Toplcs on CNN
Visualization,

Transfer Learning, Neural Style,
and Adversarial Examples

Yuan YAO
HKUST

Acknowledgement

o 1 BN S o =Y
~). THEORIES OF
‘ .EEP &@znmm@@ 2

hitps://stats385.github.io/

hitp://cs231n.github.io/

A following-up course at HKUST: https://deeplearning-math.github.io/

Visualizing Convolutional Networks

Understanding infermediate neuronse

This image is CCO public domain

:><: " Class Scores:
1000 numbers

=
N
w
=
o
Q x
=
a
gl
N
o
®

Input Image:
3 x 224 x 224

What are the intermediate features looking for?

Visualizing CNN Features: Gradient Ascent

» Gradient ascent: Generate a synthetic image that maximally activates @
neuron

* = arg max, [{(I)| +|R(I)

_— \

Neuron value Natural image regularizer

Visualizing CNN Features: Gradient
Ascent

arg max[S,(1)]~ A[7]3

score for class ¢ (before Softmax)

3| 5 W ST

E [
192 128 204t 20ag \dense

13 \ | \13
i
13 de
1000
192

1. Initialize image to zeros

zero image s b

eeeeeeee

pooling

Repeat:
2. Forward image to compute current scores
3. Backprop to get gradient of neuron value with respect to image pixels

4. Make a small update to the image

Visualizing CNN Features: Gradient Ascent

argmax S, (I) — A| 1|13

Better regularizer: Penalize L2 norm of
image; also during optimization
periodically

(1) G) blur i Hartebeest Billiard Table
aussian bDiur image : -

(2) Clip pixels with small values to 0
(3) Clip pixels with small gradients to 0

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014. Statlon Wagon B |aCk Swan

Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced with permission

Visualizing CNN Features: Gradient Ascent

Use the same approach to visualize intermediate features

Layer 5

Layer 4

Layer 3

e I ‘
. I Ae

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced with permission.

Layer 2

It's easy to visualize early layers

First Layer: Visualize Filters T

LT EECEETED T EEEEL >Xi%§§
TENA L B LR 17 A
TELAOTUE EELTEOLE B 7y L2

4T PUEE EREE-TES N0 E T (]

isHEN S AT\ 1L

o) =
HlNZ N =08
NENEFRE=N
H== R

A 1~T A "V, {w,rur“’;
ENB!\.’V nn*‘olil('
| ; \’

A7 RE NN
s Y e B

= ﬂ\li N B = ResNet-18: ResNet-101: DenseNet-121:
— — 64 x3X7x7 64 x3X7x7 64 x3 X7 X7

AlexNet: : Jol L)

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017

Last layers are hard to visualize

Last Layer: Dimensionality Reduction
7Y

2
’N/'g‘ y) 2.,
WG ", ’yﬁ‘ k]
i
i, 4
&

TR

Visualize the “space” of FC7
feature vectors by reducing
dimensionality of vectors from
4096 to 2 dimensions

344 7
1 ny
I S T
£ !&'ﬁr 1 iy

Simple algorithm: Principle
Component Analysis (PCA)

1000

048

N
legse|

More complex: t-SNE

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Figure copyright Laurens van der Maaten and Geoff Hinton, 2008. Reproduced with permission.

- N

5ol

204¢ / 2%5 Hense

Iv
=3
'~

dense

128 Max

pooling

Saliency Maps

How to tell which pixels matter for classification?
>

Compute gradient of (unnormalized) class
score with respect to image pixels, take
absolute value and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Guided BP

Intermediate features via (guided) backprop

RelLU

Forward pass

—>

ag \dense

>M<
%]
N w
o N
R ~
N (o)
w N
._\ IS

E2Y vt
128 2
\ [\
o Backward pass:
13 dense’| |dense)

backpropagation
0 0]-1|3 2|-1)3

128 Max ol L_J
pooling “

; 128
pooling pooling

Backward pass:
“deconvnet”

Pick a single intermediate neuron, e.g. one ABE 2[1]3
value in 128 x 13 x 13 conv5 feature map

Backward pass: 0 BE © 2 e -1
. . guided 6J]ojJo| «<— |6]-3]1
Compute gradient of neuron value with respect backpropagation [o |3 =

to image pixels il
Images come out nicer if you only

backprop positive gradients through
each RelLU (guided backprop)

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014 Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015 Brox, Martin Riedmiller, 2015; reproduced with permission.

Intermediate features via Guided BP

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.

