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Visualizing Convolutional Networks



Understanding intermediate neurons?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 20174

This image is CC0 public domain

Class Scores: 
1000 numbers

What’s going on inside ConvNets?

Input Image:
3 x 224 x 224

What are the intermediate features looking for?
Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figure reproduced with permission.



Visualizing CNN Features: Gradient Ascent

´ Gradient ascent: Generate a synthetic image that maximally activates a 
neuron 

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201721

Visualizing CNN features: Gradient Ascent

(Guided) backprop:
Find the part of an 
image that a neuron 
responds to

Gradient ascent:
Generate a synthetic 
image that maximally 
activates a neuron

I* = arg maxI f(I) + R(I)

Neuron value Natural image regularizer



Visualizing CNN Features: Gradient 
Ascent

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201722

Visualizing CNN features: Gradient Ascent

score for class c (before Softmax)

zero image

1. Initialize image to zeros

Repeat:
2. Forward image to compute current scores
3. Backprop to get gradient of neuron value with respect to image pixels
4. Make a small update to the image



Visualizing CNN Features: Gradient Ascent

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201728

Visualizing CNN features: Gradient Ascent

Better regularizer: Penalize L2 norm of 
image; also during optimization 
periodically

(1) Gaussian blur image
(2) Clip pixels with small values to 0
(3) Clip pixels with small gradients to 0

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced with permission.



Visualizing CNN Features: Gradient Ascent

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201729

Visualizing CNN features: Gradient Ascent
Use the same approach to visualize intermediate features

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced with permission.



It’s easy to visualize early layers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 20175

First Layer: Visualize Filters

AlexNet:
64 x 3 x 11 x 11 

ResNet-18:
64 x 3 x 7 x 7

ResNet-101:
64 x 3 x 7 x 7

DenseNet-121:
64 x 3 x 7 x 7

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017



Last layers are hard to visualize

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 20179

Last Layer: Dimensionality Reduction

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Figure copyright Laurens van der Maaten and Geoff Hinton, 2008. Reproduced with permission.

Visualize the “space” of FC7 
feature vectors by reducing 
dimensionality of vectors from 
4096 to 2 dimensions

Simple algorithm: Principle 
Component Analysis (PCA)

More complex: t-SNE



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201715

Saliency Maps

Dog

How to tell which pixels matter for classification?

Compute gradient of (unnormalized) class 
score with respect to image pixels, take 
absolute value and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models 
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.



Guided BP

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201719

Intermediate features via (guided) backprop

Pick a single intermediate neuron, e.g. one 
value in 128 x 13 x 13 conv5 feature map

Compute gradient of neuron value with respect 
to image pixels

Images come out nicer if you only 
backprop positive gradients through 
each ReLU (guided backprop)

ReLU

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas 
Brox, Martin Riedmiller, 2015; reproduced with permission.



Intermediate features via Guided BP

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201720

Intermediate features via (guided) backprop

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.



DeepDream: amplifying features

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201738 38

DeepDream: Amplify existing features
Rather than synthesizing an image to maximize a specific neuron, instead 
try to amplify the neuron activations at some layer in the network

Equivalent to:
I* = arg maxI ∑i fi(I)

2

Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural 
Networks”, Google Research Blog. Images are licensed under CC-BY 
4.0

Choose an image and a layer in a CNN; repeat:
1. Forward: compute activations at chosen layer
2. Set gradient of chosen layer equal to its activation
3. Backward: Compute gradient on image
4. Update image



Example: DeepDream of Sky

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201743
Sky image is licensed under CC-BY SA 3.0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201744
Image is licensed under CC-BY 4.0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201745
Image is licensed under CC-BY 4.0



More Examples

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201748
Image is licensed under CC-BY 4.0



Python Notebooks

´ An interesting Pytorch Implementation of these visualizatoin methods
´ https://github.com/utkuozbulak/pytorch-cnn-visualizations

