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Summary

» \We had covered so far
» | inear models (linear and logistic regression) — always a good start, simple yet powerful
» Model Assessment and Selection - basics for all methods

» Trees, Random Forests, and Boosting — good for high dim mixed-type heterogeneous
features

» Support Vector Machines — good for small amount of data but high dim geometric
features

» Next, neural networks for unstructured data (image, language etc.):
= Convolutional Neural Networks — image data
» Recurrent Neural Networks, LSTM — sequence data
» Transformer, BERT, GPT — machine translafion, NLP, etc.
» Generative models, GANs, Diffusion — new unsupervised learning for image, etc.

» Reinforcement Learning — Markov decision process, playing games, etc.



Kaggle survey: Top ML Methods

hitps://www .kaggle.com/surveys/2017

Academic Industry

What data science methods are used at work? What data science methods are used at work?
Logistic regression is the most commonly reported data science method used at Logistic regression is the most commonly reported data science method used at
work for all industries except Military and Security where Neural Networks are used work for all industries except Military and Security where Neural Networks are used
slightly more frequently. slightly more frequently.

Company Size %) Academic 4] Job Title B Company Size #)( Industry 4)( Job Title B

0% 10% 20% 30% 40% 50% 60%
Logistic Regression Logistic Regression
Neural Networks (e 7y Decision Trees
Decision Trees Random Forests
Random Forests (N TE 7 Neursl Networks
Bayesian Techniques Bayesian Techniques
svms Ensemble Methods
Ensemble Methods [NEZTTS svms
CNNs Gradient Boosted Machines
rns YT oNNs
Gradient Boosted Machines RNNs
Evolutionary Approaches Other
Other Evolutionary Approaches - 5.5%
HMMs Hvivs [ 5.4%
Markov Logic Networks - 5.8% Markov Logic Networks - 4.9%

GANs ([l 4.1% GANs [l 2.8%

1,201 responses 7,301 responses

@ View code in Kaggle Kernels @ View code in Kaggle Kernels




What type of data is used at worke

hitps://www.kaggle.com/surveys/2017

Academic

What type of data is used at work?

Relational data is the most commonly reported type of data used at work for all
industries except for Academia and the Military and Security industry where text
data’s used more.

a a

Company Size ¥ || Academic v /| JobTitle 5

0% 10% 20% 30% 40% 50%
Text data
Relational data
image data

Other 17.7%
Video data

1,277 responses

Industry

What type of data is used at work?

Relational data is the most commonly reported type of data used at work for all
industries except for Academia and the Military and Security industry where text
data’s used more.

a

Company Size 5| Industry %/ Job Title v

0% 10% 20% 30% 40% 50% 60%
Relational data
Text data
image data
Other
Video data - 5.1%

8,024 responses



Some reference books on Deep Learning

» Deep Learning with Python, Manning Publications 2017

» pv Francois Chollet

» hitps://www.manning.com/books/deep-learning-with-
python2a aid=keras&a bid=76564dff

» Deep Learning, MIT Press 2016

» By [an Goodfellow, Yoshua Bengio, and Aaron Courville,

» hitp://www.deeplearningbook.org/

= Many other public resources



https://livebook.manning.com/
https://livebook.manning.com/
https://livebook.manning.com/
https://livebook.manning.com/
https://livebook.manning.com/
https://livebook.manning.com/
https://livebook.manning.com/

Locality or Sparsity of Computation

Minsky and Papert, 1969

Perceptron can’t do XOR classification
Perceptron needs infinite global
information to compute connectivity

Expanded Edition

(‘Jiﬁsl-\ ’ é)owasga
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+fﬁ: £4F j.@* g0 o ©
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%00@&'}0%&' x *5“%¢¢++
w0 g P  E T £t
8 0059 R
R 8 oy
o 0056
Yo %6 g0 e *;E“’ﬁ +—ﬁ%++
: Class B : Class A
o5 0 i

Perceptrons

Locality or Sparsity is important:
Locality in time?

Locality in space?

Marvin Minsky

\\

Seymour Papert

Marvin 1.. Minsky
Seymour A. Papert




Convolutional Neural Networks: shift
iInvariances and locality for images

@ Can be traced to Neocognitron of Kunihiko Fukushima
(1979)

@ Yann LeCun combined convolutional neural networks with
back propagation (1989)

@ Imposes shift invariance and locality on the weights

@ Forward pass remains similar

@ Backpropagation slightly changes — need to sum over the
gradients from all spatial positions

/

Biol. Cybernetics 36, 193-202 (1980)

Neocognitron: A Self-organizing Neural Network Model
for a Mechanism of Pattern Recognition
Unaffected by Shift in Position

Kunihiko Fukushima
NHK Broadcasting Science nuta, Sctagaya, Tokyo, Japan

=
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= L= - | Ful cmr]nectjon | Gaussian connections
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Subsampling Corvolutions  Subsampling Full connection
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Multilayer Perceptrons (MLP) and
Back-Propagation (BP) Algorithms

Rumelhart, Hinton, Williams (1986)
Learning representations by back-propagating
errors, Nature, 323(%): 533-536

BP algorithms as stochastic gradient descent
algorithms (Robbins—Monro 1950; Kiefer-
Wolfowitz 1951) with Chain rules of Gradient maps

MLP classifies XOR, but the global hurdle on
topology (connectivity) computation still exists

NATURE VOL. 323 9 OCTOBER 1986

LETTERSTONATURE £2

Learning representations
by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hintont
& Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California,
San Diego, La Jolla, California 92093, USA

+ Department of Computer Science, Carnegic-Mellon University,
Pitisburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for
networks of like units. The adjusts
the weights of the connections in the network so as to minimize a
measure of the difference between the actual output vector of the
net and the desired output vector. As a result of the weight
adjustnients, internal ‘*hidden’ units which are not part of the input
or output come to represent important features of the task domain,
and the regularities in the task are captured by the interactions
of these units. The ability to create useful new features distin-
guishes back-propagation from eaclier, simpler methods such as
the perceptron-convergence procedure’.

