
Recurrent Neural Networks (RNN),
Long-Short-Term-Memory (LSTM),

Attention and Transformer
Yuan YAO

HKUST

Summary

´ We have shown:
´ CNN Architectures: LeNet5, Alexnet, VGG, GoogleNet, Resnet

´ Today:
´ Recurrent Neural Networks

´ LSTM/GRU

´ Attention

´ Transformer

´ Reference:
´ Feifei Li, Stanford cs231n

´ Chris Manning, Stanford cs224n

Recurrent Neural Networks

Recurrent Neural Networks: Process Sequences

Machine Translation,
Dialogue

Video frame-based
classification/annotation

Sentiment
Classification

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201712

Recurrent Neural Networks: Process Sequences

e.g. Image Captioning
image -> sequence of wordsImage

Captioning
Vanilla
Neural
Network

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201716

Sequential Processing of Non-Sequence Data

Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.
Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015
Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with
permission.

Classify images by taking a
series of “glimpses”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201718

Recurrent Neural Network

x

RNN

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201719

Recurrent Neural Network

x

RNN

y
usually want to
predict a vector at
some time steps

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201720

Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by
applying a recurrence formula at every time step:

new state old state input vector at
some time step

some function
with parameters W

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201721

Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by
applying a recurrence formula at every time step:

Notice: the same function and the same set
of parameters are used at every time step.

Vanilla Recurrent Neural Networks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201722

(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

State Space equations in feedback dynamical systems

The basics of decision trees.

Regression trees

• Trees can be applied to both regression and classifcation.

• CART refers to classification and regression trees.

• We first consider regression trees through an example of predicting
Baseball players’ salaries.

yt = softmax(Whyht)

Yuan YAO (HKUST) March 22, 2018 6 / 67

Or,

Linear Dynamical Systems (1940s-)

´The hidden state has linear dynamics with
Gaussian noise and produces the observations
using a linear model with Gaussian noise.

´Kalman Filter: A linearly transformed Gaussian is a
Gaussian. So the distribution over the hidden
state given the data so far is Gaussian. It can be
computed using “Kalman filtering”.

´To predict the next output (so that we can shoot
down the missile) we need to infer the hidden
state.

driving
input

hidden

hidden

hidden

output

output

output
time à

driving
input

driving
input

Linear Dynamical System

I Hidden State Space:

ht = Whhht�1 +Whxxt + ✏
h
t

I Output:
yt = Wyhht +Wyxxt + ✏

y
t

Graph Realization: MDS with Uncertainty 62

Linear Dynamical System

I Hidden State Space:

ht = Whhht�1 +Whxxt + ✏
h
t

I Output:
yt = Wyhht +Wyxxt + ✏

y
t

Graph Realization: MDS with Uncertainty 62

Hidden Markov Models (1970s-)
´ Hidden Markov Models have a discrete one-of-N

hidden state. Transitions between states are
stochastic and controlled by a transition matrix.
The outputs produced by a state are stochastic.
´ We cannot be sure which state produced a

given output. So the state is “hidden”.
´ It is easy to represent a probability distribution

across N states with N numbers.
´ To predict the next output we need to infer the

probability distribution over hidden states.
´ HMMs have efficient algorithms (Baum-Welch

or EM Algorithm) for inference and learning.
´ Jim Simons hires Lenny Baum as the founding

member of Renaissance Technologies in 1979

output

output

output

time à

Lenny Baum became a devoted Go player despite his deteriorating eyesight.

Simons with his favorite lemur at a Stony Brook event.

Recurrent Neural Networks

´ The issue of a hidden Markov model (HMM):
´ At each time step it must select one of its hidden states. So with N hidden states it

can only remember log(N) bits about what it generated so far.

´ RNNs are very powerful, because they combine two properties:
´ Distributed hidden state that allows them to store a lot of information about the

past efficiently.

´ Non-linear dynamics that allows them to update their hidden state in
complicated ways.

´ With enough neurons and time, RNNs can compute anything that can be
computed by your computer.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201725

h0 fW h1 fW h2 fW h3

x3

…

x2x1

RNN: Computational Graph

hT

Time invariant systems

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201726

h0 fW h1 fW h2 fW h3

x3

…

x2x1W

RNN: Computational Graph

Re-use the same weight matrix at every time-step

hT

Outputs added

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201727

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1

Loss modules

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201729

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1
L2 L3 LT

L

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201730

h0 fW h1 fW h2 fW h3

x3

y

…

x2x1W

RNN: Computational Graph: Many to One

hT

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201731

h0 fW h1 fW h2 fW h3

yT

…

x
W

RNN: Computational Graph: One to Many

hT

y3y3y3

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201733

Sequence to Sequence: Many-to-one +
one-to-many

h
0

fW
h
1

fW
h
2

fW
h
3

x
3

…

x
2

x
1

W
1

h
T

y
1

y
2

…

Many to one: Encode input
sequence in a single vector

One to many: Produce output
sequence from single input vector

fW
h
1

fW
h
2

fW

W
2

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201734

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201735

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201736

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201737

Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample
characters one at a time,
feed back to model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
Sample

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201738

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
SampleExample:

Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample
characters one at a time,
feed back to model