´ Some examples demo:
´ https://github.com/aifin-hkust/aifin-

hkust.github.io/blob/master/2020/notebook/vgg16-visualization.ipynb

´ https://github.com/aifin-hkust/aifin-
hkust.github.io/blob/master/2020/notebook/vgg16-heatmap.ipynb



Transfer Learning: 
Feature Extraction and Fine Tuning



Transfer Learning?
Background Info

Transfer learning

Filters learned in first layers of a network are transferable
from one task to another
When solving another problem, no need to retrain the
lower layers, just fine tune upper ones
Is this simply due to the large amount of images in
ImageNet?
Does solving many classification problems simultaneously
result in features that are more easily transferable?
Does this imply filters can be learned in unsupervised
manner?
Can we characterize filters mathematically?

42 / 50

Deep Learning revolution: success and challenges

Training Deep Convolutional Networks

Training Deep Convolutional Networks

Zaid Harchaoui DeepNets and Kernel-based Methods November 1st, 2017 18 / 85



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201790

Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 
this and train

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

3. Bigger dataset

Freeze these

Train these

With bigger 
dataset, train 
more layers

Lower learning rate 
when finetuning; 
1/10 of original LR 
is good starting 
point

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on 
top layer

You’re in 
trouble… Try 
linear classifier 
from different 
stages

quite a lot of 
data

Finetune a 
few layers

Finetune a 
larger number 
of layers



Summary

´ Feature Extraction vs. Fine-Tuning:
´ Feature extraction usually refers to freeze the bottom (early layers) and retrain 

the top (last) layer

´ Fine-Tuning usually refers to retrain the last few layers or the whole network 
ninialized from pretrained parameters 

´ They are both called transfer learning

´ Jupyter notebook examples with pytorch:
´ https://github.com/aifin-hkust/aifin-

hkust.github.io/blob/master/2020/notebook/finetuning_resnet.ipynb



Neural Style



Example: The Noname Lake in PKU



Left: Vincent Van Gogh, Starry Night
Right: Claude Monet, Twilight Venice
Bottom: William Turner, Ship Wreck



Application of Deep Learning: 
Content-Style synthetic 
pictures 
By “neural-style”





Neural Style

´ J C Johnson’s Website: https://github.com/jcjohnson/neural-style

´ A torch implementation of the paper 
´ A Neural Algorithm of Artistic Style, 

´ by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.

´ http://arxiv.org/abs/1508.06576



Style-Content Feature Extraction



Style Features as Second Order Statistics

Figure 4: Best performance of different classic model
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Figure 5: Process to extract style features

Experiments Then we apply K-Nearest Neighours (KNN), Support Vector Machine (SVM) and114

Decision Tree classifiers with leave-one-out validation. Due to memory constraint, we resize the115

picture to 256/512/1024 pixels. We divide the picture into 16 patches in KNN classifier to augment116

training data. The result is shown in Table 2. We find that since the dimension is too high (above117

100,000), SVM is not applicable. KNN performs better on features got from low-definition pictures118

with 16 seperated patches and Decision Tree performs better on features got from low-definition119

pictures.120

Table 2: Leave-one-out result with style features
Feature Extraction Model TPR TNR Classification Accuracy

Style Features-256
KNN 0.833 0.889 0.857

SVM 1.000 0.000 0.571
Decision Tree 0.667 0.556 0.619

Style Features-512
KNN 1 0.333 0.714
SVM 1.000 0.000 0.571

Decision Tree 0.833 0.889 0.857

Style Features-1024
KNN 0.667 0.444 0.571
SVM 1.000 0.000 0.571

Decision Tree 0.833 0.889 0.857

Predictions Upon our style-features models, we give our prediction to the 7 pictures remain121

disputed (Pic1/7/10/20/23/25/26). We pick three Models performed best in validation. We predict122

5



Neural Texture Synthesis

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201757

Neural Texture Synthesis: Gram Matrix

Each layer of CNN gives C x H x W tensor of 
features; H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors 
gives C x C matrix measuring co-occurrence