There have been many attempts to design self-organizing
neural networks, The aim is to find a powerful synaptic
modification rule that will allow an arbitrarily connected neural
network to develop an internal structure that is appropriate for
a particular task domain. The task is specificd by giving the
desired state vector of the output units for each state vector of
the input units, If the input units are directly connected to the
output units it is relatively easy to find learning rules that
iteratively adjust the relative strengths of the connections so as
to progressively reduce the difference between the actual and
desired output vectors®. Learning becomes more interesting but

+Ta whom cosrespondence should be addressed

more difficult when we introduce hidden units whose actual or
desired states are not specified by the task. (In perceptrons,
there are ‘feature analysers’ between the input and output that
are not true hidden units because their input connections are
fixed by hand, so their states are completely determined by the
input vector: they do not learn representations.) The learning
procedure must decide under what circumstances the hidden
units should be active in order to help achieve the desired
input-output behaviour. This amounts to deciding what these
units should represent. We demonstrate that a general purpose
and relatively simple procedure is powerful enough to construct
iate internal i

The simplest form of the learning procedure is for layered
networks which have a layer of input units at the bottom; any
number of intermediate layers; and a layer of output units at
the top. Connections within a layer or from higher to lower
layers are forbidden, but connections can skip intermediate
layers. An input vector is presented to the network by setting
the states of the input units. Then the states of the units in each
layer are determined by applying equations (1) and (2) to the
connections coming from lower layers. All units within a layer
have their states set in paraliel, but different layers have their
states set sequentially, starting at the bottom and working
upwards until the states of the output units are determined

The total input, X;, to unit j is a linear function of the outputs,
y, of the AT THAATE conaaeied to 1 and of The Werghts_w,

on these connections

%=Ly [¢V]

Units can be given biases by introducing an extra input to each
unit which always has a value of 1. The weight on this extra
input is called the bias and is equivalent to a threshold of the
opposite sign. It can be treated just like the other weights.

A unit has a real-valued awm:u

function of its total input
=

1
1+e

(&)




BP Algorithm: Forward Pass

@ Cascade of repeated [linear operation followed by
coordinatewise nonlinearity]'s

@ Nonlinearities: sigmoid, hyperbolic tangent, (recently)
RelLU.

Algorithm 1 Forward pass

Input: x
Output: =,

g S 1: for{ =110 L do
TEKS 2:  xp= fe(Wiozp—1 + by)
3: end for




BP algorithm = Gradient Descent Method

@ Training examples {z}}™ , and labels {y*}™_,
@ Output of the network {4},
@ Objective

1 <1, . .19
JAWit, {bi}) = Eziﬂyz—xﬂz (1)
i=1
Ofther losses include cross-entropy, logistic loss, exponential loss, etc.
@ Gradient descent

W ‘ p— —8J
Vi=Wi=ngy
S o
/. / ) y\f“ l - l B Tl
/s ) 8bl

In practice: use Stochastic Gradient Descent (SGD)




Derivation of BP: Lagrangian Multiplier
LeCun et al. 1988

Given n training examples (1;, y;) = (input,target) and L layers
@ Constrained optimization

min i1 |z (L) — vl

subjectto  z;(¢) = fy [ngz- (£—1) },
i=1,...,n, ¢=1,...,L, z;(0) =1,
@ Lagrangian formulation (Unconstrained)

min L(W, x, B)
W,x,B

‘C(vav B) — Zf?:l {|xZ(L) - y’&”% +

> Bi(0)T (%(f) — Je [Weiﬂi (£ —1) D }

hitp://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf




Background Info

back-propagation — derivation

o 9L

0B

Forward pass

xi(ﬁ):fgh/wxi(ﬁ—lﬂ f=1... L i=1,....n

A;(€)

A\

Qo g—g,Zg — [Vfg]B(ﬁ)
Backward (adjoint) pass
z2(L) =2V L [Ai(L)} (yi — (L))
() = V| L) Wh z(t+1) £=0,...,L—1

\

o W+ W+ 255

Weight update
Wy = We+ A0 z(0)zf (0 —1) 21 /)50




Long-Short-Term-Memory (LSTM, 1997)

» Sepp Hochreiter; Jurgen Schmidhuber (1997). "Long short-term
memory'. Neural Computation. 9 (8): 1735-1780.

(https://www.bioinf.jku.at/publications/older/2604.pdf)

» BP can not frain deep networks due to gradient vanishing problem etc.

» |ntroduction of short path to train deep networks without vanishing
gradient problem.

» This idea will come back to Convolutional Networks as ResNet in 2015.

| Write some new cell content | @
Forget some T
cellcontent [ —— [ . N
= n » C
Cry P —X »
i 0,
f, (%)~ o) ——| Output some cell content
Compute the —_ G to the hidden state
forget gate B [o] (o]
¢

Compute the ® Compute the Compute the
input gate new cell content output gate

Neural Network Pointwise Vector
Layer Operation ~ Transfer



https://en.wikipedia.org/wiki/Sepp_Hochreiter
https://en.wikipedia.org/wiki/J%C3%BCrgen_Schmidhuber
https://www.researchgate.net/publication/13853244
https://www.researchgate.net/publication/13853244
https://en.wikipedia.org/wiki/Neural_Computation_(journal)
https://www.bioinf.jku.at/publications/older/2604.pdf)

SGD vs. ADMM/BCD

» Stochastic Gradient Descent (SGD) suffers from the well-known gradient
vanishing issue in deep learning

Approximate f(x) = x? via DNNs with (5,100)

. . . . ——ADMM (sigmoid)
» ADMM/BCD may alleviate gradient vanishing 5" —SGD sgmoi)
= —SGD (ReLU)
107
c
k)
i i ADMM (si id g -
SIgMOI
- SGD (sigmoid) o (sigmoid) S oo
—layer1 —layer1 g
—layer2 107 —layer2 <
layer3 . layer3 ’&
= 810
810! | layerd] = layerd 00
2 \/ layers 2. layer5 0 500 1000 1500 2000E’2]5;:: haooo 3500 4000 4500 5000
o —layer6 £ layer6
5 B .. 2 - _2
£ £ 10 o Approximation of f(x)=x 02 Approximation of f(x) = X
A g ——SGD (ReLU)
N —— SGDM (ReLU) A SE——
10 oo —e—Adam (ReLU) 10t
e 8 g
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Zeng-LaU-Lin-Y., ICML 201 9 | (a)M;\IIST(BCD) (b) MNIST (SGD) (;)CIFARJ;J(BCD)
Zeng-Lin-Y.-Zhou, JMLR 2021
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(d) CIFAR-10 (SGD)



Notes on Algorithms

» Gradient descent (back propagation) can be derived via Lagrangian
multiplier method [LeCun 1988, http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf]

=» ADMM (Alternating Direction Method of Multipliers) is alternative primal-dual
method via Augmented Lagrangian multipliers [Zeng-Lin-Y.-Zhou, JMLR 2021]

» BCD (Block-Coordinate-Descent) drops the dual update in Augmented
Lagrangian multipliers [Zeng-Lau-Lin-Y., ICML 2019]

» Global convergence to KKT points from arbifrary initialization can be
established with the aid of Kurdyka-tojasiewicz framework.

ml%rglze —||VN Y%+ = ; W3 1%
subject to V; =oc(W;V;_1), i=1,....N =1, Vy=WnVn_1,

. : Ny L 2 A 2
Augmented Lagrangian function:  £OV:V:{A0) =5 IVa = YIE+ 35> IWillE
=1

+ lloe(WiVie) — VillE + (A, o(WiVi _Vi>
Lagrangian multiplier A; Z ( lo(WeVi1) = Vill + (Ais o (WiVim1) = W3)

+ 7||WNVN—1 — Vn|% + (An, WnViv_1 — Vi),



http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf

Support Vector Machine (Max-Margin
Classifier)

C e 2 2
minimizeg, g, ..., 5, 18]]7 == Z Bj
J

subject to y;(Bo + Bixi1 + ... + Bpxip) > 1 for all 4
xTﬂ + By =0

Separable two classes with Max-Margin Solution

L I I b1 1 L |
-1.5 -1 -0.5 0 0.5 1 1.5 2

Viadmir Vapnik, 1994

Convex optimization + Reproducing Kernel Hilbert Spaces (Grace Wahba etc.)



