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Best Machine Learning Algorithms in history?

I Boosting (ISLR chapter 8): CART, AdaBoost, Random
Forests (Leo Breiman), etc.

I Support Vector Machines (ISLR chapter 9): or kernel
methods (V. Vapnik), etc.

I Neural Networks: perceptrons (1950s), deep learning (2010s),
CNN/RNN/LSTM (< 2000), ResNet/Transformers (> 2015),
etc.
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About this chapter

I Vapnik’s Support vector machine dominates neural networks
during late 1990s and 2000s, more than a decade.

I Empirically successful, with well developed theory
(max-margin classification, Vapnik-Chervonenkis Theory, etc.)

I One of the best off-the-shelf methods, based on convex
optimization and geometry.

Figure: Vladimir Naumovich Vapnik and his classic book
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Yann LeCun’s MNIST competition in 1998

I Gradient-Based Learning Applied to Document Recognition,
by Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick
Haffner, Proceedings of the IEEE, 86(11):2278-2324, 1998.

I A comprehensive comparisons of machine learning methods in
MNIST competition

I Best neural net (Boosted LeNet-4, 0.7%) beats best SVM
(V-SVM poly9, 0.8%) by 0.1%, but is hard to tune.

Figure: Yann LeCun’s CNN only beats SVM at 0.1% but is hard to tune
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Hyperplane in Rp

I x = (x1, ..., xp)T ∈ Rp (p-dimensional real space).

I Consider all x satisfying

f (x) = β0 + βTx = β0 + 〈β, x〉 = β0 + β1x1 + ...+ βpxp = 0.

where β = (β1, . . . , βp)T .
All such x defines a hyperplane: All x such that its projection
on β is 〈

β

‖β‖ , x
〉

β

‖β‖ = −β0
β

‖β‖2
.
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Hyperplane in Rp

I

f (x) = 0 ⇐⇒ x = −β0
β

‖β‖2
+ y with y⊥β.

I

f (x) > 0 ⇐⇒ x = β̃0
β

‖β‖2
+ y with y⊥β, β̃0 > −β0

I

f (x) < 0 ⇐⇒ x = β̃0
β

‖β‖2
+ y with y⊥β, β̃0 < −β0

here β̃0 = 〈x, β〉 and f (x) = β̃0 − (−β0).
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I f (x) > 0 ⇐⇒ x is on one side of the hyperplane (at the
same direction as β.)
f (x) < 0 ⇐⇒ x is on the other side of the hyperplane (at
the opposite direction as β.)

I For any vector z ∈ Rp, the signed distance of a point z ∈ Rp

to this hyperplane is

〈z, β/‖β‖〉 − (−β0/‖β‖) = (〈z, β〉+ β0)/‖β‖ = f (z)/‖β‖.

– If ‖β‖ = 1, f (z) is the signed distance of z to the hyperplane
defined by f (x) = 0.
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Figure: 9.1. The hyperplane 1 + 2X1 + 3X2 = 0 is shown. The blue region is the set
of points for which 1 + 2X1 + 3X2 > 0, and the purple region is the set of points for
which 1 + 2X1 + 3X2 < 0.
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Separating hyperplane

I Training Data:(yi , xi ), i = 1, ..., n, with input xi = (xi1, ..., xip)
and two-class output yi = ±1.

I Suppose the two classes are separated by one hyperplane

f (x) = β0 + β1x1 + ...+ βpxp,

meaning that, for all i in one class yi = 1,

f (xi ) > 0, one side of the hyperplane;

and for all i in the other class yi = −1,

f (xi ) < 0, the other side of the hyperplane;

I It can be equivalently expressed as

yi f (xi ) > 0, for all i = 1, .., n

Maximal margin classifier 11



I If such separating hyperplane exists, it can be our
classification rule:
For any new/old observation with x∗ such that f (x∗) > 0,
classify it as in the class +1. Otherwise, classify it as in class
−1.