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201739

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
SampleExample:

Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample
characters one at a time,
feed back to model

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201740

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
SampleExample:

Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample
characters one at a time,
feed back to model

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201741

Backpropagation through time
Loss

Forward through entire sequence to
compute loss, then backward through
entire sequence to compute gradient

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201742

Truncated Backpropagation through time
Loss

Run forward and backward
through chunks of the
sequence instead of whole
sequence

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201743

Truncated Backpropagation through time
Loss

Carry hidden states
forward in time forever,
but only backpropagate
for some smaller
number of steps

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201744

Truncated Backpropagation through time
Loss

Example: Text->RNN

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201746

x

RNN

y

https://gist.github.com/karpathy/d4dee566867f8291f086

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201747

train more

train more

train more

at first:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201763

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.
Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei
Show and Tell: A Neural Image Caption Generator, Vinyals et al.
Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Image Captioning

Figure from Karpathy et a, “Deep
Visual-Semantic Alignments for Generating
Image Descriptions”, CVPR 2015; figure
copyright IEEE, 2015.
Reproduced for educational purposes.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201764

Convolutional Neural Network

Recurrent Neural Network

test image

test image

X

h0

x0
<STA
RT>

y0

<START>

test image

before:
h = tanh(Wxh * x + Whh * h)

now:
h = tanh(Wxh * x + Whh * h + Wih * v)

v

Wih

h0

x0
<STA
RT>

y0

<START>

test image

straw

sample!

h0

x0
<STA
RT>

y0

<START>

test image

straw

h1

y1

hat

sample!

h0

x0
<STA
RT>

y0

<START>

test image

straw

h1

y1

hat

h2

y2

sample
<END> token
=> finish.

Popular Architectures

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201775

A cat sitting on a
suitcase on the floor

A cat is sitting on a tree
branch

A dog is running in the
grass with a frisbee

A white teddy bear sitting in
the grass

Two people walking on
the beach with surfboards

Two giraffes standing in a
grassy field

A man riding a dirt bike on
a dirt track

Image Captioning: Example Results

A tennis player in action
on the court

Captions generated using neuraltalk2
All images are CC0 Public domain:
cat suitcase, cat tree, dog, bear,
surfers, tennis, giraffe, motorcycle

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201776

Image Captioning: Failure Cases

A woman is holding a
cat in her hand

A woman standing on a
beach holding a surfboard

A person holding a
computer mouse on a desk

A bird is perched on
a tree branch

A man in a
baseball uniform
throwing a ball

Captions generated using neuraltalk2
All images are CC0 Public domain: fur
coat, handstand, spider web, baseball

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201777

Image Captioning with Attention

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

RNN focuses its attention at a different spatial location
when generating each word

RNN

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201779

CNN

Image:
H x W x 3

Features:
L x D

h0

a1

Distribution over
L locations

Xu et al, “Show, Attend and Tell: Neural
Image Caption Generation with Visual
Attention”, ICML 2015

Image Captioning with Attention

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201780

CNN

Image:
H x W x 3

Features:
L x D

h0

a1

Weighted
combination
of features

Distribution over
L locations

z1
Weighted

features: D

Xu et al, “Show, Attend and Tell: Neural
Image Caption Generation with Visual
Attention”, ICML 2015

Image Captioning with Attention

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201781

CNN

Image:
H x W x 3

Features:
L x D

h0

a1

z1

Weighted
combination
of features

h1

Distribution over
L locations

Weighted
features: D y1

First wordXu et al, “Show, Attend and Tell: Neural
Image Caption Generation with Visual
Attention”, ICML 2015

Image Captioning with Attention

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201782

CNN

Image:
H x W x 3

Features:
L x D

h0

a1

z1

Weighted
combination
of features

y1

h1

First word

Distribution over
L locations

a2 d1

Weighted
features: D

Distribution
over vocab

Xu et al, “Show, Attend and Tell: Neural
Image Caption Generation with Visual
Attention”, ICML 2015

Image Captioning with Attention

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201784

CNN

Image:
H x W x 3

Features:
L x D

h0

a1

z1

Weighted
combination
of features

y1

h1

First word

Distribution over
L locations

a2 d1

h2

a3 d2

z2 y2
Weighted

features: D

Distribution
over vocab

Xu et al, “Show, Attend and Tell: Neural
Image Caption Generation with Visual
Attention”, ICML 2015

Image Captioning with Attention

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201785

Soft attention

Hard attention

Image Captioning with Attention

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201786

Image Captioning with Attention

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

The Fundamental Deep Learning Problem:
Vanishing / Exploding Gradients

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201790

ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201791

ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Backpropagation from ht
to ht-1 multiplies by W
(actually Whh

T)

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201792

Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient
of h0 involves many
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201793

Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Computing gradient
of h0 involves many
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201794

Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Gradient clipping: Scale
gradient if its norm is too bigComputing gradient

of h0 involves many
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201795

Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient
of h0 involves many
factors of W
(and repeated tanh)

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients Change RNN architecture

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Long Short Term Memory (LSTM)

Long-Short-Term-Memory (LSTM)
´ A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution to the

vanishing gradients problem.
´ “Long short-term memory”, Hochreiter and Schmidhuber, Neural Computation, 9(8):1735-

1780, 1997. Link: https://www.bioinf.jku.at/publications/older/2604.pdf

´ On time step t, there is a hidden state h and a cell state c
´ Both are vectors length n

´ The cell stores long-term information
´ The LSTM can erase, write and read information from the cell

´ The selection of which information is erased/written/read is controlled by three
corresponding gates
´ The gates are also vectors length n

´ On each time step, each element of the gates can be open (1), closed (0),

´ or somewhere in-between.