Simple SVM performs
as well as Multilayer
Convolutional Neural
Networks which need
careful tuning (LeNets)

Second dark era for NN:

2000s

Linear
[deslant] Linear
Pairwise

K-NN Euclidean

[deslant] K-NN Euclidean
40 PCA + quadratic

1000 RBF + linear
[16x16] Tangent Distance
SVM poly 4

RS-SVM poly 5

[dist] V-SVM poly 9

28x28-300-10
[dist] 28x28-300-10
[deslant] 20x20-300-10
28x28-1000-10

[dist] 28x28-1000-10
28x28-300-100-10

[dist] 28x28-300-100-10
28x28-500-150-10

[dist] 28x28-500~150-10

[16x16] LeNet-1
LeNet-4

LeNet-4 / Local
LeNet-4 / K-NN
LeNet-5

[dist] LeNet-5

[dist] Boosted LeNet-4

MNIST Challenge Test Error: SVM vs. CNN
LeCun et al. 1998
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LeNet

C3: f. maps 16@10x10

INPUT (6.)1@ 2f§it2uere maps S4: f. maps 16@5x5
32x32 S2: f. maps CS5: layer pg. OUTPUT
6@14x14 120 e

Full coanection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

= Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, november 1998.




Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input

3072

—>

Wax

10 x 3072
weights

activation
/4 10
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)



Convolution

__— 32x32x3 image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

) wiz+b

™~ 1 number:




Convolution Layer: a first (blue) filter

—

V
——0

32

32x32x3 iImage
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

V-

28

-



Convolution Layer: a second (green)

filter

Vo

B

—

V
——0

32

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

y

b

28



Convolution Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

32

32

3

Convolution Layer

activation maps

y

28

A

We stack these up to get a “new image” of size 28x28x0!



A Closer Look at Convolution: stride=1

7 7
7X7 input (spatially) . .
assume 3x3 filter X7 input (spa_mally)

assume 3xa3 filter
7
7
7
7X7 input (spatially)
assume 3xa3 filter 7
7X7 input (spatially)
7 assume 3x3 filter
. => 5x5 output
7
7X7 input (spatially)

assume 3x3 filter




A Closer Look at Convolution: stride=2

! 7X7 input (spatially)
assume 3x3 filter
applied with stride 2
7
N
Output size:
! 7x7 input (spatially) F (N - F) / stride + 1
assume 3x3 filter
applied with stride 2 N eg.N=7,F=3:
F stride 1=>(7-3)1+1=5
7 stride2=>(7-3)2+1=3
stride 3=> (7-3)/3+1=2.33:\
7 . .
7X7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!
7




A Closer Look at Convolution: Padding

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
0
7x7 output!
0 in general, common to see CONV layers with

stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F =5 => zero pad with 2

F =7 =>zero pad with 3




ConvNet:

32

RelLU
e.g.6
5x5x3

32 filters

Stride =1
Padding =0

CONYV,

28

28

CONYV,

RelLU
e.g. 10
ox5x6
filters

10

24

CONV,
RelLU

24



Formula: NewlmageSize =
floor((ImagesSize - Filter + 2*Padding)/Stride + 1)

Summary. To summarize, the Conv Layer:

» Accepts a volume of size W x H; x Dy
» Requires four hyperparameters:
Number of filters K,
their spatial extent F',
the stride .S,
the amount of zero padding P.
 Produces a volume of size Wy x Hs x D5 where:
o Wo=(W; —F+2P)/S+1
o Hy =(H; — F +2P)/S + 1 (i.e. width and height are computed equally by symmetry)
° D2 = I
« With parameter sharing, it introduces F' - F' - D, weights per filter, for a total of (F' - F'- Dy ) - K weights
and K biases.
« In the output volume, the d-th depth slice (of size W5 x Hs) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

o

o

o

o




RelLU

@ Non-saturating function and therefore faster convergence
when compared to other nonlinearities

@ Problem of dying neurons

. ReLU

R(z) =max(0, z}

]
-10 -5 /] 5 10

Source: https://ml4a.github.io/mld4a/neural_networks/




Single depth slice

Max Pooling

11112 | 4
S| 6|7 |8
312|110
1123 | 4

max pool with 2x2 filters
and stride 2




2000-2010: The Era of SVM, Boosting, ...
as nights of Neural Networks




Around the year of 2012...

Speech Recognition: TIMIT Computer Vision: ImageNet

TIMIT Speech Recognition Dataset
P g @ ImageNet (subset):

25 | e 1.2 million training images
e 100,000 test images
e 1000 classes

225 @ ImageNet large-scale visual recognition Challenge

30%

Error 20 .q o

20%

15%

Error Rate in Image Classification(%)

17.5
10%
IHuman Performance Zone

5%
1 5 0% NEC-UIUC XRCE AlexNet ZFNet GoogLeNet ResNet SENet
(2010) (2011) (2012) (2013) (2014) (2015) (2017)

2004 2006 2008 201 0 201 2 201 4 Neural Network Architecture
Y ; source: https://www.linkedin.com/pulse/must-r@ad-path-breaking-papers-image-classification-muktabh-mayank
. '
Deep Learning

Deep Learning




Depth as function of year

28.2

152 layers

\ 16.4

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

[He et al., 2016]



AlexNet (2012): Architecture

@ Max-pooling
@ Dropout

Max
pooling

128

@ 8 layers: first 5 convolutional, rest fully connected
@ RelLU nonlinearity
@ Local response normalization

13

N
128 ><2043 2048 \dense

Max
pooling

Source: [Krizhevsky et al., 2012]

____________ﬂ.‘":13kh : 13 dense’| |dense
192 192 128 Max L |
pooling 2048 2048

https://github.com/computerhistory/AlexNet—Source—Code

1000



(b) After applying dropout.