I Problem: If the two classes in training data are indeed
separable by a hyperplane, which hyperplane is the best?
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Figure: 9.2. Left: There are two classes of observations, shown in blue and in purple,
each of which has measurements on two variables. Three separating hyperplanes, out
of many possible, are shown in black. Right: A separating hyperplane is shown in
black. The blue and purple grid indicates the decision rule made by a classifier based
on this separating hyperplane: a test observation that falls in the blue portion of the
grid will be assigned to the blue class, and a test observation that falls into the purple
portion of the grid will be assigned to the purple class.
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Maximal margin classifier

I Maximal margin hyperplane: the separating hyperplane that
optimal separating hyperplane is farthest from the training
observations.

– The optimal separating hyperplane is to maximize the
minimum distance of any training point to the hyperplane
(minimax problem).

– Creates a widest gap separating the two classes.

I Points on the boundary hyperplane, those with smallest
distance to the max margin hyperplane, are called support
vectors.

– They “support” the maximal margin hyperplane in the sense
that if these points were moved slightly then the maximal
margin hyperplane would move as well
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Figure: 9.3. There are two classes of observations, shown in blue and in purple. The
maximal margin hyperplane is shown as a solid line. The margin is the distance from
the solid line to either of the dashed lines. The two blue points and the purple point
that lie on the dashed lines are the support vectors, and the distance from those
points to the hyperplane is indicated by arrows. The purple and blue grid indicates the
decision rule made by a classifier based on this separating hyperplane.
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Computing the max margin hyperplane

maximizeβ0,β1,...,βp M

subject to

p∑
j=1

β2
j = 1,

yi (β0 + β1xi1 + ...+ βpxip) ≥ M for all i

This is a convex quadratic programming problem.
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I Note that M > 0 is the half of the width of the strip
separating the two classes.

I The eventual solution, the max margin hyperplane is
determined by the support vectors. The max margin
hyperplane may vary a lot when the support vectors vary
(sensitivity to support vectors, high variance).

I If the non-support vectors xi that lie on the correct side of the
trip vary, the solution would remain same (robustness to
non-support vectors).

I Yet, in general cases data points are not separable...
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Figure: 9.4. There are two classes of observations, shown in blue and in purple. In
this case, the two classes are not separable by a hyperplane, and so the maximal
margin classifier cannot be used.
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Even separable, Max Margin classifier is not robust
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Figure: 9.5. Left: Two classes of observations are shown in blue and in purple, along
with the maximal margin hyperplane. Right: An additional blue observation has been
added, leading to a dramatic shift in the maximal margin hyperplane shown as a solid
line. The dashed line indicates the maximal margin hyperplane that was obtained in
the absence of this additional point.
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The non-separable case

I In general, the two classes are usually not separable by any
hyperplane.

I Even if they are, the max margin may not be robust because
of its high variance, and thus possible over-fit.

I The generalization of the maximal margin classifier to the
non-separable case is known as the support vector classifier
(SVC).

I SVC uses a soft-margin in place of the max margin.
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Non-perfect separation

I Consider a classifier based on a hyperplane that does not
perfectly separate the two classes, in the interest of

1. Greater robustness to individual observations, and
2. Better classification of most of the training observations

without separability assumption.

I Soft-margin classifier (support vector classifier) allow some
violation of the margin: some can be on the wrong side of the
margin (in the river) or even wrong side of the hyperplane.
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Computing the soft-margin classifier

maximize M

subject to

p∑
j=1

β2
j = 1, and for all i

yi (β0 + β1xi1 + ...+ βpxip) ≥ M(1− εi )
εi ≥ 0
n∑

i=1

εi ≤ C

where C is a nonnegative tuning parameter, εi ’s are slack variables.

Support Vector Machines 23



The support vector classifier

I Another equivalent formulation is (Libsvm and sklearn.svm)
for M = 1/‖β‖:

minimizeβ0,β1,...,βp

1

2
‖β‖2 + C ′

n∑
i=1

ξi

subject to yi (β0 + β1xi1 + ...+ βpxip) ≥ 1− ξi ,
ξi ≥ 0, for all i

I The solution of these optimizations is the support vector
classifier:

f (x) = β0 + β1x1 + ...+ βpxp.