DeepDream: amplitying features

Choose an image and a layer in a CNN; repeat:
1.

2.
3.
4

Rather than synthesizing an image to maximize a specific neuron, instead
try to amplify the neuron activations at some layer in the network

2

pooling

Forward: compute activations at chosen layer Equivalent to:

Set gradient of chosen layer equal to its activation . I* = arg max, Zi fi(I)Z
Backward: Compute gradient on image
Update image

Example: DeepDream of Sky

"Admiral Dog!" "The Pig-Snail" "The Camel-Bird" "The Dog-Fish"

More Examples

[Py o ¥ % -

Image is licensed under CC-BY 4.0

Python Notelbooks

» An interesting Pytorch Implementation of these visualizatoin methods

» Nhitps://qithub.com/utkuozbulak/pytorch-cnn-visualizations

®» Some examples demo:

» hitps://qithub.com/aifin-hkust/aifin-
hkust.github.io/blob/master/2020/notebook/vaggl é-visualization.ipynb

» Nhittps://qithub.com/aifin-hkust/aifin-
hkust.github.io/blob/master/2020/notebook/vggl é-heatmap.ipynb

Transfer Learning:
Feature Extraction and Fine Tuning

Deep Neural Network

TrO n Sfe r I—e O rn i n g 8 l Feature representation I:")l Classification l

.

@ Filters learned in first layers of a network are transferable
from one task to another

@ When solving another problem, no need to retrain the
lower layers, just fine tune upper ones

@ |s this simply due to the large amount of images in
ImageNet?

@ Does solving many classification problems simultaneously
result in features that are more easily transferable?

@ Does this imply filters can be learned in unsupervised
manner?

@ Can we characterize filters mathematically?

Transfer Learning with CNNs

1. Train on Imagenet

FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

2. Small Dataset (C classes)

FC-C

FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

‘\\

Reinitialize
this and train

> Freeze these

J

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

3. Bigger dataset

Train these

\

With bigger
dataset, train
more layers

> Freeze these

|
Lower learning rate
when finetuning;
1/10 of original LR
is good starting
__Conv-64) p Oi nt

FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

More specific

More generic

/

very similar very different
dataset dataset
very little data | Use Linear You're in
Classifier on trouble... Try
top layer linear classifier
from different
stages
quite a lot of Finetune a Finetune a
data few layers larger number
of layers

Summary

» [eature Extraction vs. Fine-Tuning:

» Feature extraction usually refers to freeze the bottom (early layers) and retrain
the top (last) layer

» Fine-Tuning usually refers to retrain the last few layers or the whole network
ninialized from pretrained parameters

» They are both called transfer learning

» Jupyter notebook examples with pytorch:

» Nhitps://qithub.com/aifin-hkust/aifin-
hkust.github.io/blob/master/2020/notebook/finetuning resnet.ipynb

Neural Style

Example: The Noname Lake in PKU

Left: Vincent Van Gogh, Starry Night
Right: Claude Monet, Twilight Venice
Bottom: William Turner, Ship Wreck

Application of Deep Learning:
Content-Style synthetic
pictures

By “neural-style”

= —

TIISSSeessees
Fryssoes
=R =ss—

]
o e
"SR W W W W WA S

Neural Style

» | C Johnson's Website: https://qithub.com/jcjohnson/neural-style

» A torch implementation of the paper
» A Neural Algorithm of Artistic Style,

» by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.
» hitp://arxiv.org/abs/1508.06576

Style-Content Feature Extraction

Style Reconstructions Lo

Input image L>

¢%ﬁ/o/

Convolutional Neural Network

Content
Representations

Content Reconstructions

Style Features as Second Order Stafistics

Gram matrixes

64x64 128x128 256%256 512x512 512x512

} } } } }

Style Feature e -t PP PP P PP L g

Neural Texture Synthesis

Max 128 Max
pooling pooling

This image is in the public domain.