´ The gates are dynamic: their value is computed based on the current context

Long-Short-Term-Memory (LSTM)
We have a sequence of inputs , and we will compute a sequence of hidden states
and cell states . On timestep t:

Long Short-Term Memory (LSTM)

Al
l t

he
se

 a
re

 v
ec

to
rs

 o
f s

am
e

le
ng

th
 n

Forget gate: controls what is kept vs
forgotten, from previous cell state

Input gate: controls what parts of the
new cell content are written to cell

Output gate: controls what parts of
cell are output to hidden state

New cell content: this is the new
content to be written to the cell

Cell state: erase (“forget”) some
content from last cell state, and write
(“input”) some new cell content

Hidden state: read (“output”) some
content from the cell

Sigmoid function: all gate
values are between 0 and 1

23
Gates are applied using
element-wise product

LSTM Flowchart
´ Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

ct-1

ht-1

ct

ht

ft
it ot

ct

ct
~

Long Short-Term Memory (LSTM)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

You can think of the LSTM equations visually like this:

Compute the
forget gate

Forget some
cell content

Compute the
input gate

Compute the
new cell content

Compute the
output gate

Write some new cell content

Output some cell content
to the hidden state

25

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017

☉

99

ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

stack

Backpropagation from ct to
ct-1 only elementwise
multiplication by f, no matrix
multiply by W

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017102

Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

c0 c1 c2 c3

Uninterrupted gradient flow!

Input

S
oftm

ax

3x3 conv, 64

7x7 conv, 64 / 2

FC
 1000

P
ool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

...

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

P
ool

Similar to ResNet!

In between:
Highway Networks

Srivastava et al, “Highway Networks”,
ICML DL Workshop 2015

Gated Recurrent Unit (GRU)

Gated Recurrent Unit: tanh RNN

´ (tanh) RNN is expensive in exploiting the whole register

2020-02-0640

tanh-RNN ….

Execution
Registers

1. Read the whole register

h

2. Update the whole register

h

h tanh(W [x] + Uh+ b)

Gated Recurrent Unit

Gated Recurrent Unit (GRU)

´ GRU is much more economic for computation!

2020-02-0641

GRU …

Execution
Registers

1. Select a readable subset

h

r
r � h2. Read the subset

3. Select a writable subset u
4. Update the subset

h u� h̃+ (1� ut)� h

Gated recurrent units are much more realistic for computation!

Gated Recurrent Unit

GRU
´ "Learning Phrase Representations using RNN Encoder–Decoder for

Statistical Machine Translation", Cho et al. 2014,
https://arxiv.org/pdf/1406.1078v3.pdf

Gated Recurrent Units (GRU)

• Proposed by Cho et al. in 2014 as a simpler alternative to the LSTM.
• On each timestep t we have input and hidden state (no cell state).

28 "Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation", Cho et al. 2014, https://arxiv.org/pdf/1406.1078v3.pdf

Update gate: controls what parts of
hidden state are updated vs preserved

Reset gate: controls what parts of
previous hidden state are used to
compute new content

Hidden state: update gate
simultaneously controls what is kept
from previous hidden state, and what
is updated to new hidden state content

New hidden state content: reset gate
selects useful parts of prev hidden
state. Use this and current input to
compute new hidden content.

How does this solve vanishing gradient?
Like LSTM, GRU makes it easier to retain info
long-term (e.g. by setting update gate to 0)

GRU and LSTM

Gated Recurrent Unit
[Cho et al., EMNLP2014;
Chung, Gulcehre, Cho, Bengio,

DLUFL2014]

Long Short-Term Memory
[Hochreiter & Schmidhuber, NC1999;
Gers, Thesis2001]

42

Gated Recurrent Units: LSTM & GRU

ht = ut � h̃t + (1� ut)� ht�1

h̃ = tanh(W [xt] + U(rt � ht�1) + b)

ut = �(Wu [xt] + Uuht�1 + bu)

rt = �(Wr [xt] + Urht�1 + br)

ht = ot � tanh(ct)

ct = ft � ct�1 + it � c̃t

c̃t = tanh(Wc [xt] + Ucht�1 + bc)

ot = �(Wo [xt] + Uoht�1 + bo)

it = �(Wi [xt] + Uiht�1 + bi)

ft = �(Wf [xt] + Ufht�1 + bf)

Two most widely used gated recurrent units: GRU and LSTM

h̃t = tanh(W [xt] + U(rt � ht�1) + b)

LSTM vs. GRU

´ Researchers have proposed many gated RNN variants, but LSTM and GRU
are the most widely-used

´ The biggest difference is that GRU is quicker to compute and has fewer
parameters

´ There is no conclusive evidence that one consistently performs better than
the other

´ LSTM is a good default choice (especially if your data has particularly long
dependencies, or you have lots of training data)

´ Rule of thumb: start with LSTM, but switch to GRU if you want something
more efficient

Is vanishing/exploding gradient just a RNN
problem?

