AN In’rroduchon TO
Convolutional Neural
Networks

Yuan YAO
HKUST

Summary

» We had covered so far
» | inear models (linear and logistic regression) — always a good start, simple yet powerful
» Model Assessment and Selection — basics for all methods

» Trees, Random Forests, and Boosting — good for high dim mixed-type heterogeneous
features

» Support Vector Machines — good for small amount of data but high dim geometric
features

» Next, neural networks for unstructured data (image, language etc.):
= Convolutional Neural Networks — image data
» Generative models and GANs — new unsupervised learning for image, efc.
» Recurrent Neural Networks, LSTM — sequence data
» Transformer, BERT — machine translation etc.

» Reinforcement Learning — Markov decision process, playing games, etc.

Kaggle survey: Top ML Methods

https:.//www . kaggle.com/surveys/2017

Academic Industry

What data science methods are used at work? What data science methods are used at work?
Logistic regression is the most commonly reported data science method used at Logistic regression is the most commonly reported data science method used at
work for all industries except Military and Security where Neural Networks are used work for all industries except Military and Security where Neural Networks are used
slightly more frequently. slightly more frequently.

Company Size %) Academic 4] Job Title B Company Size #)(Industry 4)(Job Title B

0% 10% 20% 30% 40% 50% 60%
Logistic Regression Logistic Regression
Neural Networks (e 7y Decision Trees
Decision Trees Random Forests
Random Forests (N TE 7 Neursl Networks
Bayesian Techniques Bayesian Techniques
svms Ensemble Methods
Ensemble Methods [NEZETS svms
CNNs Gradient Boosted Machines
rns YT oNNs
Gradient Boosted Machines RNNs
Evolutionary Approaches Other
Other Evolutionary Approaches - 5.5%
HMMs Hvivs [5.4%
Markov Logic Networks - 5.8% Markov Logic Networks - 4.9%

GANs ([l 4.1% GANs [l 2.8%

1,201 responses 7,301 responses

@ View code in Kaggle Kernels @ View code in Kaggle Kernels

What type of data is used at worke

https://www.kaggle.com/surveys/2017

Academic

What type of data is used at work?

Relational data is the most commonly reported type of data used at work for all
industries except for Academia and the Military and Security industry where text
data’s used more.

a a

Company Size ¥ || Academic v /| JobTitle 5

0% 10% 20% 30% 40% 50%
Text data
Relational data
image data

Other 17.7%
Video data

1,277 responses

Industry

What type of data is used at work?

Relational data is the most commonly reported type of data used at work for all
industries except for Academia and the Military and Security industry where text
data’s used more.

a

Company Size 5/| Industry %/ Job Title v

0% 10% 20% 30% 40% 50% 60%
Relational data
Text data
(mage data
Other
Video data - 5.1%

8,024 responses

Acknowledgement

o 1 BN S o =Y
~). THEORIES OF
‘ .EEP &@znmm@@ 2

hitps://stats385.github.io/

hitp://cs231n.github.io/

A following-up course at HKUST: https://deeplearning-math.github.io/

Some reference books on Deep Learning

» Deep Learning with Python, Manning Publications 2017

» pv Francois Chollet

» hitps://www.manning.com/books/deep-learning-with-
python2a aid=keras&a bid=76564dff

» Deep Learning, MIT Press 2016

» Bv |an Goodfellow, Yoshua Bengio, and Aaron Courville,

» hitp.//www.deeplearningbook.org/

= Many other public resources

A Brief History of Neural Networks

Perceptron: single-layer

@ Invented by Frank Rosenblatt (1957)
b

Perceptron

The Perceptron Algorithm

l(w) = — Z v (w,x;), My =1i:y; (x;,w) <0,y; € {—1,1}}.
1EMy

The Perceptron Algorithm is a Sfochastic Gradient Descent method
(Robbins—Monro 1950; Kiefer-Wolfowitz 1951) :

W41 — Wt — Utvif(wt)

_) owe = neyixg, if yiw] x; < 0,
Wi, otherwise .

Separable Data with Margin: Stopping of
Perceptron after Finite Steps

The perceptron converéence theorem was proved by Block (1962) and Novikoff (1962).
The following version is based on that in Cristianini and Shawe-Taylor (2000).