And we classify an observation in +1 class if f (x) > 0; else
into −1 class.
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Understaning the slack variable εi

I εi = 0 ⇐⇒ the i-th observation is on the correct side of the
margin

I εi > 0 ⇐⇒ the i-th observation is on the wrong side of the
margin

I εi > 1 ⇐⇒ the i-th observation is on the wrong side of the
hyperplane.
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Figure: 9.6. next page
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FIGURE 9.6. Left: A support vector classifier was fit to a small
data set. The hyperplane is shown as a solid line and the margins
are shown as dashed lines. Purple observations: Observations 3, 4,
5, and 6 are on the correct side of the margin, observation 2 is on
the margin, and observation 1 is on the wrong side of the margin.
Blue observations: Observations 7 and 10 are on the correct side of
the margin, observation 9 is on the margin, and observation 8 is on
the wrong side of the margin. No observations are on the wrong
side of the hyperplane. Right: Same as left panel with two
additional points, 11 and 12. These two observations are on the
wrong side of the hyperplane and the wrong side of the margin.
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Understanding tuning parameter C (C ′)

I C (C ′) is a budget for the amount that the margin can be
violated by the n observations

I C = 0 ⇐⇒ no budget ⇒ εi = 0 for all i .
The classifier is a maximal margin classifier, which exists only
if the two classes are separable by hyperplanes.

I Bias-Variance tradeoff by C (C ′):

– Larger C , more tolerance of margin violation, larger bias but
smaller variance.

– Small C , high variance and small bias.
– C ′ is in the opposite way (as C in Libsvm and sklearn.svm).

I C and C ′ can be determined by using cross validation.
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Support vectors

I A margin error corresponds to a sample that lies on the wrong
side of its margin boundary: it is either misclassified, or it is
correctly classified but does not lie beyond the margin.

I Observations that lie directly on the margin, or on the wrong
side of the margin for their class, are known as support
vectors.

I Only the support vectors affect the support vector classifier.

I Those strictly on the correct side of the margin do not.
(robustness, analogous to median)

I Larger C =⇒ more violations, =⇒ more support vectors, =⇒
smaller variance, larger bias and more robust classifier.
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Figure: 9.7.
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Figure 9.7. A support vector classifier was fit using four different
values of the tuning parameter C in (9.12) and C ′ (9.15). The
largest value of C was used in the top left panel, and smaller values
were used in the top right, bottom left, and bottom right panels.
When C is large, then there is a high tolerance for observations
being on the wrong side of the margin, and so the margin will be
large. As C decreases, the tolerance for observations being on the
wrong side of the margin decreases, and the margin narrows.
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Python sklearn.svm Implementations

I It is Python wrapper based on Libsvm and Liblinear by
Chih-Jen Lin et al.

I In sklearn.svm, parameter C refers to C ′ above.

I Schölkopf et al. [Neural Computation 12:1207-1245 (2000)]
proposed ν-SVC, as a reparameterization of such a C -SVC in
sklearn.svm and therefore mathematically equivalent.

I ν controls the number of support vectors and margin errors: is
an upper bound on the fraction of margin errors and a lower
bound of the fraction of support vectors.
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Nonlinear Decision Boundary?
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Figure: 9.8. Nonlinear boundaries. Left: The observations fall into two
classes, with a non-linear boundary between them. Right: The support
vector classifier seeks a linear boundary, and consequently performs very
poorly.
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Extending to nonlinear boundary

I In practice, we are sometimes faced with non-linear class
boundaries

I Linear classifier could perform poorly.

I Need nonlinear classifier.

I As in the extension to the polynomial regression from linear
regression, we can consider enlarge the feature space from the
original p inputs to polynomials (of certain order) of the
inputs.
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Extending to quadratic inputs

I Rather than constructing the support vector classifier using p
features:

X1, ...,Xp.

I we use 2p features:

X1,X
2
1 , ...,Xp,X

2
p .

I Treat them as 2p original inputs, and fit the support vector
classifier.