Average over all HW pairs of vectors, giving 
Gram matrix of shape C x C

This image is in the public domain.

w

H

C
C

C

Efficient to compute; reshape features from
 
C x H x W to  =C x HW

then compute G = FFT



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201761

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Neural Texture Synthesis
1. Pretrain a CNN on ImageNet (VGG-19)
2. Run input texture forward through CNN, 

record activations on every layer; layer i 
gives feature map of shape Ci × Hi × Wi

3. At each layer compute the Gram matrix 
giving outer product of features:

                    (shape Ci × Ci)

4. Initialize generated image from random 
noise

5. Pass generated image through CNN, 
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2 
distance between Gram matrices

7. Backprop to get gradient on image
8. Make gradient step on image
9. GOTO 5



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201762

Neural Texture Synthesis

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Reconstructing texture from 
higher layers recovers 
larger features from the 
input texture



Neural Texture Synthesis: Gram
Reconstruction

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201763

Neural Texture Synthesis: Texture = Artwork

Texture synthesis 
(Gram 
reconstruction)

Figure from Johnson, Alahi, and Fei-Fei, “Perceptual 
Losses for Real-Time Style Transfer and 
Super-Resolution”, ECCV 2016. Copyright Springer, 2016. 
Reproduced for educational purposes.



Feature Inversion

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201749

Feature Inversion
Given a CNN feature vector for an image, find a new image that:

- Matches the given feature vector
- “looks natural” (image prior regularization) 

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

Given feature vector

Features of new image

Total Variation regularizer 
(encourages spatial smoothness)



Feature Inversion

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201750

Feature Inversion
Reconstructing from different layers of VGG-16

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015
Figure from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016. Copyright Springer, 2016. 
Reproduced for educational purposes.
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Neural Style Transfer: Feature + Gram 
Reconstruction

Feature 
reconstruction

Texture synthesis 
(Gram 
reconstruction)

Figure from Johnson, Alahi, and Fei-Fei, “Perceptual 
Losses for Real-Time Style Transfer and 
Super-Resolution”, ECCV 2016. Copyright Springer, 2016. 
Reproduced for educational purposes.



Combined Loss for both Content (1st order 
statistics) and Style (2nd order statistics: Gram)

Generally each layer in the network defines a non-linear filter bank whose complexity in-

creases with the position of the layer in the network. Hence a given input image ~x is encoded

in each layer of the CNN by the filter responses to that image. A layer with Nl distinct filters

has Nl feature maps each of size Ml, where Ml is the height times the width of the feature map.

So the responses in a layer l can be stored in a matrix F l 2 RNl⇥Ml where F l
ij is the activation

of the ith filter at position j in layer l. To visualise the image information that is encoded at

different layers of the hierarchy (Fig 1, content reconstructions) we perform gradient descent

on a white noise image to find another image that matches the feature responses of the original

image. So let ~p and ~x be the original image and the image that is generated and P l and F l their

respective feature representation in layer l. We then define the squared-error loss between the

two feature representations

Lcontent(~p, ~x, l) =
1

2

X

i,j

�
F l
ij � P l

ij

�2 . (1)

The derivative of this loss with respect to the activations in layer l equals

@Lcontent

@F l
ij

=

(�
F l � P l

�
ij

if F l
ij > 0

0 if F l
ij < 0 .

(2)

from which the gradient with respect to the image ~x can be computed using standard error

back-propagation. Thus we can change the initially random image ~x until it generates the same

response in a certain layer of the CNN as the original image ~p. The five content reconstructions

in Fig 1 are from layers ‘conv1 1’ (a), ‘conv2 1’ (b), ‘conv3 1’ (c), ‘conv4 1’ (d) and ‘conv5 1’

(e) of the original VGG-Network.

