear Programming

´ Q-Learning 

´ Policy Gradients

´ Actor-Critics (Q-learning+Policy gradient)

´ Examples:
´ Deep RL for quantitative trading 

´ Order Book Optimization via Discrete Q-Learning by Prof. Michael Kearns



Reinforcement Learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 20179
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Reinforcement Learning
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Reinforcement Learning



Car-Pole Control Problem

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

Cart-Pole Problem

14

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart
Reward: 1 at each time step if the pole is upright

This image is CC0 public domain



Go Game

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

Go

17

Objective: Win the game!

State: Position of all pieces
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise

This image is CC0 public domain



Mathematical Formulation of 
Reinforcement LearningMDP

A Markov Decision Process is a tuple (S,A,R,P, �)
I S is a set of states

I A is a set of actions

I R is a distribution of reward given (state, action) pair

Rt+1 ⇠ R [· | St = s,At = a]

I P is a state transition probability function, satisfying the Markov

Property:

P [Rt+1 = r, St+1 = s
0 | St, At]

= P [Rt+1 = r, St+1 = s
0 | S0, A0, R1, . . . , St�1, At�1, Rt, St, At]

I � is a discount factor � 2 [0, 1]

2



Dynamics:

´ At time step t=0, environment samples initial state s0 ~ p(s0) 

´ Then, for t=0 until done: 
´ Agent selects action at 

´ Environment samples reward rt ~ R( . | st, at) 

´ Environment samples next state st+1 ~ P( . | st; at) 

´ Agent receives reward rt and next state st+1 

´ A policy 𝜋:S->A is a map from S to A that specifies what action to take in 
each state, which might be stochastic as a distribution on A 

´ Objective: find policy that maximizes the cumulated discounted reward



Rewards
´ They are scalar values (not vector rewards) provided by the environment to the 

agent that indicate whether goals have been achieved, e.g., 1 if goal is 
achieved, 0 otherwise, or -1 for overtime step the goal is not achieved 

´ Episodic tasks: A sequence of interactions based on which the reward will be 
judged at the end is called episode. Interaction breaks naturally into episodes, 
e.g., plays of a game, trips through a maze. 

´ Goal-seeking behavior of an agent can be formalized as the behavior that 
seeks maximization of the expected value of the cumulative sum of (potentially 
time discounted) rewards, we call it return. We want to maximize returns. 
´ Return in Finite horizon: 

´ Return (discounted) in infinite horizon: 

Returns       - Continuing tasks

Continuing tasks: interaction does not have natural episodes, but just 
goes on and on...  

In episodic tasks, we almost always use simple total reward:

Gt

Gt = Rt+1 + �Rt+2 + ... =
1X

k=0

�kRt+k+1

Why temporal discounting? A sequence of interactions based on which the 
reward will be judged at the end is called episode. Episodes can have 
finite or infinite length. For infinite length, the undercounted sum blows up, 
thus we add discounting            to prevent this, and treat both cases in a 
similar manner.

γ < 1

Reward

Gt = Rt+1 +Rt+2 + · · ·+RT

Gt = Rt+1 + �Rt+2 + · · · =
1X

k=0

�
k
Rt+k+1

2

A Finite Markov Decision Process is a tuple

•    is a finite set of states

•    is a finite set of actions

•    is a state transition probability function  

•   is a reward function  

•   is a discount factor

Finite Markov Decision Process

�

r(s, a) = E[Rt+1|St = s,At = a]

r

T

T (s0|s, a) = P[St+1 = s0|St = s,At = a]

A

S

(S,A, T, r, �)

� 2 [0, 1]

A Finite Markov Decision Process is a tuple
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•    is a state transition probability function  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Finite Markov Decision Process

�

r(s, a) = E[Rt+1|St = s,At = a]

r

T
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Dynamics of Environment or Model

´ How the states and rewards change given the actions of the agent 

´ Transition function or next step function: 

´ Model-based RL: dynamics are known or are estimated, and are used for 
learning the policy 

´ Model-free RL: we do not know the dynamics, and we do not attempt to 
estimate them 

Dynamics     a.k.a. the Model

• How the states and rewards change given the actions of the agent

p

p(s′�, r |s, a) = ℙ{St = s′�, Rt = r |St−1 = s, At−1 = a}

T(s′�|s, a) = p(s′�|s, a) = ℙ{St = s′�|St−1 = s, At−1 = a} = ∑
r∈ℝ

p(s′�, r |s, a)

• Transition function or next step function:

Dynamics     a.k.a. the Model

• How the states and rewards change given the actions of the agent

p

p(s′�, r |s, a) = ℙ{St = s′�, Rt = r |St−1 = s, At−1 = a}

T(s′�|s, a) = p(s′�|s, a) = ℙ{St = s′ �|St−1 = s, At−1 = a} = ∑
r∈ℝ

p(s′�, r |s, a)

• Transition function or next step function:



Policy

´ A mapping function from states to actions of the end effectors, e.g.
stochastic actions:

´ It can be a shallow or deep network, or involving a tree look-ahead search

A mapping function from states to actions of the end effectors. 

It can be a shallow or deep function mapping, 

  

or it can be as complicated as involving a tree look-ahead search 

Policy

Imitation Learning
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Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

The optimal policy Ḗ*

24

We want to find optimal policy Ḗ* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)?
Maximize the expected sum of rewards!

Formally:  with 



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

A simple MDP: Grid World

21

Objective: reach one of terminal states (greyed out) in 
least number of actions

★

★

actions = {

1. right

2. left

3. up

4. down

}

Set a negative “reward” 
for each transition 

(e.g. r = -1)

states



´ Finding the optimal policy: Bellman’s Principle of Dynamic Programming
´ Begin with the terminal states, find the nearest neighbors (depth-1) states with their 

optimal move (policy);

´ From depth-1 neighbor cells, find the optimal move (policy) of depth-2 neighbor cells;

´ And so on recursively…

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

A simple MDP: Grid World

22

Random Policy Optimal Policy

★

★

★

★



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

Definitions: Value function and Q-value function

27

Following a policy produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, …

How good is a state? 
The value function at state s, is the expected cumulative reward from following the policy 
from state s:

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from 
taking action a in state s and then following the policy:



Bellman Equation of Optimal Value: 
finite states and actions

Remarks 
• In the continuous-time analog of MDP, i.e., stochastic optimal control, the Bellman equation 
is the Hamilton-Jacobi-Bellman (HJB) 
• Exact solution methods: value iteration, policy iteration, variational analysis 
• What makes things hard: 

Curse of dimensionality + Modeling Uncertainty 

Project 2 8

Assume that ⌃x|z and ⌃z|x are both diagonal, i.e. conditional independence.

y = f(x1, . . . , xd)

Reinforcement Learning:

Optimal Value Function V ⇤ : S ! R = x⇤ satisfied the following nonlinear fixed point equation

x⇤(i) = max
a2A

8
<

:ra(i) + �
X

j2S
Pa(i, j)x

⇤(j)

9
=

;

where a policy ⇡⇤ is an optimal policy if and only if it attains the optimality of the Bellman
equation.