Dropout

N

/5

Source: [Srivastava et al., 2014]
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(a) Standard Neural Net

@ Zero every neuron with probability 1 — p
@ At test time, multiply every neuron by p
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VGG (2014) [Simonyan-Zisserman'14]

Deeper than AlexNet: 11-19 layers versus 8
No local response normalization
Number of filters multiplied by two every few layers

Spatial extent of filters 3 x 3 in all layers

Instead of 7 x 7 filters, use three layers of 3 x 3 filters
e Gain intermediate nonlinearity
e Impose a regularization on the 7 x 7 filters

22 % 224 %3 224 x 224 % 6d

112 x 128

56 56 x 256
77 /las x 28 x 512 TxTx512
ﬁ\] %Lp 1154096 131 1000

ﬂ convolution+ Rel.LT

7 max pooling
fully connected+HRel.U
[ softmax

Source: https://blog.heuritech.com/2016/02/29/




GoogleNet [Szegedy ef al., 2014]

» 72 |ayers

» Efficient “Inception” module

» No FC |layers

®» Only 5§ milion parameters!

» |2x less than AlexNet

» [[SVRC'14 classification winner Incention module e
(6.7% top 5 error) p ﬁiﬁj




ReSNeT 20] 5) [HGRS_" 5] |(%S;/§7al)?)cgloesrs£sohon winner

VGGE-19 34-layer plain 34-layer residual

image Image

Bl R ElED L @ Solves problem by adding =
) skip connections =
Very deep: 152 layers
No dropout

Stride T e
Batch normalization =

Kaiming He
Associate Professor, EECS, MIT
Verified email at mit.edu - Homepage

2ud comy, 512

33 comy, 512

Computer Vision Machine Learning

ARTICLES CITEDBY  PUBLICACCESS CO-AUTHORS

e pn
[semsz |
[ Mu:m sz |
SORT ~ CITED BY — t'm :
) ot )
_ , weight layer :
Deep Residual Learning for Image L 267878 4
Recognition
K He, X Zhang, S Ren, J Sun l relu
Computer Vision and Pattern Recognition (CVPR),
2016, 2016 H
weight layer
Faster R-CNN: Towards Real-Time Object 87939 i ol /2
Detection with Region Proposal Networks
S Ren, K He, R Girshick, J Sun
Neural Information Processing Systems (NIPS), 2015,
2015
. | R ity e ]
Mask R-CNN o 43479 Source: Deep Residual Learning for Image Recognition ——
K He, G Gkioxari, P Dollar, R Girshick - - ]
International Conference on Computer Vision (ICCV),
2017, 2017
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Batch Normalization

original data zero-centered data normalized data

10 10

1g o0 =5 0 5 19 10 = 0 5 10

X -= np.mean(X, axis = 0) . X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)




Batch Normalization

Algorithm 2 Batch normalization [loffe and Szegedy, 2015]

Input: Values of = over minibatch z; ... x g, where z is a certain
channel in a certain feature vector
Output: Normalized, scaled and shifted values y; ... yg

. 1 B
10 = 5D o1 T
1 B
2: 0% = 5 Yy (wp — p)?
3: Tp = Lo [
Vit
4: yp = yIp + 0

@ Accelerates training and makes initialization less sensitive
@ Zero mean and unit variance feature vectors




BatchNorm at Test

Input: Values of x over a mini-batch: B = {1, };
Parameters to be learned: v, 8

Output: {y; = BN, g(z;)}

1 ™m
— — T // mini-batch mean
“B = ;
1 m
2 2 - v
Op — — T; — // mini-batch variance
B ;( 1B)
Li — UB

T; — // normalize

Y; + YZ; + B = BN, g(z;) // scale and shift

Note: at test time BatchNorm layer
functions differently:

The mean/std are not computed
based on the batch. Instead, a single
fixed empirical mean of activations
during training is used.

(e.g. can be estimated during training
with running averages)



Complexity vs. Accuracy of Different
Networks

Top-1 accuracy [%]

Inception-v4
80 -
Inception-v3 ‘ ResNet-152
75 ResNet-50 . 5 VGG-16 VGG-19
1 ResNet-101
. ResMNet-34
70 - ’ ResNet-18
ooglLeNe
oo G LeNet
ENet
65 -
o BN-NIN
60 - 5M 35M 65M 95M 125M 1'_:-'5M
BM-AlexMNet
55 AlexNet 0
50 + r v ] r ; ! T
0 5 10 15 20 25 30 35 40

Operations [G-Ops]



Inception-v4 = ResNet + Inception

Filter

» “Incepﬁon” module: concatenation

» |nfroduced by Szegedy et al., 2014 in
GoogleNet + on * tion *

1x1 1x1 3x3 max

» |LSVRC'14 classification winner (6.7% .
top 5 error)

» Apply parallel filter operations on the
input from previous layer: Inception module
» Dimensionality reduction (1x1 conv)

Previous Layer

» Multiple receptive field sizes for
convolution (1x1, 3x3, 5x5)

Softmax -
o .
®» Pooling operation (3x3 s
Dropout (k6ep 0.8) | o -
v 30 Conv Maxpoo
(192) (do=2V)
T T || f.lT T T Avarage Poolng | o wee Fiter concat - iter concat
» == ;
Concatenate all filter ou PUTS —— i e -
+ 1 —~
. 7 Cone
== o Fier concat o e 157 Cony
ogether depth-wise ey I s —
: ' oo 2o - i - — £ ——
e L 1 ol @0 il T
TXINCODUONB | s i < o, 1 Comv 3 Con 303 Conv . v 1 1 Conw < 4 L)
. (] ) ©0) ) 157 Cony
: N e ) ; N 1 Conv 92 1 Gome "
e . 1 Cony w 1 Gony Avg Pooing (o 1 ey ) 1
e 303 MaxPoo b ©6) ) ©) 1x1 Conv . T
z e = ‘ 1 > L 2%
4 x Incepton-A - — er concat s concat
| 3 Conv
@V
Stom I
2 3 Conv
wwon2V)
Put (299x29943) nput




Deep Learning Softwares

» Pytorch (developed by Yann LeCun and Facebook):
» http.//pytorch.org/tutorials/

» Tensorflow (developed by Google based on Caffe)

» hitps://www.tensorflow.org/tutorials/

» Theano (developed by Yoshua Bengio)

» hitp://deeplearning.net/software/theano/tutorial/

» Keras (based on Tensorflow or Pytorch)

» hitps:// www.manning.com/books/deep-learning-with-
python2a aid=keras&a bid=76564dff

Show some examples by jupyter notebooks...


http://pytorch.org/tutorials/
https://www.tensorflow.org/tutorials/
http://deeplearning.net/software/theano/tutorial/
https://www.manning.com/books/deep-learning-with-python?a_aid=keras&a_bid=76564dff
https://www.manning.com/books/deep-learning-with-python?a_aid=keras&a_bid=76564dff

Transter Learning:
Feature Extraction and Fine Tuning




Deep Neural Network

TrO n Sfe r I—e O rn i n g 2 l Feature representation I:")l Classification l

.

