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Transfer Learning: Fine Tuning




Deep Neural Network
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@ Filters learned in first layers of a network are transferable
from one task to another

@ When solving another problem, no need to retrain the
lower layers, just fine tune upper ones

@ |s this simply due to the large amount of images in
ImageNet?

@ Does solving many classification problems simultaneously
result in features that are more easily transferable?

@ Does this imply filters can be learned in unsupervised
manner?

@ Can we characterize filters mathematically?




Transfer Learning with CNNs

1. Train on Imagenet
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2. Small Dataset (C classes)
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Reinitialize
this and train

> Freeze these

J

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

3. Bigger dataset

Train these

\

With bigger
dataset, train
more layers

> Freeze these

|
Lower learning rate
when finetuning;
1/10 of original LR
is good starting
__Conv-64 ) p Oi nt
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More specific

More generic

/

very similar very different
dataset dataset
very little data | Use Linear You're in
Classifier on trouble... Try
top layer linear classifier
from different
stages
quite a lot of Finetune a Finetune a
data few layers larger number
of layers




Example Demo

» Jupyter notebook with pytorch




Visualizing Convolutional Networks




Understanding infermediate neuronse

This image is CCO public domain
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Input Image:
3 x 224 x 224

What are the intermediate features looking for?



Visualizing CNN Features: Gradient Ascent

» Gradient ascent: Generate a synthetic image that maximally activates @
neuron

* = arg max, [{(I)| +|R(I)
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Neuron value Natural image regularizer




Visualizing CNN Features: Gradient
Ascent

arg max[S,(1)]~ A[7]3

score for class ¢ (before Softmax)
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1. Initialize image to zeros

zero image s b
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pooling

Repeat:
2. Forward image to compute current scores
3. Backprop to get gradient of neuron value with respect to image pixels

4. Make a small update to the image




Visualizing CNN Features: Gradient Ascent

argmax S, (I) — A| 1|13

Better regularizer: Penalize L2 norm of
image; also during optimization
periodically

(1) G ) blur i Hartebeest Billiard Table
aussian bDiur image : -

(2) Clip pixels with small values to 0
(3) Clip pixels with small gradients to 0

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014. Statlon Wagon B |aCk Swan

Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced with permission




Visualizing CNN Features: Gradient Ascent

Use the same approach to visualize intermediate features

Layer 5

Layer 4

Layer 3
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Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced with permission.

Layer 2




It's easy to visualize early layers

First Layer: Visualize Filters T
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Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017




Last layers are hard to visualize

Last Layer: Dimensionality Reduction
7Y

2
’N/'g‘ y ) 2.,
WG ", ’yﬁ‘ k]
i
i, 4
&

TR

Visualize the “space” of FC7
feature vectors by reducing
dimensionality of vectors from
4096 to 2 dimensions
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Simple algorithm: Principle
Component Analysis (PCA)
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More complex: t-SNE

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Figure copyright Laurens van der Maaten and Geoff Hinton, 2008. Reproduced with permission.
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Saliency Maps

How to tell which pixels matter for classification?
>

Compute gradient of (unnormalized) class
score with respect to image pixels, take
absolute value and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.




Guided BP

Intermediate features via (guided) backprop

RelLU

Forward pass
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Backward pass:
“deconvnet”

Pick a single intermediate neuron, e.g. one ABE 2[1]3
value in 128 x 13 x 13 conv5 feature map

Backward pass: 0 BE © 2 e -1
. . guided 6J]ojJo| «<— |6]-3]1
Compute gradient of neuron value with respect backpropagation [ o |3 =

to image pixels il
Images come out nicer if you only

backprop positive gradients through
each RelLU (guided backprop)

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014 Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015 Brox, Martin Riedmiller, 2015; reproduced with permission.




Intermediate features via Guided BP

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.




DeepDream: amplitying features

Choose an image and a layer in a CNN; repeat:
1.

2.
3.
4

Rather than synthesizing an image to maximize a specific neuron, instead
try to amplify the neuron activations at some layer in the network

2

pooling

Forward: compute activations at chosen layer Equivalent to:

Set gradient of chosen layer equal to its activation . I* = arg max, Zi fi(I)Z
Backward: Compute gradient on image
Update image



Example: DeepDream of Sky

"Admiral Dog!" "The Pig-Snail" "The Camel-Bird" "The Dog-Fish"




More Examples

[ Py o ¥ % -

Image is licensed under CC-BY 4.0




Python Notelbooks

» An interesting Pytorch Implementation of these visualizatoin methods

» Nhitps://qithub.com/utkuozbulak/pytorch-cnn-visualizations

®» Some examples demo




Thank you!