The Bellman equation is equivalent to

max eTx

subject to (I � �Pa)x� ra � 0, a 2 A

Dual Problem

Online Value-Policy Iteration

Duality between Value Function and Policy

Let �i,a � 0 be the multiplier associated with the i-th row of the primal constraint �Pax+ra  x.
The dual problem is

minimize ��T
a ra, a 2 A

subject to
X

a2A
(I � �P T

a )�a = e, �a � 0, a 2 A

where the dual variable is high-dimensional � = (�a)a2A 2 R|A||S|.



Example: the student MDP

The Student MDP Value functionValue Function for the Student MDP
v⇡(s) =

X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

i

The Student MDP



Bellman Equation as LP (Farias and Van Roy, 2003) 

Online Value-Policy Iteration

Bellman Equation as LP

Bellman Equation as LP (Farias and Van Roy, 2003)

The Bellman equation is equivalent to

minimize � e
T
x

subject to (I � ↵Pa) x � ga  0, a 2 A,

• Exact policy iteration is a form of simplex method and exhibits strongly
polynomial performance (Ye 2011)

• Again, curse of dimensionality:

• Variable dimension = |S|.

• Number of constraints = |S|⇥ |A|.
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Let �i,a � 0 be the multiplier associated with the i-th row of the primal constraint �Pax+ra  x.
The dual problem is
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a ra, a 2 A
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X
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(I � �P T
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Duality between Value Function and Policy

Online Value-Policy Iteration

Duality between Value Function and Policy

Dual Problem
Let �i,a > 0 be the multiplier associated with the ith row of the primal constraint
↵Pax + ga � x . The dual problem is

maximize �

X

a2A

�T
a ga

subject to
X

a2A

⇣
I � ↵PT

a

⌘
�a = e, �a � 0,

where the dual variable is high-dimensional � = (�a)a2A 2 <
|S||A|.

Theorem
The optimal dual solution �⇤ = (�⇤

i,a)i2S,a2A is sparse and has exact |S | nonzeros. It

satisfies �
�⇤
i,µ⇤(i)

�
i2S = (I � ↵PT

µ⇤)�1
e,

and �⇤
i,a = 0 if a 6= µ⇤(i).

Finding the optimal policy µ⇤
= Finding the basis of the dual solution �⇤
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The dual problem is
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Stochastic Primal-Dual Value-Policy Iteration 
(Mengdi Wang (2019), Mathematics of Operations Research, 
45(2):517-546. arXiv:1704.01869)

Online Value-Policy Iteration

Online Value-Policy Iteration

Stochastic primal-dual (value-policy) algorithm

• Input: Simulation Oracle M, n = |S|, m = |A|, ↵ 2 (0, 1).

• Initialize x(0) and � = (�
(0)

u : u 2 A) arbitrarily.

• Fork = 1, 2, . . . ,T

• Sample ik uniformly from S and sample uk uniformly from A.

• Sample next state jk and immediate reward gik jk uk conditioned on (ik , uk ) from M.

• Update the iterates by

x(k�
1

2
)
= x(k�1) � �k

⇣
� e +m�

(k�1)

uk � ↵mn
⇣
�
(k�1)

uk · eik
⌘
ejk

⌘
,

�
(k� 1

2
)

uk = �
(k�1)

uk +m�k
⇣
x(k�1) � ↵n

⇣
x(k�1) · ejk

⌘
eik � ngik jk uk eik

⌘
,

�
(k� 1

2
)

u = �
(k�1)

u , 8 u 6= uk ,

• Project the iterates orthogonally to some regularization constraints

x(k) = ⇧X x
(k� 1

2
), �(k)

= ⇧⇤�
(k� 1

2
).

• Ouput: Averaged dual iterate �̂ =
1

T

PT
k=1

�(k)
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Near Optimal Primal-Dual Algorithms

Method Setting Sample Complexity Run-Time Complexity Space Complexity Reference

Phased Q-Learning γ discount factor,
ϵ-optimal value

|S||A|
(1−γ)3ϵ2

ln 1
δ

|S||A|
(1−γ)3ϵ2

ln 1
δ

|S||A| [17]

Model-Based Q-Learning γ discount factor,
ϵ-optimal value

|S||A|
(1−γ)3ϵ2

ln |S||A|
δ

NA |S|2|A| [1]

Randomized P-D γ discount factor,
ϵ-optimal policy

|S|3|A|
(1−γ)6ϵ2

|S|3|A|
(1−γ)6ϵ2

|S||A| [25]

Randomized P-D γ discount fac-
tor, τ -stationary,
ϵ-optimal policy

τ 4 |S||A|
(1−γ)4ϵ2

τ 4 |S||A|
(1−γ)4ϵ2

|S||A| [25]

Randomized VI γ discount factor,
ϵ-optimal policy

|S||A|·
(1−γ)4ϵ2

|S||A|·
(1−γ)4ϵ2

|S||A| [23]

Primal-Dual π Learning τ -stationary,
t∗mix-mixing,
ϵ-optimal policy

(τ ·t∗
mix

)2|S||A|

ϵ2
(τ ·t∗

mix
)2|S||A|

ϵ2
|S||A| This Paper

Table 1: Complexity Results for Sampling-Based Methods for MDP. The sample complexity is
measured by the number of queries to the SO. The run-time complexity is measured by the total
run-time complexity under the assumption that each query takes Õ(1) time. The space complexity
is the additional space needed by the algorithm in addition to the input.

applies to the more general undiscounted problems. Without assuming any discount factor, we
are able to characterize the complexity upperbound for infinite-horizon MDP using its mixing and
stationary properties. Comparing to [25], the complexity results achieved in the current paper are
much sharper, mainly due to the natural simplicity of average-reward Markov processes. To the
author’s best knowledge, our results provide the first sublinear run time for solving infinite-horizon
average-reward MDP without any assumption on discount factor or finite horizon.

3 Ergodic MDP, Bellman Equation, and Duality

Consider an AMDP that is described by a tuple M = (S,A,P, r). In this paper, we focus on
AMDP that is ergodic (aperiodic and recurrent) under any stationary policy. For a stationary
policy π, we denote by νπ the stationary distribution of the Markov decision process which satisfies
(P π)⊤ νπ = νπ. We make the following assumptions on the stationary distributions and mixing
times:

Assumption 1 (Ergodic Decision Process). The Markov decision process specified by M = (S,A,P, r)
is τ -stationary in the sense that it is ergodic under any stationary policy π and there exists τ > 1
such that

1√
τ |S|

1 ≤ νπ ≤
√
τ

|S| 1.

Assumption 1 characterizes a form of complexity of MDP in terms of the range of its stationary
distributions. The factor τ characterizes a notion of complexity of ergodic MDP, i.e., the variation
of stationary distributions associated with different policies. Suppose that some policies induce
transient states (so the stationary distribution is not bounded away from zero). In this case, we as
long as there is some policy that leads to an ergodic process, we can restrict our attention to mixture
policies in order to guarantee ergodicity. In this way, we can always guarantee that Assumption 1
holds on the restricted problem at a cost of some additional approximation error.