´ No! It can be a problem for all neural architectures (including feed-forward and
convolutional), especially deep ones.
´ Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small as

it backpropagates

´ Thus early layers are learnt very slowly (hard to train)

´ Solution: lots of new deep feedforward/convolutional architectures that add more direct
connections (thus allowing the gradient to flow)

´ For example:
´ “HighwayNet” with highway connections:

´ Similar to residual connections, but the identity connection vs the transformation layer is controlled by a
dynamic gate

´ Inspired by LSTMs, but applied to deep feedforward/convolutional networks

´ ResNet with residual connections, inspired by HighwayNet
´ DenseNet directly connect everything to everything!

Summary

´ RNN is flexible in architectures

´ Vanilla RNNs are simple but don’t work very well

´ Common to use LSTM or GRU: their additive interactions improve gradient
flow
´ Backward flow of gradients in RNN can explode or vanish.

´ Exploding is controlled with gradient clipping.

´ Vanishing is controlled with additive interactions

Some Historical Remarks on LSTM
´ [LSTM0] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. TR FKI-207-

95, TUM, August 1995. Link: https://people.idsia.ch/~juergen/FKI-207-95ocr.pdf
´ [LSTM1] S. Hochreiter, J. Schmidhuber. Long Short-Term Memory. Neural

Computation, 9(8):1735-1780, 1997. Based on [LSTM0].
´ [LSTM2] F. A. Gers, J. Schmidhuber, F. Cummins. Learning to Forget: Continual

Prediction with LSTM. Neural Computation, 12(10):2451-2471, 2000. The "vanilla
LSTM architecture" with forget gates that everybody is using today, e.g., in
Google's Tensorflow.

´ [LSTM3] A. Graves, J. Schmidhuber. Framewise phoneme classification with
bidirectional LSTM and other neural network architectures. Neural Networks,
18:5-6, pp. 602-610, 2005.

Schmidhuber: “In 2020 we celebrated the quarter-century anniversary
of LSTM's first failure to pass peer review. After the main peer-reviewed
publication in 1997[LSTM1] (now the most cited article in the history of Neural
Computation), LSTM and its training procedures were further improved on my
Swiss LSTM grants at IDSIA through the work of my later students Felix Gers, Alex
Graves, and others. A milestone was the "vanilla LSTM architecture" with forget
gate[LSTM2]—the LSTM variant of 1999-2000 that everybody is using today, e.g., in
Google's Tensorflow. 2005 saw the first publication of LSTM with full
backpropagation through time and of bi-directional LSTM[LSTM3] (now widely
used).”

Some Historical Remarks on
HighwayNet

´ [HW1] R. K. Srivastava, K. Greff, J. Schmidhuber. Highway networks.
Preprints arXiv:1505.00387 (May 2015) and arXiv:1507.06228 (July 2015). Also at NIPS
2015. The first working very deep feedforward nets with over 100 layers (previous
NNs had at most a few tens of layers). Let g, t, h, denote non-linear differentiable
functions. Each non-input layer of a highway net computes g(x)x + t(x)h(x), where x
is the data from the previous layer. (Like LSTM with forget gates[LSTM2] for RNNs.)
Resnets[HW2] are a special case of this where the gates are always open:
g(x)=t(x)=const=1. Highway Nets perform roughly as well as ResNets[HW2] on
ImageNet.[HW3] Highway layers are also often used for natural language processing,
where the simpler residual layers do not work as well.[HW3]

´ [HW2] He, K., Zhang, X., Ren, S., Sun, J. Deep residual learning for image recognition.
Preprint arXiv:1512.03385 (Dec 2015). Residual nets are a special case of Highway
Nets[HW1] where the gates are always open: g(x)=1 (a typical highway net
initialization) and t(x)=1.

´ [HW3] K. Greff, R. K. Srivastava, J. Schmidhuber. Highway and Residual Networks
learn Unrolled Iterative Estimation. Preprint arxiv:1612.07771 (2016). Also at ICLR 2017.

Some Historical Remarks on the
“credit” debate
´ [VAN1] S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, TUM, 1991

(advisor J. Schmidhuber). Link:
http://www.idsia.ch/~juergen/SeppHochreiter1991ThesisAdvisorSchmidhuber.pdf

´ [VAN2] Y. Bengio, P. Simard, P. Frasconi. Learning long-term dependencies with gradient descent is
difficult. IEEE TNN 5(2), p 157-166, 1994

´ [VAN3] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber. Gradient flow in recurrent nets: the difficulty
of learning long-term dependencies. In S. C. Kremer and J. F. Kolen, eds., A Field Guide to Dynamical
Recurrent Neural Networks. IEEE press, 2001

´ [VAN4] Y. Bengio. Neural net language models. Scholarpedia, 3(1):3881, 2008. Link:
http://www.scholarpedia.org/article/Neural_net_language_models?CachedSimilar13

´ J. SchmidHuber (https://people.idsia.ch/~juergen/deep-learning-miraculous-year-1990-
1991.html#Sec.%203):
´ “As a part of his thesis, Sepp implemented the Neural History Compressor above (see Sec. 1) and other RNN-based

systems (see Sec. 11). However, he did much more: His work formally showed that deep NNs suffer from the now famous
problem of vanishing or exploding gradients: in typical deep or recurrent networks, back-propagated error signals
either shrink rapidly, or grow out of bounds. In both cases, learning fails. This analysis led to basic principles of what's
now called LSTM (see Sec. 4).”