I The separating hyperplane is a hyperplane in R2p, which
should be a linear equation:

β0 + β1X1 + β2Xp + βp+1X
2
1 + ...+ β2pX

2
p = 0

I This is a quadratic equation in X1, ...,Xp. Thus the separating
surface in Rp in terms of X1, ...,Xp corresponds to a quadratic
surface in Rp.
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Extending to polynomial inputs

I Can extend to polynomial of any given order d .

I Could lead to too many features, too large feature space; thus
overfit.

I Higher powers are unstable.
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Key observation from dual problem

I The linear support vector classifier has a dual representation:

f (x) = β0 +
n∑

i=1

αi 〈xi , x〉

I αi 6= 0 only for all support vectors.

I αi can also be computed based on 〈xj , xk〉.
I Only the inner product of the feature space is relevant in

computing the linear support vector classifier.
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The kernel trick

I The inner product 〈·, ·〉 is a bivariate function (symmetric and
positive definite).

I It can be generalized to (Mercer) kernel functions

K (x, z)

which is symmetric, positive definite.

I The classifier can be expressed as

f (x) = α0 +
n∑

i=1

αiK (x, xi )
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Examples of kernels

I Examples of the kernel function are:

I linear kernel
K (xi , xj) = 〈xi , xj〉 = xTi xj .

I polynomial kernel of degree d :

K (xi , xj) = (1 + 〈xi , xj〉)d .

I Gaussian radial kernel:

K (xi , xj) = exp(−γ‖xi − xj‖2), γ > 0.

I Only the inner product of the feature space is relevant in
computing the linear support vector classifier.
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Figure: 9.9. Left: An SVM with a polynomial kernel of degree 3 is applied to the
non-linear data from Figure 9.8, resulting in a far more appropriate decision rule.
Right: An SVM with a radial kernel is applied. In this example, either kernel is capable
of capturing the decision boundary.
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I The radial kernel has local behavior.

I To predict the class for a new observation with input x,

f (x) = α0 +
n∑

i=1

αi exp(−γ‖x− xi‖2)

I A training data point xi being far away from x will have little
effect to the sign of f (x).
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The enlarged feature space.

I The support vector machine actually enlarges the original
feature space to a space of kernel functions.

xi → K (·, xi ).

I The original space of p inputs has dimension p.

I The enlarged space of features, the function space, is infinite
dimension (reproducing kernel Hilbert space)!

I In actual fitting of the support vector machine, we only need
to compute the K (xi , xj) for all xi , xj in training data.

I Do not have to work with the enlarged feature space of
infinite dimension.
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Example: the Heart data.

I In Chapter 8 we apply decision trees and related methods to
the Heart data.

I The aim is to use 13 predictors such as Age, Sex, and Chol in
order to predict whether an individual has heart disease.

I We now investigate how an SVM compares to LDA on this
data.

I 297 subjects, randomly split into 207 training and 90 test
observations.
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Figure: ROC curves for the Heart data training set. Left: The support vector
classifier and LDA are compared. Right: The support vector classifier is compared to
an SVM using a radial basis kernel with γ = 10−3, 10−2 and 10−1.
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Figure: 9.11. ROC curves for the test set of the Heart data. Left: The support
vector classifier and LDA are compared. Right: The support vector classifier is
compared to an SVM using a radial basis kernel with γ = 10−3, 10−2 and 10−1.
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Multiclass SVM: One-versus-one approach

I With K > 2 classes.

I Run a SVM on each of the
(K

2

)
pairs of classes.

I We obtain
(K

2

)
SVMs.

I For every test observations, compute the number of times it is
classified into class k by all the SVMs, denote as sk .

I Classify it into the class with highest score sk (majority vote).

I This is implemented in sklearn.svm for SVC and nuSVC.

I Shortcoming: train O(K 2) SVMs, intractable for large K .
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Multiclass SVM: One-versus-all(rest) approach

I With K > 2 classes.

I Run a SVM on class k (coded as +1) versus class “not-k”
(coded as −1): fk(x). (Note that the larger fk(x), the more
likely x is in class k .

I For a new test observation with x, assign to the class with
largest fk(x).