5

Mengdi Wang, Primal-Dual π Learning, arXiv:1710.0610 



Approaches of Deep RL: approximate
dynamic programming

´ Value-based RL
´ Learn an optimal value function Q∗(s,a) or V∗(s)
´ Implicit derivation of policy
´ Deep Q-Learning (DQN), Double DQN, Dueling DQN

´ Policy-based RL
´ Learn directly an optimal policy π∗
´ This is the policy achieving maximum future reward 
´ Policy Gradient (PG)

´ Actor-Critic RL
´ Learn a value function and a policy
´ A2C, SAC

´ Model-based RL (not here)
´ Build a model of the environment 
´ Plan (e.g. by look-ahead) using model 

Value-Based and Policy-Based RL 
‣ Value Based 

- Learn a Value Function  
- Implicit policy (e.g. ε-greedy) 

‣ Policy Based 
- Learn a Policy directly

‣ Actor-Critic  
- Learn a Value Function, and 
- Learn a Policy 



Q-Learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

Bellman equation

30

Q* satisfies the following Bellman equation:

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known, 
then the optimal strategy is to take the action that maximizes the expected value of 

The optimal policy Ḗ*  corresponds to taking the best action in any state as specified by Q*  

The optimal Q-value function Q* is the maximum expected cumulative reward achievable 
from a given (state, action) pair:
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What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state 
pixels, computationally infeasible to compute for entire state space!

Solution:  use a function approximator to estimate Q(s,a). E.g. a neural network! 

Solving for the optimal policy

34

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update
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Solving for the optimal policy: Q-learning 

36

Q-learning: Use a function approximator to estimate the action-value function 

If the function approximator is a deep neural network => deep q-learning!
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Remember: want to find a Q-function that satisfies the Bellman Equation: 

40

Loss function:

where

Solving for the optimal policy: Q-learning 

Forward Pass

Backward Pass
Gradient update (with respect to Q-function parameters θ):



Yet, such a training might be unstable …

´ Learning from batches of consecutive samples is problematic: 
´ Samples are correlated => inefficient learning 

´ Current Q-network parameters determines next training samples (e.g. if 
maximizing action is to move left, training samples will be dominated by samples 
from left-hand size) => can lead to bad feedback loops

´ Experience replay will help!



DQN: Experience Replay
´ To remove correlations, build a replay memory data-set D from agent’s own experience

´ Sample random mini-batch of transitions (s,a,r,s′) from D, instead of consecutive samples 

´ Compute Q-learning targets w.r.t. old, fixed parameters w− 

´ Optimize MSE between Q-network and Q-learning target by SGD, where each transition 
can also contribute to multiple weight updates => greater data efficiency 

DQN
‣ To remove correlations, build data-set from agent’s own experience 

‣ To deal with non-stationarity, target parameters w− are held fixed 

‣ Sample experiences from data-set and apply update 

DQNs: Experience Replay 
‣ DQN uses experience replay and fixed Q-targets 

‣ Use stochastic gradient descent 

‣ Store transition (st,at,rt+1,st+1) in replay memory D 

‣ Sample random mini-batch of transitions (s,a,r,s′) from D 

‣ Compute Q-learning targets w.r.t. old, fixed parameters w− 

‣ Optimize MSE between Q-network and Q-learning targets 

Q-learning target Q-network
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Putting it together: Deep Q-Learning with Experience Replay

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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Case Study: Playing Atari Games 

42

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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                    :
neural network 
with weights

Q-network Architecture

48

Current state st: 84x84x4 stack of last 4 frames 
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d 
output (if 4 actions), 
corresponding to Q(st, 
a1), Q(st, a2), Q(st, a3), 
Q(st,a4)

Number of actions between 4-18 
depending on Atari game

A single feedforward pass 
to compute Q-values for all 
actions from the current 
state => efficient!

[Mnih et al. NIPS Workshop 2013; Nature 2015]



Example

´ Google DeepMind's Deep Q-learning playing Atari Breakout:
´ https://www.youtube.com/watch?v=V1eYniJ0Rnk 

´ Google DeepMind created an artificial intelligence program using deep 
reinforcement learning that plays Atari games and improves itself to a 
superhuman level. It is capable of playing many Atari games and uses a 
combination of deep artificial neural networks and reinforcement learning. After 
presenting their initial results with the algorithm, Google almost immediately 
acquired the company for several hundred million dollars, hence the name 
Google DeepMind. Please enjoy the footage and let me know if you have any 
questions regarding deep learning!



Prioritized Replay: importance sampling
[Schaul, Quan, Antonoglou, Silver, ICLR 2016]

´ Current Q-network w is used to select actions 

´ Older Q-network w− is used to evaluate actions 

´ Importance Weight experience according to ``surprise” (or error): 

´ Store experience in priority according to DQN error: 

´ 𝛼 determines how much prioritization is used, with 𝛼 = 0 corresponding to the uniform 
case. 

‣ Older Q-network w− is used to evaluate actions 

Double DQN
‣ Current Q-network w is used to select actions 

van Hasselt, Guez, Silver, 2015  

Action selection: w

Action evaluation: w−

Prioritized Replay 
‣ Weight experience according to ``surprise” (or error)

Schaul, Quan, Antonoglou, Silver, ICLR 2016

‣ Stochastic Prioritization

‣ α determines how much prioritization is used, with α = 0 corresponding to 
the uniform case.

‣ Store experience in priority queue according to DQN error 

pi is proportional to 
DQN error

Prioritized Replay 
‣ Weight experience according to ``surprise” (or error)

Schaul, Quan, Antonoglou, Silver, ICLR 2016

‣ Stochastic Prioritization

‣ α determines how much prioritization is used, with α = 0 corresponding to 
the uniform case.

‣ Store experience in priority queue according to DQN error 

pi is proportional to 
DQN error



Maximization Bias

´ We often need to maximize over our value estimates. The estimated 
maxima suffer from maximization bias 

´ Consider a state for which all ground-truth Q*(s,a)=0. Our estimates Q(s,a) 
are uncertain, some are positive and some negative. Q(s,argmaxa(Q(s,a)) is 
positive while Q*(s,argmaxa(Q*(s,a))=0. 



Double Q-Learning (DDQN)

´ Train 2 action-value functions, Q1 and Q2 

´ Do Q-learning on both, but 
´ never on the same time steps (Q1 and Q2 are independent) 

´ pick Q1 or Q2 at random to be updated on each step 

´ If updating Q1, use Q2 for the value of the next state: 

´ Action selections are with respect to the sum of Q1 and Q2 

Double Q-Learning
‣ Train 2 action-value functions, Q1 and Q2

‣ Do Q-learning on both, but 
- never on the same time steps (Q1 and Q2 are independent) 

- pick Q1 or Q2 at random to be updated on each step

‣ Action selections are !-greedy with respect to the sum of Q1 and Q2

‣ If updating Q1, use Q2 for the value of the next state:



Double DQN:
Double Q-Learning in Tabular Form144 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

Initialize Q1(s, a) and Q2(s, a), 8s 2 S, a 2 A(s), arbitrarily
Initialize Q1(terminal-state, ·) = Q2(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q1 and Q2 (e.g., "-greedy in Q1 + Q2)
Take action A, observe R, S0

With 0.5 probabilility:

Q1(S, A) Q1(S, A) + ↵
⇣
R + �Q2

�
S0, argmaxa Q1(S0, a)

�
�Q1(S, A)

⌘

else:

Q2(S, A) Q2(S, A) + ↵
⇣
R + �Q1

�
S0, argmaxa Q2(S0, a)

�
�Q2(S, A)

⌘

S  S0;
until S is terminal

Figure 6.15: Double Q-learning.