@ Filters learned in first layers of a network are transferable
from one task to another

@ When solving another problem, no need to retrain the
lower layers, just fine tune upper ones

@ |s this simply due to the large amount of images in
ImageNet?

@ Does solving many classification problems simultaneously
result in features that are more easily transferable?

@ Does this imply filters can be learned in unsupervised
manner?

@ Can we characterize filters mathematically?




Transfer Learning with CNNs

1. Train on Imagenet

FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

2. Small Dataset (C classes)

FC-C

FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

‘\\

Reinitialize
this and train

> Freeze these

J

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

3. Bigger dataset

Train these

\

With bigger
dataset, train
more layers

> Freeze these

|
Lower learning rate
when finetuning;
1/10 of original LR
is good starting
__Conv-64 ) p Oi nt



FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

More specific

More generic

/

very similar very different
dataset dataset
very little data | Use Linear You're in
Classifier on trouble... Try
top layer linear classifier
from different
stages
quite a lot of Finetune a Finetune a
data few layers larger number
of layers




Summary

» [Feature Extraction vs. Fine-Tuning:

» Feqature extraction usually refers to freeze the bottom (early layers) and retrain
the top (last) layer

» Fine-Tuning usually refers to retrain the last few layers or the whole network
ninialized from pretrained parameters

» They are both called transfer learning

» Jupyter notebook examples with pytorch:

» hitps://qgithub.com/aifin-hkust/aifin-
hkust.github.io/blob/master/2020/notebook/finetuning resnet.ipynb



https://github.com/aifin-hkust/aifin-hkust.github.io/blob/master/2020/notebook/finetuning_resnet.ipynb
https://github.com/aifin-hkust/aifin-hkust.github.io/blob/master/2020/notebook/finetuning_resnet.ipynb

Neural Collapse: in
the zero-training loss

phase

Papyan, Han, and Donoho (2020), PNAS.
arXiv:2008.08186

Prevalence of neural collapse during the terminal
phase of deep learning training

Vardan Papyan®'®, X. Y. Han®'®, and David L. Donoho®?

2Department of Statistics, Stanford University, Stanford, CA 94305-4065; and School of Operations Research and Information Engineering, Cornell
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Contributed by David L. Donoho, August 18, 2020 (sent for review July 22, 2020; reviewed by Helmut Boelsckei and Stéphane Mallat)

Modern practice for training classification deepnets involves a ter-
minal phase of training (TPT), which begins at the epoch where
training error first vanishes. During TPT, the training error stays
effectively zero, while training loss is pushed toward zero. Direct
measurements of TPT, for three prototypical deepnet architec-
tures and across seven canonical classification datasets, expose
a pervasive inductive bias we call neural collapse (NC), involv-
ing four deeply i ted pt (NC1) C ple
within-class variability of last-layer training activations collapses
to zero, as the individual activations themselves collapse to their
class means. (NC2) The class means collapse to the vertices of
a simplex equiangular tight frame (ETF). (NC3) Up to rescaling,
the last-layer classifiers collapse to the class means or in other
words, to the simplex ETF (i.e., to a self-dual configuration). (NC4)
For a given activation, the classifier’s decision collapses to simply
choosing whichever class has the closest train class mean (i.e., the
nearest class center [NCC] decision rule). The symmetric and very
simple geometry induced by the TPT confers important benefits,
including better ization per e, better

and better interpretability.

deep learning | inductive bias | adversarial robustness |
simplex equiangular tight frame | nearest class center

1. Introduction

Over the last decade, deep learning systems have steadily
advanced the state of the art in benchmark competitions, culmi-
nating in superhuman performance in tasks ranging from image
classification to language translation to game play. One might
expect the trained networks to exhibit many particularities—
making it impossible to find any empirical regularities across
a wide range of datasets and architectures. On the contrary,
in this article we present extensive measurements across image
classification datasets and architectures, exposing a common
empirical pattern.

Our observations focus on today’s standard training paradigm
in deep learning, an accretion of several fundamental ingredi-
ents that developed over time. Networks are trained beyond zero
misclassification error, approaching negligible cross-entropy loss
and interpolating the in-sample training data; networks are
overparameterized, making such memorization possible; and
these parameters are layered in ever-growing depth, allowing
for sophisticated feature engineering. A series of recent works
(1-5) highlighted the paradigmatic nature of the practice of
training well beyond zero error, seeking zero loss. We call the
postzero-error phase the terminal phase of training (TPT).

A scientist with standard preparation in mathematical statis-
tics might anticipate that the linear classifier resulting from this
paradigm, being a by-product of such training, would be quite
arbitrary and vary wildly—from instance to instance, dataset
to dataset, and architecture to archi thereby displaying
no underlying cross-situational invariant structure. The scien-
tist might further expect that the configuration of the fully
trained decision boundaries—and the underlying linear classifier
defining those boundaries—would be quite arbitrary and vary
chaotically from situation to situation. Such expectations might

24652-24663 | PNAS | October6,2020 | vol. 117 | no. 40

be supported by appealing to the overparameterized nature of

the model, and to standard arguments whereby any noise in the

data propagates during overparameterized training to generate
disproportionate changes in the parameters being fit.

Defeating such expectations, we show here that TPT fre-
quently induces an underlying mathematical simplicity to the
trained deepnet model—and specifically to the classifier and last-
layer activations—across many situations now considered canon-
ical in deep learning. Moreover, the identified structure naturally
suggests performance benefits. Additionally, indeed, we show
that convergence to this rigid structure tends to occur simul-
taneously with improvements in the network’s generalization
performance as well as adversarial robustness.

We call this process neural collapse (NC) and character-
ize it by four manifestations in the classifier and last-layer
activations:

(NC1) Variability collapse: as training progresses, the within-
class variation of the activations becomes negligible as
these activations collapse to their class means.

(NC2) Convergence to simplex equiangular tight frame (ETF):
the vectors of the class means (after centering by their
global mean) converge to having equal length, forming
equal-sized angles between any given pair, and being the
maximally pairwise-distanced configuration constrained
to the previous two properties. This configuration is
identical to a previously studied configuration in the

Significance

Modern deep neural networks for image classification have
achieved superhuman performance. Yet, the complex details
of trained networks have forced most practitioners and
researchers to regard them as black boxes with little that could
be d. This paper i in detail a

training hodol driving the c tropy loss to zero,
continuing long after the classification error is already zero.
Applying this to an itati ion of

standard deepnets and datasets, we observe the emergence
of a simple and highly symmetric geometry of the deep-
net features and of the deepnet classifier, and we document
important benefits that the geometry conveys—thereby help-
ing us understand an important component of the modern
deep learning training paradigm.