I This is implemented in sklearn.svm.linearSVC

I Shortcoming: imbalance issue.
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One-Class Support Vector Classification

I Schölkopf et al. (2001), for l samples x i ∈ Rd without yi ,

minw ,ξ,ρ
1

2
wTw − ρ+

1

νl

l∑
i=1

ξi

subject to wTφ (x i ) ≥ ρ− ξi
ξi ≥ 0, i = 1, . . . , l

I It tries to include most of samples into the super-level set
f (x i ) = wTφ (x i ) ≥ ρ (inliers), with possible violation ξi ≥ 0
(outliers)

– The smaller ρ, the less violations ξi
– A trade-off between ρ and

∑
i ξi with hyper-parameter ν

– The larger ν, the larger ρ, the less inliers, the more outliers
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Dual of One-Class Support Vector Classification

I Dual formulation:

minα
1
2α

TKα, Kij = 〈φ(x i ), φ(x j)〉,
subject to 0 ≤ αi ≤ 1/(νl), i = 1, . . . , l

eTα = 1

I Decision function:

f (x) = sgn

(
l∑

i=1

αiK (x i , x)− ρ
)
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Example: One-Class Support Vector Classification

Figure: One-Class Support Vector Classification for outlier detection:
outlier (blue) and inlier (yellow). Large ν on the left, small ν on the right.
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ε-Support Vector Regression

I Vapnik (1998) proposed

min
w

C
n∑

i=1

Vε(yi , fw (xi )) +
1

2
‖w‖2,

where

– Vε(y , ŷ) = max(0, |y − ŷ | − ε) is the ε-insensitive loss.
– Decision function fw (x) := 〈w , φ(x)〉+ b
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Dual of ε-Support Vector Regression

I Kij = K (xi , xj) := 〈φ(xi ), φ(xj)〉
I Dual formulation:

minα,α∗
1

2

(
α − α

∗)T K
(
α − α

∗) + ε
n∑

i=1

(
αi + α

∗
i

)
+

n∑
i=1

yi
(
αi − α

∗
i

)
subject to eT

(
α − α

∗) = 0

0 ≤ αi , α
∗
i ≤ C , i = 1, . . . , n

I Decision function
fw (x) := 〈w , φ(x)〉+ b =

∑n
i=1(α∗i − αi )K (xi , x) + b
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Example: Support Vector Regression

Figure: Support Vector Regression with RBF, linear and polynomial
kernels
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Kernel Approximation for Large Scale SVM

I SVM needs a n-by-n Kernel matrix

I Hence not scalable for big data n >> 10k

I Kernel Approximation: sklearn.kernel approximation

– Nyström (Nystroem) method
– Random Fourier Features (Rahimi, A. and Recht, B,

NIPS’2007)
– and other methods

* Supplementary Topics 55



Nyström Method

I Let

Kn,n =

[
Ak,k Bk,n−k

BT C

]
� 0

⇒ K =

[
XTX XTY
YTX YTY

]
where

A = XTX
B = XTY

I Nyström approximates K by

K̃ =

[
A B

BT BTA−1B

]
with approximation error ‖C− BTA−1B‖.
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Nyström Approximation: computing X,Y

I Take
A = UΓUT

and
X = Γ

1/2
[k] UT

[k]

where the subscript [k] indicates the submatrices
corresponding to the eigenvectors with the k largest positive
eigenvalues. Then

Y = X−TB = Γ
−1/2
[k] UT

[k]B
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Random Fourier Features

I Rahimi, A. and Recht, B, NIPS ’2007

I Mercer Theorem: continuous, positive definite K (x , x ′) on
compact domain admits

K (x , x ′) =
∑
α

λαφα(x)φα(x ′)

where λα ≥ 0 and φα are orthonormal eigenvectors.