On top of the CNN responses in each layer of the network we built a style representation

that computes the correlations between the different filter responses, where the expectation is

taken over the spatial extend of the input image. These feature correlations are given by the

Gram matrix Gl 2 RNl⇥Nl , where Gl
ij is the inner product between the vectorised feature map

10

i and j in layer l:

Gl
ij =

X

k

F l
ikF

l
jk. (3)

To generate a texture that matches the style of a given image (Fig 1, style reconstructions),

we use gradient descent from a white noise image to find another image that matches the style

representation of the original image. This is done by minimising the mean-squared distance

between the entries of the Gram matrix from the original image and the Gram matrix of the

image to be generated. So let ~a and ~x be the original image and the image that is generated and

Al and Gl their respective style representations in layer l. The contribution of that layer to the

total loss is then

El =
1

4N2
l M

2
l

X

i,j

�
Gl

ij � Al
ij

�2 (4)

and the total loss is

Lstyle(~a, ~x) =
LX

l=0

wlEl (5)

where wl are weighting factors of the contribution of each layer to the total loss (see below for

specific values of wl in our results). The derivative of El with respect to the activations in layer

l can be computed analytically:

@El

@F l
ij

=

(
1

N2
l M

2
l

�
(F l)T

�
Gl � Al

��
ji

if F l
ij > 0

0 if F l
ij < 0 .

(6)

The gradients of El with respect to the activations in lower layers of the network can be readily

computed using standard error back-propagation. The five style reconstructions in Fig 1 were

generated by matching the style representations on layer ‘conv1 1’ (a), ‘conv1 1’ and ‘conv2 1’

(b), ‘conv1 1’, ‘conv2 1’ and ‘conv3 1’ (c), ‘conv1 1’, ‘conv2 1’, ‘conv3 1’ and ‘conv4 1’ (d),

‘conv1 1’, ‘conv2 1’, ‘conv3 1’, ‘conv4 1’ and ‘conv5 1’ (e).

To generate the images that mix the content of a photograph with the style of a painting

(Fig 2) we jointly minimise the distance of a white noise image from the content representation
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Neural Style Transfer

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201766

Neural Style Transfer

Content Image Style Image Style Transfer!

+ =

This image is licensed under CC-BY 3.0 Starry Night by Van Gogh is in the public domain This image copyright Justin Johnson, 2015. Reproduced with 
permission.

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016



CNN learns texture features, not 
shapes!

Geirhos et al. ICLR 2019

https://videoken.com/embed/W2HvLBMhCJQ?tocitem=46

Published as a conference paper at ICLR 2019

IMAGENET-TRAINED CNNS ARE BIASED TOWARDS
TEXTURE; INCREASING SHAPE BIAS IMPROVES
ACCURACY AND ROBUSTNESS

Robert Geirhos

University of Tübingen & IMPRS-IS
robert.geirhos@bethgelab.org

Patricia Rubisch

University of Tübingen & U. of Edinburgh
p.rubisch@sms.ed.ac.uk

Claudio Michaelis

University of Tübingen & IMPRS-IS
claudio.michaelis@bethgelab.org

Matthias Bethge
⇤

University of Tübingen
matthias.bethge@bethgelab.org

Felix A. Wichmann
⇤

University of Tübingen
felix.wichmann@uni-tuebingen.de

Wieland Brendel
⇤

University of Tübingen
wieland.brendel@bethgelab.org

ABSTRACT

Convolutional Neural Networks (CNNs) are commonly thought to recognise ob-
jects by learning increasingly complex representations of object shapes. Some
recent studies suggest a more important role of image textures. We here put these
conflicting hypotheses to a quantitative test by evaluating CNNs and human ob-
servers on images with a texture-shape cue conflict. We show that ImageNet-
trained CNNs are strongly biased towards recognising textures rather than shapes,
which is in stark contrast to human behavioural evidence and reveals fundamen-
tally different classification strategies. We then demonstrate that the same standard
architecture (ResNet-50) that learns a texture-based representation on ImageNet
is able to learn a shape-based representation instead when trained on ‘Stylized-
ImageNet’, a stylized version of ImageNet. This provides a much better fit for
human behavioural performance in our well-controlled psychophysical lab setting
(nine experiments totalling 48,560 psychophysical trials across 97 observers) and
comes with a number of unexpected emergent benefits such as improved object
detection performance and previously unseen robustness towards a wide range of
image distortions, highlighting advantages of a shape-based representation.