Author contributions: V.P, X.YH. and D.LD. designed research, performed research,
analyzed data, provided mathematical analysis, and wrote the paper.

Reviewers: H.8., ETH Zurich; and 5.M., Collage de France.
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NoDerivatives License 4.0 (CC BY-NC-ND).

See online for related content such as Commentaries.
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First published September 21, 2020.

www.pna: i/doi/10.1073/pnas.2015509117




Neural Collapse phenomena, in post-
zero-training-error phase

= (NC1) Variability collapse: As fraining progresses, the within-class variation of

the acftivations becomes negligible as these activations collapse to their
class-means.

=» (NC2) Convergence to Simplex ETF: The vectors of the class-means (after
centering by their global-mean) converge to having equal length, forming
equal-sized angles between any given pair, and being the maximally
pairwise-distanced configuration constrained to the previous two properties.
This configuration is identical to a previously studied configuratfion in the
mathematical sciences known as Simplex Equiangular Tight Frame (ETF).

» Papyan, Han, and Donoho (2020), PNAS. arXiv:2008.08186
» Visuadlization: https://purl.stanford.edu/br193mh4244



https://purl.stanford.edu/br193mh4244

Definition 1 (Simplex ETF). A standard Simplex ETF is a
collection of points in R specified by the columns of

* C 1 T

M= C—l(I CM)’ 1]
where T € RE*Y is the identity matrix, and 1¢ € R is the
ones vector. In this paper, we allow other poses, as well as
rescaling, so the general Simplex ETF consists of the points
specified by the columns of M = aUM* € RP*®, where
o € Ry is a scale factor, and U € RP*¢ (p > C) is a partial
orthogonal matrix (U 'U = I).



Be careful!

» Forimbalanced (long fail)
classifications, minority classes
may collapse and be absorbed
by the majority classes

» Fang, He, Long, Su, PNAS 2021,
118(43):€2103091118

Exploring deep neural networks via layer-peeled
model: Minority collapse in imbalanced training

Cong Fang®'®, Hangfeng He?, Qi Long®®, and Weijie J. Su“?

2Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104; °Department of Biostatistics, Epidemiology, and
Informatics, University of Pennsylvania, Philadelphia, PA 19104; and ‘Department of Statistics and Data Science, University of Pennsylvania, Philadelphia,

PA 19104

Edited by David L. Donoho, Stanford University, Stanford, CA, and approved August 30, 2021 (received for review February 15, 2021)

In this paper, we introduce the Layer-Peeled Model, a nonconvex,
yet analytically tractable, optimization program, in a quest to
better understand deep neural networks that are trained for
a sufficiently long time. As the name suggests, this model is
derived by isolating the topmost layer from the remainder of
the neural network, foll d by imposing certain cor
separately on the two parts of the network. We demonstrate
that the Layer-Peeled Model, albeit simple, inherits many char-
acteristics of well-trained neural networks, thereby offering an
effective tool for explaining and predicting common empirical
patterns of deep-learning training. First, when working on class-
balanced datasets, we prove that any solution to this model forms
a simplex equiangular tight frame, which, in part, explains the
recently discovered phenomenon of neural collapse [V. Papyan,
X. Y. Han, D. L. Donoho, Proc. Natl. Acad. Sci. U.S.A. 117, 24652-
24663 (2020)]. More importantly, when moving to the imbalanced
case, our analysis of the Layer-Peeled Model reveals a hitherto-
unknown phenomenon that we term Minority Collapse, which
fundamentally limits the performance of deep-learning models on
the minority classes. In addition, we use the Layer-Peeled Model to
gain insights into how to mitigate Minority Collapse. Interestingly,
this phenomenon is first predicted by the Layer-Peeled Model
before being confirmed by our computational experiments.

deep learning | neural collapse | class imbalance

Introduction

I n the past decade, deep learning has achieved remarkable
performance across a range of scientific and engineering do-
mains (1-3). Interestingly, these impressive accomplishments
were mostly achieved by heuristics and tricks, though often plau-
sible, without much principled guidance from a theoretical per-
spective. On the flip side, however, this reality suggests the great
potential a theory could have for advancing the development of
deep-learning methodologies in the coming decade.

Unfortunately, it is not easy to develop a theoretical founda-
tion for deep learning. Perhaps the most difficult hurdle lies in
the nonconvexity of the optimization problem for training neural
networks, which, loosely speaking, stems from the interaction
between different layers of neural networks. To be more precise,
consider a neural network for K-class classification (in logits),
which in its simplest form reads”

f(z; Wea) =br + Wio(br—1
+ Wii0(---0(br + Wiz)---)).

Here, W :={ W1, Wa,..., W} denotes the weights of the
Llayers, {b1, bs, ..., by} denotes the biases, and o (-) is a nonlin-
ear activation function such as the rectified linear unit (ReLU).
Owing to the complex and nonlinear interaction between the L
layers, when applying stochastic gradient descent to the optimiza-
tion problem

*The softmax step is implicitly included in the loss function, and we omit other operations
such as max-pooling for simplicity.

PNAS 2021 Vol. 118 No. 43 2103091118

K m
o1 A
min SO L (@i Waa), w) + 3l Wel®, [

k=1i=1

with a loss function £ for training the neural network, it becomes
very difficult to pinpoint how a given layer influences the output
f (above, {zk,i} %, denotes the training examples in the k-th
class, with label y,, N =n1 + - - + nx is the total number of
training examples, A > 0 is the weight decay parameter, and
|| - || throughout the paper is the £, norm). Worse, this difficulty
in analyzing deep-learning models is compounded by an ever-
growing number of layers.

Therefore, any attempt to develop a tractable and comprehen-
sive theory for demystifying deep learning would presumably first
need to simplify the interaction between a large number of layers.
Following this intuition, in this paper, we introduce the following
optimization program as a surrogate model for Eq. 1 with the goal
of unveiling quantitative patterns of deep neural networks:

1 K ng
Jmin ;Z;qwl«hkm Vi)
1 K 1 K 1 n
2 2
S.t.?ZHHIk” SEW,?Z;’CZ””JE,L” <En, [2]
k=1 k=1 i=1
Significance

The remarkable development of deep learning over the past
decade relies heavily on sophisticated heuristics and tricks.
To better exploit its potential in the coming decade, perhaps
a rigorous framework for reasoning about deep learning is
needed, which, however, is not easy to build due to the
intricate details of neural networks. For near-term purposes,
a practical alternative is to develop a mathematically tractable
surrogate model, yet maintaining many characteristics of neu-
ral networks. This paper proposes a model of this kind that
we term the Layer-Peeled Model. The effectiveness of this
model is evidenced by, among others, its ability to reproduce
a known empirical pattern and to predict a hitherto-unknown
phenomenon when training deep-learning models on imbal-
anced datasets.