´ “Interestingly, in 1994, others published results[VAN2] essentially identical to the 1991 vanishing gradient results of
Sepp.[VAN1] Even after a common publication[VAN3] the first author of reference[VAN2] published papers[VAN4] that cited
only their own 1994 paper but not Sepp's original work.”

Jurgen’s critics and Geoff’s response

https://x.com/SchmidhuberAI/status/1844022724328394780

https://x.com/hardmaru/status/1253189802452647936

Bi-Direction

Motivation of BidirectionBidirectional RNNs: motivation

36

terribly exciting !the movie was

positive

Sentence encoding

We can regard this hidden state as a
representation of the word “terribly” in the
context of this sentence. We call this a
contextual representation.

These contextual
representations only
contain information
about the left context
(e.g. “the movie
was”).

What about right
context?

In this example,
“exciting” is in the
right context and this
modifies the meaning
of “terribly” (from
negative to positive)

Task: Sentiment Classification

Bidirectional RNNs

37
terribly exciting !the movie was

Forward RNN

Backward RNN

Concatenated
hidden states

This contextual representation of “terribly”
has both left and right context!

Bidirectional RNN: simplified diagramBidirectional RNNs

38

Forward RNN

Backward RNN

Concatenated hidden states

This is a general notation to mean “compute
one forward step of the RNN” – it could be a
vanilla, LSTM or GRU computation.

We regard this as “the hidden
state” of a bidirectional RNN.
This is what we pass on to the
next parts of the network.

Generally, these
two RNNs have
separate weights

On timestep t:

Bidirectional RNN: simplified diagram

´ The two-way arrows indicate bidirectionality and the depicted hidden
states are assumed to be the concatenated forwards+backwards states.

Bidirectional RNNs: simplified diagram

39

terribly exciting !the movie was

The two-way arrows indicate bidirectionality and
the depicted hidden states are assumed to be
the concatenated forwards+backwards states.

Uni-Direction LSTM

´ Semi-Supervised Sequence Learning, Google, 2015

History of Contextual Representations

● Semi-Supervised Sequence Learning, Google, 2015

Train LSTM
Language Model

LSTM

<s>

open

LSTM

open

a

LSTM

a

bank

LSTM

very

LSTM

funny

LSTM

movie

POSITIVE

...

Fine-tune on
Classification Task

Bi-Direction LSTM: ELMo -- Embeddings
from Language Models
´ Peters et al. (2018) Deep Contextual Word Embeddings, NAACL 2018.

https://arxiv.org/abs/1802.05365

´ Learn a deep Bi-NLM and use all its layers in prediction

History of Contextual Representations

● ELMo: Deep Contextual Word Embeddings, AI2 &
University of Washington, 2017

Train Separate Left-to-Right and
Right-to-Left LMs

LSTM

<s>

open

LSTM

open

a

LSTM

a

bank

Apply as “Pre-trained
Embeddings”

LSTM

open

<s>

LSTM

a

open

LSTM

bank

a

open a bank

Existing Model Architecture

Bidirectional RNNs

´ Note: bidirectional RNNs are only applicable if you have access to the entire input
sequence.
´ They are not applicable to Language Modeling, because in LM you only have left context

available.

´ For example, GPT (Generative Pre-trained Transformer) is unidirectional generative model

´ If you do have entire input sequence (e.g. any kind of encoding), bidirectionality is
powerful (you should use it by default).
´ For example, BERT (Bidirectional Encoder Representations from Transformers) is a powerful

pretrained contextual representation system built on bidirectionality.

History note

´ In 2013-2015, LSTMs started achieving state-of-the-art results
´ Successful tasks include: handwriting recognition, speech
´ recognition, machine translation, parsing, image captioning
´ LSTM became the dominant approach

´ Now (2019), other approaches (e.g. Transformers) have become more dominant for
certain tasks.
´ For example in WMT (a MT conference + competition):
´ In WMT 2016, the summary report contains ”RNN” 44 times
´ In WMT 2018, the report contains “RNN” 9 times and “Transformer” 63 times

´ Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016,
http://www.statmt.org/wmt16/pdf/W16-2301.pdf

´ Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018,
http://www.statmt.org/wmt18/pdf/WMT028.pdf

Neural Machine Translation
Machine Translation using Neural Networks

Neural Machine Translation (NMT)

En
co

d
er

 R
N

N

Neural Machine Translation (NMT)

<START>

Source sentence (input)

 il a m’ entarté

The sequence-to-sequence model
Target sentence (output)

D
ecod

er R
N

N

Encoder RNN produces
an encoding of the
source sentence.

Encoding of the source sentence.  
Provides initial hidden state  

for Decoder RNN.