Theorem 1 (Block, Novikoff). Let the training set S ={(x1,t1),...,(X,,, t,,)} be contained in
a sphere of radius R about the origin. Assume the dataset to be linearly separable, and let
Wopt » [Woptll = 1, define the hyperplane separating the samples, having functional margin
y > 0. We initialise the normal vector as wg = 0. The number of updates, k, of the perceptron
algorithms is then bounded by
2
e<(2F)
Y

(10)

Input ball: R = max]||x;||.
1

\/

Margin: 7 = miin yi f(z3)

Proof.

Proof. Though the proof can be done using the augmented normal vector and samples
defined in the beginning, the notation will be a lot easier if we introduce a different
augmentation: W = (w',b/R)" = (wy,...,wp,b/R)T and x = (x",R)" = (xy,...,xp,R)".

Proof (continued, growth of |w,|)

We first derive an upper bound on how fast the normal vector grows. As the hyper-
plane is unchanged if we multiply w by a constant, we can set # = 1 without loss of
generality. Let wy,; be the updated (augmented) normal vector after the kth error has
been observed.

A 2 A AT A

Wit lI” = (Wi + £:%;) " (Wi + £:%;) (11)
= W] Wy +] %; + 21 W) %; (12)

NETV TPy, AT
= [Wll™ + 1% 17 + 2%, X (13)

Since an update was triggered, we know that tiWchi <0, thus

NITYRRTIT) AT A2 L el 12

[Will™ + 1% 17 + 28W, %; < Wl + 1% (14)
o T2 2, p2

= [IWill” + (lixillI” + R7) (15)
< [IWll® + 2R?. (16)

This implies that W, ||> < 2kR?, thus

[Wiotl1” < 2(k +1)R?. (17)

Proot (confinued, projection on wg)

We then proceed to show how the inner product between an update of the normal
vector and W, increase with each update:

P A AT A AT o
WoptWk+1 = Wopt Wk + tiwoptxi (18)
N
> WoptWi + Y (19)
> (k+1)y, (20)
since Wlptwk > ky. We therefore have

2.2 (a7 A2 < e 21N (12 2 112

K7y ™ < (WoptWi)™ < [[Woptl TIIWll™ < 2kR7[[Wopl|7, (21)

where we have made use of the Cauchy-Schwarz inequality. As k*y? grows faster than
2kR?, Eq. (21) can hold if and only if

»R?

k< 2”"’Vopt” ? : (22)

Proof (confinued, combined bounds)

As b < R, we can rewrite the norm of the normal vector:

b2

”"Qfopt”2 — ”"Vopt”2 + ﬁ < ||"Vopt||2 +1=2. (23)
The bound on kK now becomes
R? [2R\’
)4)4

which therefore bounds the number of updates necessary to find the separating hyper-
plane. []

Locality or Sparsity of Computation

Minsky and Papert, 1969

Perceptron can’t do XOR classification
Perceptron needs infinite global
information to compute connectivity

Expanded Edition

(‘Jiﬁsl-\ ’ é)owasga
....... HooHd PRI
e S ReSa R
R ahih : % V%
+fﬁ: £4F j.@* g0 o ©
. $++++ f’ﬁt . @”0@&'0 .
RS L
%00@&'}0%&' x *5“%¢¢++
w0 g P E T £t
8 0059 R
R 8 oy
o 0056
Yo %6 g0 e *;E“’ﬁ +—ﬁ%++
: Class B : Class A
o5 0 i

Perceptrons

Locality or Sparsity is important:
Locality in time?

Locality in space?

Marvin Minsky

\\

Seymour Papert

Marvin 1.. Minsky
Seymour A. Papert

Convolutional Neural Networks: shift
Invariances and locality

@ Can be traced to Neocognitron of Kunihiko Fukushima
(1979)

@ Yann LeCun combined convolutional neural networks with
back propagation (1989)

@ Imposes shift invariance and locality on the weights

@ Forward pass remains similar

@ Backpropagation slightly changes — need to sum over the
gradients from all spatial positions

/

Biol. Cybernetics 36, 193-202 (1980)

Neocognitron: A Self-organizing Neural Network Model
for a Mechanism of Pattern Recognition
Unaffected by Shift in Position