Author contributions: C.F, H.H., Q.L, and W.J.S. designed research; C.F,, H.H., and W.J.5.
performed research; C.F, H.H., and W.J.S. contributed new reagents/analytic tools; C.F.,
H.H., and W.J.S. analyzed data; and CFF, H.H., Q.L., and W.J.S. wrote the paper.
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This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-
NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Present address: Department of Key Laboratory of Machine Perception, Peking Univer-
sity, Beijing 100871, China.
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This article contains supporting i ion online at https://www.pnas.org, p
suppl/doi:10.1073/pnas.2103091118//DCSupplemental.

Published October 20, 2021.
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Visualizing Convolutional Networks




Understanding infermediate neuronse

This image is CCO public domain

:><: " Class Scores:
1000 numbers

=
N
w
=
o
Q x
=
a
gl
N
o
®

Input Image:
3 x 224 x 224

What are the intermediate features looking for?



Visualizing CNN Features: Gradient Ascent

» Gradient ascent. Generate a synthetic image that maximally activates a
neuron

* = arg max, [{(I)| +|R(I)

_— \

Neuron value  Natural image regularizer




Example: Class Visualizion of CNN via
Gradient Ascent

arg max[S,(1)]~ N[

score for class ¢ (before Softmax)

3 B Y

E [
192 128 2048 7oag \dense

13 \ 13
i
13 de
1000
192

1. Initialize image to zeros

zero image s b

eeeeeeee

pooling

Repeat:

2. Forward image to compute current scores

3. Backprop to get gradient of neuron value with respect to image pixels
4. Make a small update to the image




Visualizing CNN Features: Gradient Ascent

argmax S, (I) — A| 1|13

Better regularizer: Penalize L2 norm of
image; also during optimization
periodically

(1) G ) blur i Hartebeest Billiard Table
aussian bDiur image : -

(2) Clip pixels with small values to 0
(3) Clip pixels with small gradients to 0

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014. Statlon Wagon B |aCk Swan

Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced with permission




Visualizing CNN Features: Gradient Ascent

Use the same approach to visualize intermediate features

Layer 5

Layer 4

Layer 3

2 e B ‘
. I Ae

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced with permission.

Layer 2




It's easy to visualize early layers

First Layer: Visualize Filters T

LT EECEETED T EEEEL >Xi%§§
TENA L B LR 11 A
TELAOTUE EELTEOLE B e L2

4T PUEE  EREE-TES NN E T (]

isHEN S AT\ 1L

o ) =
HlNZN =08
NENEFRE=N
H== NN

A 1~T A "V, {w,rur“’;
ENB!\.’V nn*‘olil('
| ; \’

A7 RE NN
s Y e B

= ﬂ\li N B = ResNet-18: ResNet-101: DenseNet-121:
— — 64 x3X7x7 64 x3X7x7 64 x3 X7 X7

AlexNet: : Jol L)

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017




Last layers are hard to visualize

Last Layer: Dimensionality Reduction
7Y

2
’N/'g‘ y ) 2.,
WG ", ’yﬁ‘ k]
i,
i, 4
&

TR

Visualize the “space” of FC7
feature vectors by reducing
dimensionality of vectors from
4096 to 2 dimensions

344 7
1 ny
L S T
£ !&'ﬁr 1 iy

Simple algorithm: Principle
Component Analysis (PCA)

1000

048

N
legse|

More complex: t-SNE

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Figure copyright Laurens van der Maaten and Geoff Hinton, 2008. Reproduced with permission.
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Saliency Maps

How to tell which pixels matter for classification?

>

Dog

Compute gradient of (unnormalized) class
score with respect to image pixels, take
absolute value and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.




Guided BP

Intermediate features via (guided) backprop

RelLU

Forward pass

—>

ag \dense

>M<
%]
N w
o N
R ~
N (o)
w N
._\ IS

E2Y vt
128 2
\ [\
o Backward pass:
13 dense’| |dense)

backpropagation
0 0]-1|3 2|-1)3

128 Max ol L_J
pooling “

; 128
pooling pooling

Backward pass:
“deconvnet”

Pick a single intermediate neuron, e.g. one ABE 2[1]3
value in 128 x 13 x 13 conv5 feature map

Backward pass: 0 BE © 2 e -1
. . guided 6J]ojJo| «<— |6]-3]1
Compute gradient of neuron value with respect backpropagation [ o |3 =

to image pixels il
Images come out nicer if you only

backprop positive gradients through
each RelLU (guided backprop)

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014 Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015 Brox, Martin Riedmiller, 2015; reproduced with permission.




Intermediate features via Guided BP

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.




DeepDream: amplitying features

Choose an image and a layer in a CNN; repeat:
1.

2.
3.
4

Rather than synthesizing an image to maximize a specific neuron, instead
try to amplify the neuron activations at some layer in the network

2

pooling

Forward: compute activations at chosen layer Equivalent to:

Set gradient of chosen layer equal to its activation . I* = arg max, Zi fi(I)Z
Backward: Compute gradient on image
Update image



Example: DeepDream of Sky

"Admiral Dog!" "The Pig-Snail" "The Camel-Bird" "The Dog-Fish"




More Examples

[ Py o ¥ % -

Image is licensed under CC-BY 4.0




Python Notelbooks

® An interesting Pytorch Implementation of these visualizatoin methods

» hitps://qithub.com/utkuozbulak/pytorch-cnn-visualizations

» Some examples demo:

» hitps://qgithub.com/aifin-hkust/aifin-
hkust.github.io/blob/master/2020/notebook/vggl é-visualization.ipynb

» hitps://qgithub.com/aifin-hkust/aifin-
hkust.github.io/blob/master/2020/notebook/vggl 6-heatmap.ipynb



https://github.com/utkuozbulak/pytorch-cnn-visualizations
https://github.com/aifin-hkust/aifin-hkust.github.io/blob/master/2020/notebook/vgg16-visualization.ipynb
https://github.com/aifin-hkust/aifin-hkust.github.io/blob/master/2020/notebook/vgg16-visualization.ipynb
https://github.com/aifin-hkust/aifin-hkust.github.io/blob/master/2020/notebook/vgg16-heatmap.ipynb
https://github.com/aifin-hkust/aifin-hkust.github.io/blob/master/2020/notebook/vgg16-heatmap.ipynb

Neural Style




Example: The Noname Lake in PKU




Left: Vincent Van Gogh, Starry Night
Right: Claude Monet, Twilight Venice
Bottom: William Turner, Ship Wreck




Application of Deep Learning:
Content-Style synthetic
pictures

By “neural-style™







Neural Style

» | C Johnson's Website: hitps://github.com/jcjohnson/neural-style

» A torch implementation of the paper
» A Neural Algorithm of Artistic Style,

» by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.
» http://arxiv.org/abs/1508.06576



https://github.com/jcjohnson/neural-style

Style-Content Feature Extraction

Style Reconstructions e

Input image L>

Content
Representations

Convolutional Neural Network

¢%¢ﬁ>/&/
| !