The idea of doubled learning extends naturally to algorithms for full MDPs. For
example, the doubled learning algorithm analogous to Q-learning, called Double Q-
learning, divides the time steps in two, perhaps by flipping a coin on each step. If
the coin comes up heads, the update is

Q1(St, At) Q1(St, At)+↵
⇣
Rt+1 +Q2

�
St+1, argmax

a

Q1(St+1, a)
�
�Q1(St, At)

⌘
.

(6.8)

If the coin comes up tails, then the same update is done with Q1 and Q2 switched,
so that Q2 is updated. The two approximate value functions are treated completely
symmetrically. The behavior policy can use both action value estimates. For ex-
ample, an "-greedy policy for Double Q-learning could be based on the average (or
sum) of the two action-value estimates. A complete algorithm for Double Q-learning
is given in Figure 6.15. This is the algorithm used to produce the results in Fig-
ure 6.14. In this example, doubled learning seems to eliminate the harm caused by
maximization bias. Of course there are also doubled versions of Sarsa and Expected
Sarsa.

6.8 Games, Afterstates, and Other Special Cases

In this book we try to present a uniform approach to a wide class of tasks, but of
course there are always exceptional tasks that are better treated in a specialized way.
For example, our general approach involves learning an action-value function, but in
Chapter 1 we presented a TD method for learning to play tic-tac-toe that learned
something much more like a state-value function. If we look closely at that example, it
becomes apparent that the function learned there is neither an action-value function
nor a state-value function in the usual sense. A conventional state-value function
evaluates states in which the agent has the option of selecting an action, but the

Hado van Hasselt 2010



Summary of Q-Learning

´ We have introduced Q-learning with several variants:
´ DQN, Double DQN, and Dueling DQN (next)

´ Experience replay, prioritization

´ What is a problem with Q-learning?
´ The Q-function can be very complicated! 

´ Example: a robot grasping an object has a very high-dimensional state => hard 
to learn exact value of every (state, action) pair 

´ But the policy can be much simpler: just close your hand

´ Can we learn a policy directly, e.g. finding the best policy from a collection 
of policies? 



Policy Gradients
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Formally, let’s define a class of parametrized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this? 

Policy Gradients

67

Gradient ascent on policy parameters!
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REINFORCE algorithm

68

Mathematically, we can write:

Where r(ᶦ) is the reward of a trajectory
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REINFORCE algorithm

73

Intractable! Gradient of an 
expectation is problematic when p 
depends on θ 

Can estimate with 
Monte Carlo sampling

Now let’s differentiate this:

However, we can use a nice trick:
If we inject this back:

Expected reward:
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REINFORCE algorithm

77

Can we compute those quantities without knowing the transition probabilities?

We have:

Thus:

And when differentiating:

Therefore when sampling a trajectory ᶦ, we can estimate J(ᶚ) with

Doesn’t depend on 
transition probabilities!
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Intuition

80

Gradient estimator:

Interpretation:
- If r(ᶦ) is high, push up the probabilities of the actions seen
- If r(ᶦ) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were 
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is 
really hard. Can we help the estimator?
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Variance reduction

83

Gradient estimator:

First idea: Push up probabilities of an action seen, only by the cumulative 
future reward from that state

Second idea: Use discount factor ᶕ to ignore delayed effects
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Variance reduction: Baseline

Problem: The raw value of a trajectory isn’t necessarily meaningful. For 
example, if rewards are all positive, you keep pushing up probabilities of 
actions.

What is important then? Whether a reward is better or worse than what you 
expect to get

Idea: Introduce a baseline function dependent on the state.
Concretely, estimator is now: 

84
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How to choose the baseline?

86

A simple baseline: constant moving average of rewards experienced so far 
from all trajectories

Variance reduction techniques seen so far are typically used in “Vanilla 
REINFORCE”
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How to choose the baseline?

90

A better baseline: Want to push up the probability of an action from a state, if 
this action was better than the expected value of what we should get from 
that state.

Q: What does this remind you of?

A: Q-function and value function!
Intuitively, we are happy with an action at in a state st if                                       
is large. On the contrary, we are unhappy with an action if it’s small.

Using this, we get the estimator:
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Actor-Critic Algorithm

91

Problem: we don’t know Q and V. Can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning 
by training both an actor (the policy) and a critic (the Q-function).

- The actor decides which action to take, and the critic tells the actor 
how good its action was and how it should adjust

- Also alleviates the task of the critic as it only has to learn the values 
of (state, action) pairs generated by the policy

- Can also incorporate Q-learning tricks e.g. experience replay
- Remark: we can define by the advantage function how much an 

action was better than expected



Actor-Critic Model

´ Learn both actor (policy 𝛑) and critic (value Q and V)
´ Actor decides which action to take

´ Advantage function in critic tells how much an action might be better than expected:

´ Policy gradient:

´ Stochastic Advantage can be approximated by TD-error (Temporal-Difference error)

Reward

Gt = Rt+1 +Rt+2 + · · ·+RT

Gt = Rt+1 + �Rt+2 + · · · =
1X

k=0

�
k
Rt+k+1
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Â
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⇡✓ (s, a;w) = Q̂

⇡✓ (s, a;w)� V̂
⇡✓ (s;w)

r✓J(✓) = E⇡✓ [r✓ log ⇡✓(s, a)A
⇡✓ (s, a)]

3

Reward

Gt = Rt+1 +Rt+2 + · · ·+RT

Gt = Rt+1 + �Rt+2 + · · · =
1X

k=0

�
k
Rt+k+1

⇡✓(a|s)

A
⇡(s, a) = Q

⇡(s, a)� V
⇡(s)

A
⇡✓ (s, a;w) = Q

⇡✓ (s, a;w)� V
⇡✓ (s;w)

r✓J(✓) = E⇡✓ [r✓ log ⇡✓(s, a)A
⇡✓ (s, a)]

3
Estimating the Advantage Function 
‣  For the true value function             , the TD error: 

 is an unbiased estimate of the advantage function: 

‣  So we can use the TD error to compute the policy gradient  

‣  Remember the policy gradient 





Dueling DQN
[Wang et.al., ICML, 2016 ]

´ Split Q-network into two channels:
´ Action-independent value function V(s; w) 

´ Action-dependent advantage function A(s, a; w) 

´ Dueling DQN learns Q-function using

Dueling Networks
‣ Split Q-network into two channels 

‣ Action-independent value function

‣ Action-dependent advantage function

Wang et.al., ICML, 2016

‣ Advantage function is defined as:

Q(s, a; w) = V(s; w) + A(s, a; w)

A(s, a; w)

V(s; w)

Dueling Networks vs. DQNs

Wang et.al., ICML, 2016

DQN

Dueling Networks

Q(s, a; w) = V(s; w) + (A(s, a; w) − 1
|" | ∑

a′�
A(s, a′�; w))

Dueling Networks vs. DQNs

Wang et.al., ICML, 2016

DQN

Dueling Networks

Q(s, a; w) = V(s; w) + (A(s, a; w) − 1
|" | ∑

a′�
A(s, a′�; w))



PG Summary

´ Policy Gradient:

´ Policy Gradient with Baseline:

´ Actor-Critic Policy Gradient:  

Monte Carlo Policy Gradient: 

 

 

Monte-Carlo Policy Gradient with baseline: 

 

 

Actor-Critic Policy Gradient 

 

 

 

Summary: 

Monte Carlo Policy Gradient: 

 

 

Monte-Carlo Policy Gradient with baseline: 

 

 

Actor-Critic Policy Gradient 

 

 

 

Summary: 
Monte Carlo Policy Gradient: 

 

 

Monte-Carlo Policy Gradient with baseline: 

 

 

Actor-Critic Policy Gradient 

 

 

 

Summary: 



Maximal Entropy RL 

´ Promoting the stochastic policies

´ Why? 
´ Better exploration

´ Learning alternative ways of accomplishing the task 

´ Better generalization, e.g., in the presence of obstacles a stochastic policy may 
still succeed. 