 Decoder RNN is a Language Model that
generates target sentence, conditioned on

encoding.

he

ar
gm

ax

he

ar
gm

ax

hit

hit

ar
gm

ax

me

Note: This diagram shows test time behavior:
decoder output is fed in as next step’s input

with a pie <END>

 me with a pie

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

 21

Sequence-to-sequence is versatile!
´ Sequence-to-sequence is useful for more than just MT 

´ Many NLP tasks can be phrased as sequence-to-sequence:
´ Summarization (long text → short text)

´ Dialogue (previous utterances → next utterance)

´ Parsing (input text → output parse as sequence)

´ Code generation (natural language → Python code)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201714

Recurrent Neural Networks: Process Sequences

e.g. Machine Translation
seq of words -> seq of words

Training a NMT system by BP

Greedy Decoding
´ We generate (or “decode”) the target sentence by taking argmax on

each step of the decoder, called greedy decoding (take most probable
word on each step)

´ It may not correct once wrong decisions are made

Greedy decoding

• We saw how to generate (or “decode”) the target sentence
by taking argmax on each step of the decoder 
 
 
 
 
 
 
 
 

• This is greedy decoding (take most probable word on each
step)

• Problems with this method?

<START>

he

ar
gm

ax

he

ar
gm

ax

hit

hit

ar
gm

ax

me with a pie <END>

me with a
pie

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax
 25

Beam Search Decoding
´ Core idea: On each step of decoder, keep track of the k most probable

partial translations (which we call hypotheses)
´ k is the beam size (in practice around 5 to 10)

´ A hypothesis (y(1),…,y(t)) has a score which is its log probability:

´ Scores are all negative, and higher score is better

´ We search for high-scoring hypotheses, tracking top k on each step

´ Beam search is not guaranteed to find optimal solution

´ But much more efficient than exhaustive search!

Beam search decoding

• Core idea: On each step of decoder, keep track of the k most
probable partial translations (which we call hypotheses)
• k is the beam size (in practice around 5 to 10)

• A hypothesis has a score which is its log
probability:

• Scores are all negative, and higher score is better
• We search for high-scoring hypotheses, tracking top k on each step

• Beam search is not guaranteed to find optimal solution
• But much more efficient than exhaustive search!

 28

Beam search decoding example:Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one

pie

tart

pie

tart

<START>

he

I

 41

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

-4.3

-4.6

-5.0

-5.3

Backtrack to obtain the full hypothesis

Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one

pie

tart

pie

tart

<START>

he

I

 41

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

-4.3

-4.6

-5.0

-5.3

Backtrack to obtain the full hypothesis

Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one

pie

tart

pie

tart

<START>

he

I

 39

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

-4.3

-4.6

-5.0

-5.3

For each of the k hypotheses, find  
top k next words and calculate scores

Sequence-to-sequence: the
bottleneck problem

Sequence-to-sequence: the bottleneck problem

En
co

d
er

 R
N

N

Source sentence (input)

<START> he hit me with a
pie

 il a m’
entarté

 he hit me with a pie
<END>

D
ecod

er R
N

N

Target sentence (output)

Encoding of the  
source sentence.  

This needs to capture all
information about the

source sentence.
Information bottleneck!

 57

Attention Mechanism
The idea was originally coined in computer vision, then to NLP.
Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio. Neural Machine Translation by
Jointly Learning to Align and Translate. ICLR 2015. arXiv:1409.0473

Sequence-to-sequence with attention
Sequence-to-sequence with attention

En
co

d
er

  
R
N

N

Source sentence (input)

<START> il a m’ entarté

D
ecod

er R
N

N

A
tt

en
ti

on

sc
or

es

dot product

 59

Sequence-to-sequence with attention

En
co

d
er

  
R
N

N

Source sentence (input)

<START> il a m’ entarté

D
ecod

er R
N

N

A
tt

en
ti

on

sc
or

es

dot product

 62

Sequence-to-sequence with attention

En
co

de
r
 

RN
N

Source sentence (input)

<START> il a m’ entarté

D
ecoder RN

N

At
te

nt
io

n
sc

or
es

On this decoder timestep,
we’re mostly focusing on the
first encoder hidden state
(”he”)

At
te

nt
io

n
di

st
ri

bu
ti

on
Take softmax to turn the
scores into a probability

distribution

 63

Sequence-to-sequence with attention

En
co

d
er

  
R
N

N

Source sentence (input)

<START> il a m’ entarté

D
ecod

er R
N

N

A
tt

en
ti

on

d
is

tr
ib

u
ti

on
A
tt

en
ti

on

sc
or

es

Attention
output

Use the attention distribution to take
a weighted sum of the encoder
hidden states.

The attention output mostly contains
information from the hidden states
that received high attention.