(a) Texture image
81.4% Indian elephant
10.3% indri

8.2% black swan

(b) Content image
71.1% tabby cat
17.3% grey fox

3.3% Siamese cat

(c) Texture-shape cue conflict
63.9% Indian elephant
26.4% indri

9.6% black swan

Figure 1: Classification of a standard ResNet-50 of (a) a texture image (elephant skin: only texture
cues); (b) a normal image of a cat (with both shape and texture cues), and (c) an image with a
texture-shape cue conflict, generated by style transfer between the first two images.

⇤Joint senior authors
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Examples

´ Jupyter Notebook Demo



Adversarial Examples and 
Robustness



Deep Learning may be fragile: 
adversarial examples

Background Info

Adversarial examples

[Goodfellow et al., 2014]

Small but malicious perturbations can result in severe
misclassification
Malicious examples generalize across different
architectures
What is source of instability?
Can we robustify network?

43 / 50



Adversarial Examples: Fooling Images

´ Start from an arbitrary image 

´ Pick an arbitrary class 

´ Modify the image to maximize the class 

´ Repeat until network is fooled 



Fooling Images/Adversarial Examples

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201735

Fooling Images / Adversarial Examples

Boat image is CC0 public domain
Elephant image is CC0 public domain



Convolutional Networks lack Robustness
Deep networks are unsafe

2

“black hole”
87.7% confidence

“donut”
99.3% confidence

Deep networks are unsafe

2

“black hole”
87.7% confidence

“donut”
99.3% confidence

Courtesy of Dr. Hongyang ZHANG.



Adversarial Robust Training
Robust Optimization

Figure 7: The choice of attack method - FGSM (red) vs. PGD (blue) matters.

Figure 8: Values of the local maxima given by the cross-entropy loss for five examples from the MNIST
and CIFAR10 evaluation datasets. For each example, PGD is started uniformly at random around the
example and iterated until the loss plateaus.The blue histogram corresponds to the loss on a naturally
trained network, while the red histogram corresponds to the adversarially trained counterpart. The
loss is significantly smaller for the adversarially trained networks, and the final loss values are very
concentrated without any outliers.

Figure 9: Natural classification (left) vs. adversarial boundaries (right) corresponding to `1 ball around
training points.

alone increases accuracy. When adversaries like PGD are added, for small capacity networks PGD fails
to learn a meaningful decision boundary and performance is sacrificed for robustness. On the other
hand, for large capacity networks a robust and accurate solution can be achieved with PGD adversary.

The PGD adversary was trained for both MNIST and CIFAR10 and it has been shown that there
is a steady decrease in the training loss of adversarial examples (Figure 11) showing an indication that
the original adversarial training optimization problem is indeed being solved during training.
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Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model

Adversarial and Huber’s Agnostic Contamination Model

Robust Optimization

• Traditional training:

min
✓

Jn(✓, z = (xi , yi )
n
i=1)

• e.g. square or cross-entropy loss as negative log-likelihood of logit

models

• Robust optimization (Madry et al. ICLR’2018):

min
✓

max
k✏ik�

Jn(✓, z = (xi + ✏i , yi )
n
i=1)

• robust to any distributions, yet computationally hard

• Distributional Robust Optimization:

min
✓

max
✏

Ez⇠P✏2D[Jn(✓, z)]

• D is a set of ambiguous distributions, e.g. Wasserstein ambiguity set

• intermediate approach with statistically contaminated distributions

• sometimes, contamination might be unstructured...

Yuan Yao Breiman-Huber

Extended by Hongyang ZHANG et al. by TRADES, 2019.



Thank you!