MaxEntRL objective

π* = arg max
π

!π

T

∑
t= 1

R(st, at)
reward

+ α H(π( ⋅ |st))
entropy

Why? 

• Better exploration 

• Learning alternative ways of accomplishing the task 

• Better generalization, e.g., in the presence of obstacles a stochastic 
policy may still succeed.

Promoting stochastic policies



´ “Soft” Bellman Equation:

´ “Soft” Value function: 

Reward

Gt = Rt+1 +Rt+2 + · · ·+RT

Gt = Rt+1 + �Rt+2 + · · · =
1X

k=0

�
k
Rt+k+1

⇡✓(a|s)

A
⇡(s, a) = Q

⇡(s, a)� V
⇡(s)

A
⇡✓ (s, a;w) = Q

⇡✓ (s, a;w)� V
⇡✓ (s;w)

r✓J(✓) = E⇡✓ [r✓ log ⇡✓(s, a)A
⇡✓ (s, a)]

V (s) = Ea⇠⇡ [Q (s, a)� log ⇡ (a | s)]

Q
⇡(s, a) = r(s, a) + Es0,a0 [Q⇡ (s0, a0)� log (⇡ (a0 | s0))] .

3

Reward

Gt = Rt+1 +Rt+2 + · · ·+RT

Gt = Rt+1 + �Rt+2 + · · · =
1X

k=0

�
k
Rt+k+1

⇡✓(a|s)

A
⇡(s, a) = Q

⇡(s, a)� V
⇡(s)

A
⇡✓ (s, a;w) = Q

⇡✓ (s, a;w)� V
⇡✓ (s;w)

r✓J(✓) = E⇡✓ [r✓ log ⇡✓(s, a)A
⇡✓ (s, a)]

V (s) = Ea⇠⇡ [Q (s, a)� log ⇡ (a | s)]

Q
⇡(s, a) = r(s, a) + Es0,a0 [Q⇡ (s0, a0)� log (⇡ (a0 | s0))] .

3



Soft version of actor-critic model 
´ Learn the following value and policy functions:

´ Gradient for the state-value function V:

´ Gradient for the state-action value Q-function:

Soft Policy Iteration - Approximation

Use function approximations for policy, state and action value functions

Vψ(st) Qθ(st) πϕ(at |st)

1.  Learning the state value function:

Soft Policy Iteration - Approximation

Use function approximations for policy, state and action value functions

Vψ(st) Qθ(st) πϕ(at |st)

2.  Learning the state-action value function:

Soft Policy Iteration - Approximation

Use function approximations for policy, state and action value functions

Vψ(st) Qθ(st) πϕ(at |st)

2.  Learning the state-action value function:

Soft Policy Iteration - Approximation

Use function approximations for policy, state and action value functions

Vψ(st) Qθ(st) πϕ(at |st)

2.  Learning the state-action value function:

Soft Policy Iteration - Approximation

Use function approximations for policy, state and action value functions

Vψ(st) Qθ(st, at) πϕ(at |st)

3.  Learning the policy:

∇ϕJπ(ϕ) = ∇ϕ"st∈D"at∼πϕ(a|st) log
πϕ(at |st)

exp(Qθ(st, at))
Zθ(st)

The variable w.r.t. which we take gradient parametrizes the distribution 
inside the distribution.

∇ϕJπ(ϕ) = ∇ϕ"st∈D"a∼πϕ(⋅|st) log
πϕ( ⋅ |st)

exp(Qπ(st, ⋅ ))
Zπ(st)

Zθ(st) = ∫&
exp(Qθ(st, at))dat

independent of \phi

∇ϕJπ(ϕ) = ∇ϕ"st∈D"at∼πϕ(a|st) log
πϕ(at |st)

exp(Qθ(st, at))



´ “Soft” Policy gradient:

Soft Policy Iteration - Approximation

Use function approximations for policy, state and action value functions

Vψ(st) Qθ(st, at) πϕ(at |st)

3.  Learning the policy:

∇ϕJπ(ϕ) = ∇ϕ"st∈D"at∼πϕ(a|st) log
πϕ(at |st)

exp(Qθ(st, at))
Zθ(st)

The variable w.r.t. which we take gradient parametrizes the distribution 
inside the distribution.

∇ϕJπ(ϕ) = ∇ϕ"st∈D"a∼πϕ(⋅|st) log
πϕ( ⋅ |st)

exp(Qπ(st, ⋅ ))
Zπ(st)

Zθ(st) = ∫&
exp(Qθ(st, at))dat

independent of \phi

∇ϕJπ(ϕ) = ∇ϕ"st∈D"at∼πϕ(a|st) log
πϕ(at |st)

exp(Qθ(st, at))

Soft Policy Iteration - Approximation

Use function approximations for policy, state and action value functions

Vψ(st) Qθ(st) πϕ(at |st)

3.  Learning the policy:

∇ϕJπ(ϕ) = ∇ϕ"st∈D"a∼πϕ(⋅|st) log
πϕ( ⋅ |st)

exp(Qπ(st, ⋅ ))
Zπ(st)

Reparametrization trick. The policy becomes a deterministic function of 
Gaussian random variables (fixed Gaussian distribution):

at = fϕ(st, ϵ) = μϕ(st) + ϵΣϕ(st), ϵ ∼ '(0,I)

∇ϕJπ(ϕ) = ∇ϕ"st∈D"at∼πϕ(a|st) log
πϕ(at |st)

exp(Qθ(st, at))

∇ϕJπ(ϕ) = ∇ϕ"st∈D,ϵ∼'(0,I) log
πϕ(at |st)

exp(Qθ(st, at))



Soft Actor-Critic 
´ Different to openAI implementation which is essentially SoftDDQN:

´ https://spinningup.openai.com/en/latest/algorithms/sac.html

Soft Policy Iteration - Approximation



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

More policy gradients: AlphaGo

10
1

How to beat the Go world champion:
- Featurize the board (stone color, move legality, bias, …)
- Initialize policy network with supervised training from professional go games, 

then continue training using policy gradient (play against itself from random 
previous iterations, +1 / -1 reward for winning / losing)

- Also learn value network (critic)
- Finally, combine combine policy and value networks in a Monte Carlo Tree 

Search algorithm to select actions by lookahead search

This image is CC0 
public domain

Overview:
- Mix of supervised learning and reinforcement learning
- Mix of old methods (Monte Carlo Tree Search) and 

recent ones (deep RL)

This image is CC0 public domain

[Silver et al., 
Nature 2016]



Summary

´ Q-learning: does not always work but when it works, usually more sample-
efficient. Challenge: exploration

´ Policy gradients: very general but suffer from high variance so requires a lot 
of samples. Challenge: sample-efficiency

´ Guarantees: 
´ Policy Gradients: Converges to a local minima, often good enough! 