 64

Sequence-to-sequence with attention

En
co

d
er

  
R
N

N

Source sentence (input)

<START> il a m’ entarté

D
ecod

er R
N

N

A
tt

en
ti

on

d
is

tr
ib

ut
io

n
A
tt

en
ti

on

sc
or

es

Attention
output

Concatenate attention output
with decoder hidden state,
then use to compute as
before

!̂1

he

 65

Sequence-to-sequence with attention

En
co

d
er

  
R
N

N

Source sentence (input)

<START> il a m’ entarté

D
ecod

er R
N

N

A
tt

en
ti

on

sc
or

es

he

A
tt

en
ti

on

d
is

tr
ib

u
ti

on

Attention
output

!̂2

hit

 66

Sometimes we take the
attention output from
the previous step, and
also feed it into the
decoder (along with the
usual decoder input).
We do this in
Assignment 4.

Sequence-to-sequence with attention

En
co

d
er

  
R
N

N

Source sentence (input)

<START> il a m’ entarté

D
ecod

er R
N

N

A
tt

en
ti

on

sc
or

es

he

A
tt

en
ti

on

d
is

tr
ib

ut
io

n
Attention

output

!̂2

hit

 66

Sometimes we take the
attention output from
the previous step, and
also feed it into the
decoder (along with the
usual decoder input).
We do this in
Assignment 4.

Sequence-to-sequence with attention

En
co

d
er

  
R
N

N

Source sentence (input)

<START> il a m’ entarté

D
ecod

er R
N

N

A
tt

en
ti

on

sc
or

es
A
tt

en
ti

on

d
is

tr
ib

ut
io

n

Attention
output

he hit me with a

!̂6

pie

 70

Attention in EquationsAttention: in equations

• We have encoder hidden states
• On timestep t, we have decoder hidden state
• We get the attention scores for this step: 
 

• We take softmax to get the attention distribution for this step
(this is a probability distribution and sums to 1)  

• We use to take a weighted sum of the encoder hidden states to
get the attention output

 

• Finally we concatenate the attention output with the decoder
hidden state and proceed as in the non-attention seq2seq model

 71

Motivation of TransformerThe Motivation for Transformers

• We want parallelization but RNNs are inherently sequential

• Despite LSTMs, RNNs generally need attention mechanism to
deal with long range dependencies – path length between
states grows with distance otherwise

• But if attention gives us access to any state… maybe we can just
use attention and don’t need the RNN?

• And then NLP can have deep models … and solve our vision envy
45

Transformer
“Attention is all you need”

Transformer (Vaswani et al. 2017)
“Attention is all you need”

´ https://arxiv.org/pdf/1706.03762.pdf

´ Non-recurrent sequence-to-sequence model

´ A deep model with a sequence of attention-
based transformer blocks

´ Depth allows a certain amount of lateral
information transfer in understanding
sentences, in slightly unclear ways

´ Final cost/error function is standard cross-
entropy error on top of a softmax classifier

´ Initially built for NMT:
´ Task: machine translation with parallel corpus

´ Predict each translated word

Transformer Pytorch Notebook

´ Learning about transformers on your own?

´ Key recommended resource:
´ http://nlp.seas.harvard.edu/2018/04/03/attention.html

´ The Annotated Transformer by Sasha Rush, a Jupyter Notebook using PyTorch
that explains everything!

´ https://jalammar.github.io/illustrated-transformer/

´ Illustrated Transformer by Jay Alammar, a Cartoon about Transformer with
attention visualization notebook based on Tensor2Tensor.

Encoder-Decoder Blocks

Encoder-Decoder N=6 layers

Encoder has two layers

Self-Attention +
FeedForward

Attention Illustration

Embedding->(q,k,v) Dot-Product Attention

Dot-Product Self-Attention: Definition

´ Inputs: a query q and a set of key-value (k-v) pairs, to an output

´ Query, keys, values, and output are all vectors

´ Output is weighted sum of values, where
´ Weight of each value is computed by an inner product of query and

corresponding key

´ Queries and keys have same dimensionality dk, value have dv

Dot-Product Attention (Extending our previous def.)

• Inputs: a query q and a set of key-value (k-v) pairs to an output
• Query, keys, values, and output are all vectors

• Output is weighted sum of values, where
• Weight of each value is computed by an inner product of query

and corresponding key
• Queries and keys have same dimensionality dk value have dv

35

Attention: Multiple Inputs

Matrix input Scaled dot-product

Dot-Product Attention: Matrix Form

´ When we have multiple queries q, we stack them in a matrix Q:

Dot-Product Attention – Matrix notation

• When we have multiple queries q, we stack them in a matrix Q:

• Becomes:

[|Q| x dk] x [dk x |K|] x [|K| x dv]

softmax = [|Q| x dv]
row-wise

36

Dot-Product Attention – Matrix notation

• When we have multiple queries q, we stack them in a matrix Q:

• Becomes:

[|Q| x dk] x [dk x |K|] x [|K| x dv]

softmax = [|Q| x dv]
row-wise

36

Dot-Product Attention (Extending our previous def.)

• Inputs: a query q and a set of key-value (k-v) pairs to an output
• Query, keys, values, and output are all vectors

• Output is weighted sum of values, where
• Weight of each value is computed by an inner product of query

and corresponding key
• Queries and keys have same dimensionality dk value have dv

35

Scaled Dot-Product Attention

´ Problem: As dk gets large, the variance of qTk increases

´ some values inside the softmax get large

´ the softmax gets very peaked

´ hence its gradient gets smaller.