I For translation invariant kernels (e.g. rbf), use random
Fourier basis instead of unknown φ:

K (x − x ′) =
∑
ω

q̂ω exp(−i
〈
ω, x − x ′

〉
)

where q̂ω is some probability measure.
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Equivalent reformulation of Hard Margin

maximizeβ0,β1,...,βpM

subject to

p∑
j=1

β2
j = 1,

and yi (β0 + β1xi1 + ...+ βpxip) ≥ M for all i

Using M = 1/‖β‖,
⇔

minimizeβ0,β1,...,βp‖β‖2 :=
∑
j

β2
j

subject to yi (β0 + β1xi1 + ...+ βpxip) ≥ 1 for all i
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FIGURE 12.1. Support vector classifiers. The left panel shows the separable
case. The decision boundary is the solid line, while broken lines bound the shaded
maximal margin of width 2M = 2/∥β∥. The right panel shows the nonseparable
(overlap) case. The points labeled ξ∗

j are on the wrong side of their margin by
an amount ξ∗

j = Mξj; points on the correct side have ξ∗
j = 0. The margin is

maximized subject to a total budget
∑
ξi ≤ constant. Hence

∑
ξ∗

j is the total
distance of points on the wrong side of their margin.

Our training data consists of N pairs (x1, y1), (x2, y2), . . . , (xN , yN ), with
xi ∈ IRp and yi ∈ {−1, 1}. Define a hyperplane by

{x : f(x) = xTβ + β0 = 0}, (12.1)

where β is a unit vector: ∥β∥ = 1. A classification rule induced by f(x) is

G(x) = sign[xTβ + β0]. (12.2)

The geometry of hyperplanes is reviewed in Section 4.5, where we show that
f(x) in (12.1) gives the signed distance from a point x to the hyperplane
f(x) = xTβ+β0 = 0. Since the classes are separable, we can find a function
f(x) = xTβ + β0 with yif(xi) > 0 ∀i. Hence we are able to find the
hyperplane that creates the biggest margin between the training points for
class 1 and −1 (see Figure 12.1). The optimization problem

max
β,β0,∥β∥=1

M

subject to yi(x
T
i β + β0) ≥M, i = 1, . . . , N,

(12.3)

captures this concept. The band in the figure is M units away from the
hyperplane on either side, and hence 2M units wide. It is called the margin.

We showed that this problem can be more conveniently rephrased as

min
β,β0

∥β∥

subject to yi(x
T
i β + β0) ≥ 1, i = 1, . . . , N,

(12.4)

Figure: Separating hyperplane with margin
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On why M = 1/‖β‖?

I Separating hyperplane P0, xTβ + β0 = 0, has a unit normal
vector β/‖β‖.

I Choose a point x0 on P0, xT0 β + β0 = 0.

I Consider x1 = x0 + Mβ/‖β‖, a normal vector of length M,
starting from x0 and intersecting the margin hyperplane P1,
xTβ + β0 = 1. Then

1 = xT1 β + β0 = xT0 β + M
βTβ

‖β‖ + β0

=⇒1 = xT0 β + M‖β‖+ β0

=⇒1−M‖β‖ = xT0 β + β0 = 0

=⇒M =
1

‖β‖
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Lagrangian

Lagrangian: for αi ≥ 0,

max
α≥0

min
β,β0

L(β, α) :=
1

2
‖β‖2−

n∑
i=1

αi (yi (β0 +β1xi1 + ...+βpxip)− 1)

So

0 =
∂L

∂β
⇒ β̂ =

∑
i

α̂iyixi

0 =
∂L

∂β0
⇒
∑
i

α̂iyi = 0

and complementary condition

α̂i (yi (β̂0 +
〈
β̂, xi

〉
)− 1) = 0, for all i

* Supplementary Topics 62



Support Vectors

Complementary condition α̂i (yi (β̂0 +
〈
β̂, xi

〉
)− 1) = 0, for all i

implies that

yi (β̂0 +
〈
β̂, xi

〉
) > 1⇒ α̂i = 0

yi (β̂0 +
〈
β̂, xi

〉
) = 1⇒ α̂i ≥ 0

Those sample point i ’s such that α̂i > 0, are called support vectors
(sv), which decided the maximal margin hyperplane