´ Q-learning: Zero guarantees since you are approximating Bellman equation with 
a complicated function approximater



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

REINFORCE in action: Recurrent Attention Model (RAM)

94

Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on regions of the 
image, to predict class

- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

State: Glimpses seen so far
Action: (x,y) coordinates (center of glimpse) of where to look next in image
Reward: 1 at the final timestep if image correctly classified, 0 otherwise

Glimpsing is a non-differentiable operation => learn policy for how to take glimpse actions using REINFORCE
Given state of glimpses seen so far, use RNN to model the state and output next action

glimpse

[Mnih et al. 2014]



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 201799

NN

(x1, y1)

NN

(x2, y2)

NN

(x3, y3)

NN

(x4, y4)

NN

(x5, y5)

Softmax

Input 
image

y=2

REINFORCE in action: Recurrent Attention Model (RAM)

[Mnih et al. 2014]



Pytorch Implementation

´ https://github.com/kevinzakka/recurrent-visual-attention

´ A Pytorch implementation for the paper, Recurrent Models of Visual 
Attention by Volodymyr Mnih, Nicolas Heess, Alex Graves and Koray
Kavukcuoglu, NIPS 2014.



Reinforcement Learning for 
Quantitative Trading
FinRL: A deep reinforcement learning library for automated stock trading in 
quantitative finance, Liu et al. Deep RL Workshop, NeurIPS 2020.
https://github.com/AI4Finance-Foundation/FinRL



Why RL for Trading?

1. Modern Portfolio Theory (MPT) performs not well in out-of-sample data, sensitive 
to outliers and only based on stock returns.

2. Goal of stock trading: maximize returns.

3. DRL solves optimization problems by maximizing the expected total reward
defined as future returns, without human labels



Trading Markov Decision Process
´ Trading agent is modeled as a Markov Decision Process (MDP)
´ Note that this Markov process might not be stationary or static
´ Components:

´ State
´𝒔 = [𝒑, 𝒉, f, 𝑏], 𝒑: stock prices, f : features, 𝒉: stock shares, 𝑏: remaining balance

´ Action
´Three actions: a∈ {−1, 0, 1}, where −1, 0, 1 represent selling, holding, and buying one stock. 

´Multiple action space a∈ {−k, ..., −1, 0, 1, ..., k}, where k denotes the number of shares. 

´An action can be carried upon multiple shares. For example, "Buy 10 shares of AAPL" or "Sell 
10 shares of AAPL" are 10 or −10, respectively. Resulting in (2k+1)d actions for d stocks.

´ Reward
´ 𝑟(𝑠,𝑎,𝑠′): the direct reward of acting 𝑎 at state 𝑠 and arriving at the new state 𝑠′, e.g. the 

change of the portfolio value when action a is taken at state s and arriving at new state s', i.e., 
r(s, a, s′) = v′ − v, where v′ and v represent the portfolio values at state s′ and s, respectively′.

´ Q-value function
´ 𝑄𝜋 (𝑠, 𝑎): the expected reward of acting 𝑎 at state 𝑠 following policy 𝜋



State Space

´ State Space
´ Balance: available amount of money left in the account currently
´ Price: current adjusted close price of each stock
´ Shares: shares owned of each stock
´ ADX: Average Directional Index, is a trend strength indicator. 
´ MACD: Moving Average Convergence Divergence, is a trend-following momentum 

indicator that shows the relationship between two moving averages of a security’s price. The 
MACD is calculated by subtracting the 26-period exponential moving average (EMA) from 
the 12-period EMA.

´ RSI: Relative Strength Index, is classified as a momentum oscillator, measuring the velocity 
and magnitude of directional price movements 

´ CCI: Commodity Channel Index, is a momentum-based oscillator used to help determine 
when an investment vehicle is reaching a condition of being overbought or oversold.

´ One could use language models such as LSTM to extract more features. 



Action space

´ Action
´Three actions: a ∈ {−1, 0, 1}, where −1, 0, 1 represent selling, holding, and 
buying one stock. 

´Multiple action space a ∈ {−k, ..., −1, 0, 1, ..., k}, where k denotes the number of 
shares one can buy or sell. 

´An action can be carried upon multiple stocks. Therefore the size of the enire
action space is (2k+1)d where d is the number of stocks.

´For example, "Buy 10 shares of AAPL" or "Sell 10 shares of AAPL" are a=10 or 
a=−10, respectively. 



Reward function

´ Reward
´ 𝑟(𝑠,𝑎,𝑠′): the direct reward of acting 𝑎 at state 𝑠 and arriving at the new state 𝑠′

´ For example, the change of the portfolio value when action a is taken at state s 
and arriving at new state s', i.e., r(s, a, s′) = v′ − v, where v′ and v represent the 
portfolio values at state s′ and s, respectively′

´ Transaction cost is usually involved

´ One can also use Sharpe ratio as reward,



Constraints

´ Market liquidity:
´ Assume that stock market will not be affected by our reinforcement trading 

agent

´ Nonnegative balance:
´ the allowed actions should not result in a negative balance.

´ Transaction cost:
´ transaction costs are incurred for each trade.

´ Risk-aversion for market crash:
´ employ the financial turbulence index that measures extreme asset price 

movements.



Learning Algorithms

´ Critic-only approach
´ Q-learning, DQN, etc

´ Actor-only approach
´ Policy Gradient

´ Actor-critic approach
´ A2C

´ PPO

´ DDPG

´ SAC



Data
´ Dow 30 constituents: 

´ ['AXP', 'AMGN', 'AAPL', 'BA', 'CAT', 'CSCO', 'CVX', 'GS', 'HD', 'HON', 'IBM', 'INTC', 'JNJ', 'KO', 'JPM', 
'MCD', 'MMM', 'MRK', 'MSFT', 'NKE', 'PG', 'TRV', 'UNH', 'CRM', 'VZ', 'V', 'WBA', 'WMT', 'DIS', 'DOW']

´ Training
´ Daily OHLC prices and features from ‘2009-01-01’ to '2020-07-01’

´ N = 83897

´ BackTest trading
´ Daily OHLC prices and features from '2020-07-01’ to '2021-07-06'

´ N = 7337

´ Baseline: Dow Jones Index (DJI)



A successful SAC agent

´ SAC:
´ Annual return 0.409532 

´ Cumulative returns 0.411453 

´ Annual volatility 0.149417 

´ Sharpe ratio 2.382402 

´ Baseline: DJI
´ Annual return 0.335107 

´ Cumulative returns 0.336639 

´ Annual volatility 0.145596 

´ Sharpe ratio 2.066650



RL may be highly instable: 
two SAC runs

Good Bad
´ Results

´ Annual return 0.250596 

´ Cumulative returns 0.251707 

´ Annual volatility 0.148737 

´ Sharpe ratio 1.584268

´ Results:
´ Annual return 0.409532 

´ Cumulative returns 0.411453 

´ Annual volatility 0.149417 

´ Sharpe ratio 2.382402 



Case: Hierarchical Reinforced Trader (HRT)
(Zhao & Welsch, arXiv: 2410.14927)