Each layer of CNN gives C x H x W tensor of
features; H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors
gives C x C matrix measuring co-occurrence

Average over all HW pairs of vectors, giving
Gram matrix of shape C x C

Efficient to compute; reshape features from
CxHxWto =C x HW

then compute G = FFT

Neural Texture Synthesis &-mpy(e-6) cei=3un

distance between Gram matrices
7. Backprop to get gradient on image
8. Make gradient step on image
9. GOTOS5

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

1. Pretrain a CNN on ImageNet (VGG-19)
2. Run input texture forward through CNN, P — = .
record activations on every layer; layer i " Frooms 3321 > GH. [6F S ¥ P
gives feature map of shape C. x H x W. - 9Ey OE,
3. Ateach layer compute the Gram matrix sz,) oFt i ﬁ T
giving outer product of features: i = conv4_3, = = i ‘_j FL-1 J
=Y FixFjk (shape C. x C) Y - i) | ﬁ T
" T | = |
4. Initialize generated image from random .@
noise 1 ﬁ T
5. Pass generated image through CNN, [’ —om om m +J - > | -
compute Gram matrix on each layer ﬁ
6. Compute loss: weighted sum of L2 1'§|';'__ £— o

g6
07

Gradient
descent

Neural Texture Synthesis

Reconstructing texture from
higher layers recovers
larger features from the
input texture

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Neural Texture Synthesis: Gram
Reconstruction

relu3_3
N “__;.!’g"'\ o

relu4_3

Texture synthesis
(Gram
reconstruction)

Feature Inversion

Given a CNN feature vector for an image, find a new image that:
- Matches the given feature vector

- “looks natural” (image prior regularization)

» Given feature vector
*

x* = argmin £(®(x),Py) + AR(X)

xE]RHxWxC ~—

» Features of new image

U(2(x), Do) = [|2(x) — Poll”

Rys(x) =) ((Cﬂz’,j+1 — 245)" + (a1 — %’)2)

i \ Total Variation regularizer
’ (encourages spatial smoothness)

(N]ged)

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

Feature Inversion

Reconstructing from different layers of VGG-16

_3

relu2_2 re1u4 relub_1 relub_3

.

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015
Figure from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016. Copyright Springer, 2016.
Reproduced for educational purposes.

Neural Style Transfer: Feature + Gram

re1u1 2 re1u2 2 re1u3 3 relu4_3

Texture synthesis
(Gram
reconstruction)

relub_3

Feature
reconstruction

Figure from Johnson, Alahi, and Fei-Fei, “Perceptual
Losses for Real-Time Style Transfer and

Super-Resolution”, ECCV 2016. Copyright Springer, 2016.
Reproduced for educational purposes.

Combined Loss for both Content (15" order
statistics) and Style (2n9 order statistics: Gram)

ﬁcontent(ﬁ f l) = 5 Z (Flj . Plj)2
0]
L
'Cstyle(a:, f) — Z lel
=0

Neural Style Transfer

Content Image Style Image | Style Transfer!

Starry Night by Van Gogh is in the public domain This image copyright Justin Johnson, 2015. Reproduced with
permission.

This image is licensed under CC-BY 3.0

CNN learns texture features, not
shapes!

(a) Texture image (b) Content image (c) Texture-shape cue conflict
81.4% Indian elephant 71.1% tabby cat 63.9% Indian elephant
10.3% indri 17.3% grey fox 26.4% indri
8.2% black swan 3.3% Siamese cat 9.6% black swan

Geirhos et al. ICLR 2019

https://videoken.com/embed/W2HVLBMhCJQ<2tocitem=46
1:16:47

Examples

» Jupyter Notebook Demo

Adversarial Examples and
Robusthess

Deep Learning may be fragile:
adversarial examples

+.007 x =
* sign(Ve J(9, . y)) esign(VgJ (0, x,vy))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

[Goodfellow et al., 2014]

@ Small but malicious perturbations can result in severe
misclassification

@ Malicious examples generalize across different
architectures

@ What is source of instability?

@ Can we robustify network?

Adversarial Examples: Fooling Images

» Start from an arbitrary image
» Pick an arbitrary class
» Modify the image to maximize the class

» Repeat until network is fooled

Fooling Images/Adversarial Examples

African elephant koala Difference 10x Difference

Difference

)

Convolutional Networks lack Robustness

;(’fa'; f,-g% % v ﬂ;g”

+.007 x

“black hole” “donut”
87.7% confidence 99.3% confidence

Courtesy of Dr. Hongyang ZHANG.

Adversarial Robust T

e Traditional training:

mein In(0,z2 = (xi, yi)iz1)

e.g. square or cross-entropy loss as negative log-likelihood of logit
models

e Robust optimization (Madry et al. ICLR'2018):
min max J,(0,z = (x;i +€;, yi) i
in max Ja (Yi)i=1)

robust to any distributions, yet computationally hard

Extended by Hongyang ZHANG et al. by TRADES, 2019.

Thank you!