Content Reconstructions




Style Features as Second Order Stafistics

Gram matrixes

64x64 128x128 256%256 512x512 512x512

} } } } }

Style Feature e -t PP PP P PP L g




Gram Matrix as Style Features

Max 128 Max
pooling pooling

This image is in the public domain.

Each layer of CNN gives C x H x W tensor of
features; H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors
gives C x C matrix measuring co-occurrence

Average over all HW pairs of vectors, giving
Gram matrix of shape C x C

Efficient to compute; reshape features from
CxHxWto =C x HW

then compute G = FFT



Neural Texture Synthesis  &-impy(e-6)  cei=un

distance between Gram matrices
7. Backprop to get gradient on image
8. Make gradient step on image
9. GOTOS5

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

1. Pretrain a CNN on ImageNet (VGG-19)
2. Run input texture forward through CNN, P — = .
record activations on every layer; layer i " Frooms 3321 > GH. [6F S ¥ P
gives feature map of shape C. x H x W. - 9Ey OE,
3. Ateach layer compute the Gram matrix sz, ) oFt i ﬁ T
giving outer product of features: i = conv4_3, = = i ‘\_j FL-1 J
=Y FixFji (shape C x C) Y - i ) | ﬁ T
" T | = |
4. Initialize generated image from random .@
noise 1 ﬁ T
5. Pass generated image through CNN, [’ —om om m +J - > | -
compute Gram matrix on each layer ﬁ
6. Compute loss: weighted sum of L2 1'§|';'__ £— o

g6
07

Gradient
descent




Neural Texture Synthesis

Reconstructing texture from
higher layers recovers
larger features from the
input texture

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.




Neural Texture Synthesis: Gram
Reconstruction

relu3_3
N “__;.!’g"'\ o

relu4_3

Texture synthesis
(Gram
reconstruction)




Feature Inversion

Given a CNN feature vector for an image, find a new image that:
- Matches the given feature vector

- “looks natural” (image prior regularization)

» Given feature vector
*

x* = argmin £(®(x),Py) + AR(X)

xE]RHxWxC ~—

» Features of new image

U(2(x), Do) = [|2(x) — Poll”

Rys(x) =) ((Cﬂz’,j+1 — 245)" + (a1 — %’)2)

i \ Total Variation regularizer
’ (encourages spatial smoothness)

(N]ged)

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015




Feature Inversion

Reconstructing from different layers of VGG-16

_3

relu2_2 re1u4 relub_1 relub_3

.

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015
Figure from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016. Copyright Springer, 2016.
Reproduced for educational purposes.




Combined Loss for both Content (15" order
statistics) and Style (29 order statistics: Gram)

1

ﬁcontent(ﬁa fa l) s 5 Z (EZ o P’Llj)2 )
,J
L
Lsyie(0, T) = Z wi b
[=0

where




Neural Style Transfer

Content Image Style Image | Style Transfer!

Starry Night by Van Gogh is in the public domain This image copyright Justin Johnson, 2015. Reproduced with
permission.

This image is licensed under CC-BY 3.0




CNN learns texture features, not
shapes!

(a) Texture image (b) Content image (c) Texture-shape cue conflict
81.4% Indian elephant 71.1%  tabby cat 63.9% Indian elephant
10.3% indri 17.3% grey fox 26.4% indri
8.2% black swan 3.3% Siamese cat 9.6% black swan

Geirhos et al. ICLR 2019

https://videoken.com/embed/W2HVvLBMhC JQZ2tiocitem=46

1:16:47



https://videoken.com/embed/W2HvLBMhCJQ?tocitem=46

Lottery Ticket Hypothesis for Efficient
Subnets in Deep Learning

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Lottery Ticket Hypothesis

o Dense, randomly-initialized, feed-forward
: networks contain subnetworks (winning tickets)
that — when trained in isolation — reach test
accuracy comparable to the original network in

: asimilar number of iterations. (Frankle & _
“. Carbin, 2019) :

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Compressive . o
Networks W, Rewinding the network from the initialization, and

Networks W find “winning ticket” subnet

Over-parameterized




Split LBl finds efficient sparse architecture

Training path of Split LBI
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Yanwei Fu et al. TPAMI 45(2):1749-1765, 2023.
Yanwei Fu et al. DessiLBI, ICML 2020.




Texture bias in ImageNet training

U EEE NN NN NN NN NN NN NN NN NN NSNS EEEEEEEEEER
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FIgU FE. Visualization of the first convolutional layer filters of ResNet-18 trained on ImageNet-2012, where texture features are more
important than colour/shapes. Given the input image and initial weights visualized in the middle, filter response gradients at 20 (purple),

40 (green), and 60 (black) epochs are visualized. SGD with Momentum (Mom) and Weight Decay (WD), is compared with SLBI.

Yanwei Fu et al. TPAMI 45(2):1749-1765, 2023.
Yanwei Fu et al. DessiLBI, ICML 2020.




Adversarial Examples and
Robustness




Deep Learning may be fragile:
adversarial examples

+.007 x =
* sign(Ve J(9, . y)) esign(VgJ (0, x,vy))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

[Goodfellow et al., 2014]

@ Small but malicious perturbations can result in severe
misclassification

@ Malicious examples generalize across different
architectures

@ What is source of instability?

@ Can we robustify network?



Adversarial Examples: Fooling Images

» Start from an arbitrary image
» Pick an arbitrary class
» Modify the image to maximize the class

» Repeat until network is fooled




Fooling Images/Adversarial Examples

African elephant koala Difference 10x Difference

Difference

)




Convolutional Networks lack Robustness

;(’fa'; f,-g% % v ﬂ;g”

+.007 x

“black hole” “donut”
87.7% confidence 99.3% confidence

Courtesy of Dr. Hongyang ZHANG.




Adversarial Robust T

e Traditional training:

mein In(0,z2 = (xi, yi)iz1)

e.g. square or cross-entropy loss as negative log-likelihood of logit
models

e Robust optimization (Madry et al. ICLR'2018):
min max J,(0,z = (x;i + €, yi) i
in max Jn ( Yi)i=1)

robust to any distributions, yet computationally hard

Extended by Hongyang ZHANG et al. by TRADES, 2019.




Thank you!