´ Solution: Scale by length of query/key vectors:

Scaled Dot-Product Attention

• Problem: As dk gets large, the variance of qTk increases à some
values inside the softmax get large à the softmax gets very
peaked à hence its gradient gets smaller.

• Solution: Scale by length of
query/key vectors:

37

Multi-head Attention
´ Problem with simple self-attention:

´ Only one way for words to interact with one-another

´ Solution: Multi-head attention
´ First map Q, K, V into h=8 many lower dimensional

spaces via W matrices

´ Then apply attention, then concatenate outputs and
pipe through linear layer

´ Multi-head attention allows the model to jointly attend
to information from different representation subspaces
at different positions.

Multi-head attention

• Problem with simple self-attention:
• Only one way for words to interact with one-another
• Solution: Multi-head attention
• First map Q, K, V into h=8 many lower

dimensional spaces via W matrices
• Then apply attention, then concatenate

outputs and pipe through linear layer

39

Multihead

2 heads h=8 heads

Concatenation Linear

Multi-head Attention

A Transformer block

´ Each block has two “sublayers”
´ Multihead attention

´ 2-layer feed-forward NNet (with ReLU)

´ Each of these two steps also has:
´ Residual (short-cut) connection: x+sublayer(x)

´ LayerNorm(x+sublayer(x)) changes input features to
have mean 0, variance 1, and adds two more
parameters (Ba et al. 2016)

Transformer block

Each block has two “sublayers”

1. Multihead attention

2. 2-layer feed-forward NNet (with ReLU)

Each of these two steps also has:

Residual (short-circuit) connection

LayerNorm (scale to mean 0, var 1; Ba et al. 2016)

47

Complete transformer block

Each block has two “sublayers”

1. Multihead attention

2. 2-layer feed-forward NNet (with ReLU)

Each of these two steps also has:

Residual (short-circuit) connection and LayerNorm

LayerNorm(x + Sublayer(x))

Layernorm changes input features to have mean 0 and variance 1
per layer (and adds two more parameters)

Layer Normalization by Ba, Kiros and Hinton, https://arxiv.org/pdf/1607.06450.pdf
42

Residue (Shortcut)Complete transformer block

Each block has two “sublayers”

1. Multihead attention

2. 2-layer feed-forward NNet (with ReLU)

Each of these two steps also has:

Residual (short-circuit) connection and LayerNorm

LayerNorm(x + Sublayer(x))

Layernorm changes input features to have mean 0 and variance 1
per layer (and adds two more parameters)

Layer Normalization by Ba, Kiros and Hinton, https://arxiv.org/pdf/1607.06450.pdf
42

Encoder Input
´ Actual word representations are word pieces:

byte pair encoding
´ Start with a vocabulary of characters

´ Most frequent ngram pairs ↦ a new ngram

´ Example: “es, est” 9 times, “lo” 7 times

´ Also added is a positional encoding so same
words at different locations have different
overall representations:

Encoder Input

Actual word representations are word pieces (byte pair encoding)
• Topic of next week

Also added is a positional encoding so same words at different
locations have different overall representations:

49

Encoder Input

Actual word representations are word pieces (byte pair encoding)
• Topic of next week

Also added is a positional encoding so same words at different
locations have different overall representations:

49

Or learned

Byte Pair Encoding

24

5 lo w
2 lo w e r
6 n e w est
3 w i d est

(Example from Sennrich)

l, o, w, e, r, n, w, s, t, i, d, es, est, lo

VocabularyDictionary

Add a pair (l, o) with freq 7

• A word segmentation algorithm:
• Start with a vocabulary of characters
• Most frequent ngram pairs ↦ a new ngram

Byte Pair Encoding

24

5 lo w
2 lo w e r
6 n e w est
3 w i d est

(Example from Sennrich)

l, o, w, e, r, n, w, s, t, i, d, es, est, lo

VocabularyDictionary

Add a pair (l, o) with freq 7

• A word segmentation algorithm:
• Start with a vocabulary of characters
• Most frequent ngram pairs ↦ a new ngram

Sin/Cos Position Encoding

Figure. Each row corresponds the a positional encoding of a vector. So the first
row would be the vector we’d add to the embedding of the first word in an input
sequence. Each row contains 512 values – each with a value between 1 and -
1. We’ve color-coded them so the pattern is visible.

Transformer Encoder

´ Blocks are repeated N=6
or more times

Complete Encoder

• Blocks are repeated
6 or more times
• (in vertical stack)

43

Complete Encoder

• Blocks are repeated
6 or more times
• (in vertical stack)

43

Transformer Decoder

´ 2 sublayer changes in decoder
´ Masked decoder self-attention on

previously generated outputs

´ Encoder-Decoder Attention,
where queries come from
previous decoder layer and keys
and values come from output of
encoder

´ Blocks repeated N=6 times also

Transformer Decoder

• 2 sublayer changes in decoder
• Masked decoder self-attention

on previously generated outputs:

• Encoder-Decoder Attention,
where queries come from
previous decoder layer and
keys and values come from
output of encoder

• Blocks repeated 6 times also44

Encoder-Decoder

Illustration of Encoder-Decoder

Illustration of Encoder-Decoder

Thank you!