β̂ =
∑
i∈sv

α̂iyixi

and β̂0 can be uniquely decided by any support vector s using

β̂0 = ys −
〈
β̂, xs

〉
.
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Dual Formulation

After plugging β̂ in the Lagrangian, it gives

min
α

1

2

n∑
i ,j=1

αiαjyiyjx
T
i xj

subject to
αi ≥ 0∑

i

αiyi = 0
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Equivalent reformulation of Soft-margin Classifier

maximize M

subject to

p∑
j=1

β2
j = 1,

yi (β0 + β1xi1 + ...+ βpxip) ≥ M(1− εi )

εi ≥ 0,
n∑

i=1

εi ≤ C , and for all i

Taking M = 1/‖β‖, then it is equivalent to

minimizeβ0,β1,...,βp

1

2
‖β‖2 + C ′

n∑
i=1

ξi

subject to yi (β0 + β1xi1 + ...+ βpxip) ≥ 1− ξi ,
ξi ≥ 0, for all i
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FIGURE 12.1. Support vector classifiers. The left panel shows the separable
case. The decision boundary is the solid line, while broken lines bound the shaded
maximal margin of width 2M = 2/∥β∥. The right panel shows the nonseparable
(overlap) case. The points labeled ξ∗

j are on the wrong side of their margin by
an amount ξ∗

j = Mξj; points on the correct side have ξ∗
j = 0. The margin is

maximized subject to a total budget
∑
ξi ≤ constant. Hence

∑
ξ∗

j is the total
distance of points on the wrong side of their margin.

Our training data consists of N pairs (x1, y1), (x2, y2), . . . , (xN , yN ), with
xi ∈ IRp and yi ∈ {−1, 1}. Define a hyperplane by

{x : f(x) = xTβ + β0 = 0}, (12.1)

where β is a unit vector: ∥β∥ = 1. A classification rule induced by f(x) is

G(x) = sign[xTβ + β0]. (12.2)

The geometry of hyperplanes is reviewed in Section 4.5, where we show that
f(x) in (12.1) gives the signed distance from a point x to the hyperplane
f(x) = xTβ+β0 = 0. Since the classes are separable, we can find a function
f(x) = xTβ + β0 with yif(xi) > 0 ∀i. Hence we are able to find the
hyperplane that creates the biggest margin between the training points for
class 1 and −1 (see Figure 12.1). The optimization problem

max
β,β0,∥β∥=1

M

subject to yi(x
T
i β + β0) ≥M, i = 1, . . . , N,

(12.3)

captures this concept. The band in the figure is M units away from the
hyperplane on either side, and hence 2M units wide. It is called the margin.

We showed that this problem can be more conveniently rephrased as

min
β,β0

∥β∥

subject to yi(x
T
i β + β0) ≥ 1, i = 1, . . . , N,

(12.4)

Figure: Separating hyperplane with margin
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The Lagrangian

Lagrangian: for αi ≥ 0, µi ≥ 0, ξi ≥ 0,

L(β, ξ, α, µ) =
1

2
‖β‖2+C

n∑
i=1

ξi−
n∑

i=1

αi [yi (β0+xTi β)−(1−ξi )]−
n∑

i=1

µiξi ,

So for all i ,

0 =
∂L

∂β
⇒ β̂ =

∑
i

α̂iyixi (1)

0 =
∂L

∂β0
⇒
∑
i

α̂iyi = 0 (2)

0 =
∂L

∂ξi
⇒ α̂i + µi = C (3)

and complementary condition

α̂i [yi (β̂0 + xTi β̂)− (1− ξi )] = 0

µiξi = 0
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Support Vectors

Complementary condition α̂i [yi (β̂0 + xTi β̂)− (1− ξi )] = 0, ξi ≥ 0,
⇒

yi (β̂0 +
〈
β̂, xi

〉
) > 1⇒ α̂i = 0

yi (β̂0 +
〈
β̂, xi

〉
) = 1− ξi ⇒ C ≥ α̂i ≥ 0

µiξi = 0⇒ ξi > 0, µi = 0, α̂i = C − µi = C

Those samples such that C ≥ α̂i > 0, are called support vectors
(sv),

β̂ =
∑
i∈sv

α̂iyixi

and those s.t. α̂i = C are within margin (violators), ξi = 0 are on
margin (deciding β̂0).
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Dual Problem