´ Hierarchical Reinforced Trader (HRT): A Bi-Level 
Approach for Optimizing Stock Selection and 
Execution, by Zhao and Welsch, 
https://arxiv.org/abs/2410.14927

´ High Level Controller (HLC): determine the 
subset of stocks to buy, sell, or hold, executing 
stock selection 

´ Low Level Controller (LLC): optimize the trade 
volumes for the selected stocks, thereby 
determining the optimal number of shares to 
transact 

Hierarchical Reinforced Trader (HRT): A Bi-Level Approach for
Optimizing Stock Selection and Execution

Zijie Zhao
Massachusetts Institute of Technology

Cambridge, MA, USA
zijiezha@mit.edu

Roy E. Welsch
Massachusetts Institute of Technology

Cambridge, MA, USA
rwelsch@mit.edu

ABSTRACT
Leveraging Deep Reinforcement Learning (DRL) in automated stock
trading has shown promising results, yet its application faces sig-
ni�cant challenges, including the curse of dimensionality, inertia in
trading actions, and insu�cient portfolio diversi�cation. Address-
ing these challenges, we introduce the Hierarchical Reinforced
Trader (HRT), a novel trading strategy employing a bi-level Hier-
archical Reinforcement Learning framework. The HRT integrates a
Proximal Policy Optimization (PPO)-based High-Level Controller
(HLC) for strategic stock selection with a Deep Deterministic Policy
Gradient (DDPG)-based Low-Level Controller (LLC) tasked with
optimizing trade executions to enhance portfolio value. In our em-
pirical analysis, comparing the HRT agent with standalone DRL
models and the S&P 500 benchmark during both bullish and bearish
market conditions, we achieve a positive and higher Sharpe ratio.
This advancement not only underscores the e�cacy of incorporat-
ing hierarchical structures into DRL strategies but also mitigates
the aforementioned challenges, paving the way for designing more
pro�table and robust trading algorithms in complex markets.

CCS CONCEPTS
• Computing methodologies! Reinforcement learning.

KEYWORDS
Deep Reinforcement Learning, Markov Decision Process, Auto-
mated Stock Trading, Hierarchical Reinforcement Learning

1 INTRODUCTION
Pro�table automated stock trading strategies are pivotal for in-
vestment companies and hedge funds. A classical method is Harry
Markowitz’s Modern Portfolio Theory (MPT) [12], which deter-
mines the optimal portfolio allocation by calculating the expected
returns and the covariance matrix of stock prices. This optimization
aims to either maximize returns for a given risk level or minimize
risk for a speci�ed return range. However, implementing MPT can
be complex, especially when portfolio managers wish to dynam-
ically adjust decisions at each time step and consider additional
factors. An alternative approach models the stock trading problem
as a Markov Decision Process (MDP) [1], solved using dynamic
programming. Nevertheless, this model’s scalability is constrained
by the expansive state spaces inherent in real stock markets.

Recent research has turned to Deep Reinforcement Learning
(DRL) methods for stock trading [4, 22]. DRL overcomes scalability
issues by using deep neural networks to approximate complex func-
tions, solving MDPs without the limitations of traditional models.
Liu, Xiao-Yang, et al. [9] formalize the stock trading problem as an
MDP and employ Deep Deterministic Policy Gradient (DDPG) [7]

to discover optimal trading strategies that yield higher cumulative
returns and Sharpe ratios in the volatile stock market. Subsequent
research integrates the strengths of DDPG, Proximal Policy Opti-
mization (PPO) [18], and Advantage Actor Critic (A2C) [14] into
an ensemble strategy [22], adapting robustly to varying market
conditions. Despite these advancements, several challenges persist
in applying DRL to stock trading:

• Curse of Dimensionality: The computational complexity,
sample ine�ciency, and potential training instability escalate
as the number of stocks increases, expanding the dimension-
ality of data and the state and action spaces exponentially.
For instance, if the action for a single stock is de�ned as
0 2 {�:, . . . ,�1, 0, 1, . . . ,:}, representing sell, hold, and buy
actions, the action space becomes (2⇥:+1)# , where# is the
number of market stocks. This complexity has limited the
validation of current research to a small asset scale, ranging
from Dow Jones 30 constituent stocks to only tens of assets.

• Inertia or Momentum E�ect: DRL agents tend to repeat
a previous action (buy, sell, or hold) based on the reward
received, without necessarily considering the currently most
pro�table action. If an agent receives a large reward for a
particular action (buy, sell, or hold), it may exploit this action
in subsequent steps. Even though DDPG introduces action
exploration through the addition of noise to the actions se-
lected by its deterministic policy, we still observe crowded or
clustered trading operations in Figure 1 under the example
of Dow Jones 30 constituent stocks portfolio.

• Insu�cient Diversi�cation: Diversi�cation, a core prin-
ciple of �nance aimed at risk mitigation, is compromised
when DRL agents focus repeatedly on a narrow selection
of stocks. This behavior, evidenced in Figure 1, increases
exposure to sector-speci�c risks, making the portfolio more
susceptible to adverse developments within those sectors.

To mitigate the three issues mentioned above and to enhance
performance and deliver superior trading strategies, we introduce
theHierarchicalReinforced Trader (HRT), an innovative approach
to stock trading that utilizes a Hierarchical Reinforcement Learning
(HRL) framework [16]. Our HRT agent is structured around two
principal components, each serving distinct but complementary
roles in the trading strategy: (1)High-Level Controller (HLC):
Positioned at the strategic apex of the hierarchy, the HLC’s mandate
is to determine the subset of stocks to buy, sell, or hold, e�ectively
executing stock selection. (2) Low-Level Controller (LLC): ol-
lowing the HLC’s directives, the LLC is tasked with re�ning these
decisions by optimizing the trade volumes for the selected stocks,
thereby determining the optimal number of shares to transact. By
dividing the trading strategy into high-level stock selection and
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HRT scheme
Hierarchical Reinforced Trader (HRT): A Bi-Level Approach for Optimizing Stock Selection and Execution

preprint, arXiv,

Figure 2: Overview of the Hierarchical Reinforced Trader (HRT) architecture. Interactions between the HLC and LLC are indicated
by the red arrows.

has explored ensemble strategies, demonstrating superior perfor-
mance over individual DRL agents [22]. Expanding DRL with addi-
tional information, such as incorporating optimistic or pessimistic
reinforcement learning in�uenced by prediction errors, has shown
promising directions [6]. Moreover, enriching state representations
with more features or signals has proven bene�cial for agents to
grasp market dynamics more e�ectively. Adaptive DDPG exten-
sions, including sentiment-aware approaches, have enhanced the
model’s robustness [5]. Combining sentiment analysis and knowl-
edge graphs further re�nes algorithmic trading strategies [15]. A
comprehensive review of these advancements is provided in [13].