Substituting (1)-(3) into the Lagrangian, it gives the dual
optimization problem

min
α

1

2

n∑
i ,j=1

αiαjyiyjx
T
i xj −

n∑
i=1

αi

subject to
C ≥ αi ≥ 0∑
i

αiyi = 0

One can replace xTi xj by K (xi , xj) using the kernel trick for
nonlinear SVMs.
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Recall the “Loss + Penalty” formula

I Minimize, for f in certain space,

n∑
i=1

`(yi , f (xi )) + λP(f )

where in binary classification, `(u) = `(yi f (xi )) with yi = ±1.
I Examples:

– the hinge loss function : `(u) = (1− u)+.
– the logistic loss function: `(u) = log(1 + e−u).
– the exponential loss function: `(u) = e−u.
– the perceptron loss function: `(u) = u+.
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Logistic regression for classification

I Data: (yi , xi ), yi = ±1.

I The logistic model assumes

P(Y = 1|X ) = 1/(1+e−f (X )); P(Y = −1|X ) = 1/(1+ef (X ))

That is
P(Y = y |X ) = 1/(1 + e−yf (X ))
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Cross Entropy and Exponential Loss

I The negative of logistic likelihood (a.k.a. binomial deviance,
cross-entropy)

n∑
i=1

log(1 + e−yi f (xi ))

I Note that in AdaBoost, exponential loss is used

n∑
i=1

e−yi f (xi )
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Logistic regression and AdaBoost with regularization

I Logistic loss with ridge l2 penalty

n∑
i=1

log(1 + e−yi f (xi )) + λ

p∑
j=1

β2
j

I Logistic loss with Lasso l1 penalty:

n∑
i=1

log(1 + e−yi f (xi )) + λ

p∑
j=1

|βj |

I AdaBoost uses coordinate descent to solve l1-penalty
approximately

n∑
i=1

e−yi f (xi ) + λ

p∑
j=1

|βj |
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SVM

I Data: (yi , xi ), yi = ±1.

I SVM is a result of “hinge loss + ridge penalty”:

n∑
i=1

max[0, 1− yi f (xi )] + λ

p∑
j=1

β2
j .

where f (x) = β0 + β1x1 + ...+ βxp. Note that
ξi = max[0, 1− yi f (xi )] ≥ 0.
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Figure: 9.12. The SVM and logistic regression loss functions are compared, as a
function of yi (β0 + β1xi1 + ...βpxip) = ŷi . When yi (β0 + β1xi1 + ...βpxip) is greater
than 1, then the SVM loss is zero, since this corresponds to an observation that is on
the correct side of the margin. Overall, the two loss functions have quite similar
behavior. Note that the dashed curve is the perceptron loss.
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A Separable Two-Class Problem
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Logistic Regression with Gradient Descent meets

Max-Margin Solution Asymptotically

Figure: Logistic loss surface: the line indicates the direction of max-margin solution
of support vector machine for the separable two-class problem. By Soudry, Hoffer,
Nacson, Gunasekar, Srebro. ICLR 2018.
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Exponential Loss Minimization with Gradient Descent

meets Max-Margin Solution Asymptotically

Figure: Exponential loss surface and the max-margin solution of SVM (line
direction). By Matus Telgarsky. ICML 2013.
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Summary

I In linear regression, gradient descent converges to
pseudo-inverse asymptotically

I For separable classifications, gradient descents for logistic and
exponential loss all converges to max-margin classifier, after
exponentially long time

I Under the presence of noise, both need early stopping
regularization to avoid overfitting, that happens in practice

I Early stopping (implicit) regularization could be better than
explicit regularization like Ridge, in that they adapt to a wider
range of target functions with statistical optimality
(non-saturation) (Yao-Rosasco-Caponnetto, Constructive
Approximation 2007; Wu-Bartlett-Lee-Kakade-Yu,
arXiv:2509.17251)
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