2.2 Hierarchical Reinforcement Learning
DRL works well on a wide range of problems where the state space
and action space are reasonably small. However, there are certain
problems where DRL is insu�cient or takes too much time to
train. Hierarchical Reinforcement Learning (HRL) o�ers a divide-
and-conquer strategy, segmenting overarching problems into more
tractable subproblems. HRL decomposes decision-making into hi-
erarchical policies: high-level policies focus on coarse-grained deci-
sions, while low-level policies attend to �ne-grained, detailed ac-
tions. This layered approach aids in navigating large action spaces
more e�ciently. There is limited research on HRL in trading, but
some research exist. Wang, Rundong, et al. [20] have developed
a hierarchical reinforced stock trading system for portfolio man-
agement, where a high-level policy allocates portfolio weights to
maximize long-term pro�ts, and a low-level policy optimizes share
transactions within shorter windows to reduce trading costs. There
are also HRL systems developed for specialized trading tasks, like
High Frequency Trading [17], and Pair Trading [3].

3 METHODOLOGY
3.1 Overview
Our Hierarchical Reinforced Trader (HRT) agent introduces a novel
approach to algorithmic trading by applying Hierarchical Rein-
forcement Learning (HRL). It splits the trading process into two
distinct but interrelated decisions, aiming to improve trading per-
formance through an in-depth understanding of market dynamics
and execution e�ciency. A schematic of our HRT framework is
shown in Figure 2, outlining the agent’s two main components: the
High-Level Controller (HLC) and the Low-Level Controller (LLC).

High-Level Controller (HLC): The HLC plays a crucial role
in analyzing market conditions and sentiments to determine the
key trading directions—buy, sell, or hold—and to select stocks. Due
to its strategic importance, Proximal Policy Optimization (PPO) is
chosen for the HLC for its e�ciency in managing discrete action
spaces, simplifying the decision-making process.

Low-Level Controller (LLC): Following the HLC’s strategy,
the LLC hones these directions, focusing on the exact quantities
of shares to trade. Deep Deterministic Policy Gradient (DDPG) is
selected for the LLC. DDPG’s ability to handle continuous action
spaces and maintain stable learning progress makes it ideal for the
detailed task of executing trades in the stock market.

Together, the HLC and LLC work towards the ultimate goal
of maximizing long-term portfolio performance. The HLC’s deci-
sions inform the LLC’s actions, specifying trading directions for
each stock. These instructions are seamlessly incorporated into the
LLC’s state inputs, crucially in�uencing its operational strategy.
The results of the LLC’s trades, measured through reward signals
aimed at maximizing portfolio values, are relayed back to the HLC,
ensuring alignment towards a common goal. These interactions are
highlighted by red arrows in Figure 2.

Note: Transformer Encoders and LLaMA 2 13B sentiment analysis are used.



Summary

´ Model-free reinforcement learning trading

´ RL agent is unstable:
´ The reward is highly noisy

´ The environment in stock prices is not stationary

´ RL itself might not be stable

´ Perhaps consider multiple agents



Optimized Execution, Market Microstructure 
and Reinforcement Learning

[Y. Nevmyvaka. Y. Feng, MK; ICML 2006]
[MK, Y. Nevmyvaka; In “High Frequency Trading”, O’Hara et al. 
eds, Risk Books 2013]

Michael Kearns, University of Pennsylvania, ICML 2014, Beijing



A Brief Field Guide to Wall Street

´ “Buy Side”: Attempt to outperform market via proprietary research
´ Includes hedge funds, mutual funds, statistical arbitrage, HFT, prop trading groups
´ May or may not be quantitative and automated
´ Have investors but not clients
´ Take and hold positions à risk
´ Generation of “alpha” still more art than science

´ “Sell Side”: Provide brokerage and execution services
´ Includes bank and independent brokerages, exchanges
´ Almost entirely quantitative and automated
´ Clients are the buy side
´ Do not hold risk; paid via fees/commissions/etc.

´ In reality, alpha and execution are blurred
´ Especially at shorter holding periods (e.g. HFT)



A Canonical Trading Problem

´ Goal (buy side to sell side): Sell V shares in T time steps; maximize revenue
´ Strategy Evaluation Metric Benchmarks:

´ Volume Weighted Average Price (VWAP)
´ Time Weighted Average Price (TWAP)
´ Implementation Shortfall (midpoint of bid-ask spread at beginning)

´ Natural to view as a problem of state-based control (RL)
´ State variables: inventory V and time remaining T (discretized)
´ Features capturing market activity?



Implementation Shortfall vs. Limit Price

deep in book market order

initial midpoint

• Continuous double auction with limit orders: buy 
orders decreasing; sell orders increasing

• Volatile and dynamic; sub-millisecond time scale
• Cancellations, revisions, partial executions
• How do individual orders (micro) influence 

aggregate market behavior (macro)?
• Tradeoff between immediacy and price
• Seen in “submit and leave” strategies:

Market Microstructure
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Policies Learned: Time and Volume Remaining

• Experimental framework
– Full historical order book reconstruction and simulation
– Learn optimal policy on 1 year training; test on following 6 months
– Pitfalls: directional drift, “counterfactual” market impact

• Overall shape is consistent and sensible
– Become more aggressive (spread crossing) as time runs out or inventory is too large
– Learning optimizes this qualitative schedule



Bid Volume -0.06% Ask Volume -0.28%

Bid-Ask Volume Misbalance 0.13% Bid-Ask Spread 7.97%

Price Level 0.26% Immediate Market Order Cost 4.26%

Signed Transaction Volume 2.81% Price Volatility -0.55%

Spread Volatility 1.89% Signed Incoming Volume 0.59%

Spread + Immediate Cost 8.69% Spread+ImmCost+Signed Vol 12.85%

Additional Improvement From Order Book Features



Some Idealized Trading Scenarios and Risks

´ Assume all the transactions cross the bid/ask spread at approximate midpoint 
(median) price
´ Example: V={1,0,-1} (long/nothing/short), T=1 min

´ Return maximization with no-regret sequential (online) strategies: 
´ Compete with best single strategy in hindsight 
´ Unfortunately methods work poorly in practice

´ Could ask for no-regret to best strategy in risk-adjusted metrics:
´ Sharpe Ratio: μ(returns)/σ(returns)
´ Mean-Variance: μ(returns) - σ(returns)

´ Yet strong negative results in risk-adjusted metrics: 
´ No-regret provably impossible 
´ 1 + ε lower bound on competitive ratio

´ Intuition: Volatility terms σ introduce additional costs that one has to pay
´ Loss design should incorporate risk measurements, or internalize risks in strategies



Online Tutorials

´ A GitHub repo for deep reinforcement learning strategies and 
environments for quantitative trading
´ https://github.com/Ceruleanacg/Personae/blob/master/README.md
´ This is a good start for the application of deep reinforcement learning in 

algorithmic trading
´ Can you reproduce the results there?



Job post from Jump Trading
´ Full-time QD's link:

https://lnkd.in/gPP-mMBw

Full-time QR's link: 
https://lnkd.in/gdYq-U7h

Intern's link:
https://lnkd.in/gyNmDa9h

https://www.jumptrading.com/careers/6098760/



Thank you!