Kunihiko Fukushima
NHK Broadcasting Science nuta, Sctagaya, Tokyo, Japan

=

USZ/ Uc/ U53 U,
H A L ; ¢ C3: 1. maps 16@10x D
! [—= INPUT 1: leature maps S4: 1. maps 16@5x5
p I3z 6@26:28 S2: 1. maps m layer
, . G@14x14 r ';Ei: layar QETPUT
| 1 |
| | i
] 1 1
! 1 I I r
| | I F
| |-I_
]
O >é e Just |
= = - | Ful cmr]nectjon | Gaussian connections
Convolutions

Subsampling Corvolutions Subsampling Full connection

V

Multilayer Perceptrons (MLP) and
Back-Propagation (BP) Algorithms

Rumelhart, Hinton, Williams (1986)
Learning representations by back-propagating
errors, Nature, 323(?): 533-536

BP algorithms as stochastic gradient descent
algorithms (Robbins—-Monro 1950; Kiefer-
Wolfowitz 1951) with Chain rules of Gradient maps

MLP classifies XOR, but the global hurdle on
topology (connectivity) computation still exists

NATURE VOL. 323 9 OCTOBER 1986

LETTERSTONATURE £2

Learning representations
by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hintont
& Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California,
San Diego, La Jolla, California 92093, USA

+ Department of Computer Science, Carnegic-Mellon University,
Pitisburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for
networks of like units. The adjusts
the weights of the connections in the network so as to minimize a
measure of the difference between the actual output vector of the
net and the desired output vector. As a result of the weight
adjustnients, internal ‘*hidden’ units which are not part of the input
or output come to represent important features of the task domain,
and the regularities in the task are captured by the interactions
of these units. The ability to create useful new features distin-
guishes back-propagation from eaclier, simpler methods such as
the perceptron-convergence procedure’.

There have been many attempts to design self-organizing
neural networks, The aim is to find a powerful synaptic
modification rule that will allow an arbitrarily connected neural
network to develop an internal structure that is appropriate for
a particular task domain. The task is specificd by giving the
desired state vector of the output units for each state vector of
the input units, If the input units are directly connected to the
output units it is relatively easy to find learning rules that
iteratively adjust the relative strengths of the connections so as
to progressively reduce the difference between the actual and
desired output vectors®. Learning becomes more interesting but

+Ta whom correspondence should be addressed

more difficult when we introduce hidden units whose actual or
desired states are not specified by the task. (In perceptrons,
there are ‘feature analysers’ between the input and output that
are not true hidden units because their input connections are
fixed by hand, so their states are completely determined by the
input vector: they do not learn representations.) The learning
procedure must decide under what circumstances the hidden
units should be active in order to help achieve the desired
input-output behaviour. This amounts to deciding what these
units should represent. We demonstrate that a general purpose
and relatively simple procedure is powerful enough to construct
iate internal i

The simplest form of the learning procedure is for layered
networks which have a layer of input units at the bottom; any
number of intermediate layers; and a layer of output units at
the top. Connections within a layer or from higher to lower
layers are forbidden, but connections can skip intermediate
layers. An input vector is presented to the network by setting
the states of the input units. Then the states of the units in each
layer are determined by applying equations (1) and (2) to the
connections coming from lower layers. All units within a layer
have their states set in paraliel, but different layers have their
states set sequentially, starting at the bottom and working
upwards until the states of the output units are determined

The total input, X;, to unit j is a linear function of the outputs,
y, of the AT THAATE conaaeied to 1 and of The Werghtsw,

on these connections

%=Ly [¢V]

Units can be given biases by introducing an extra input to each
unit which always has a value of 1. The weight on this extra
input is called the bias and is equivalent to a threshold of the
opposite sign. It can be treated just like the other weights.

A unit has a real-valued awm:u

function of its total input
=

1
1+e

(&)

BP Algorithm: Forward Pass

@ Cascade of repeated [linear operation followed by
coordinatewise nonlinearity]'s

@ Nonlinearities: sigmoid, hyperbolic tangent, (recently)
RelLU.

Algorithm 1 Forward pass

Input: x
Output: =,

g S 1: for{ =110 L do
TEKS 2: xp= fe(Wiozp—1 + by)
3: end for

BP algorithm = Gradient Descent Method

@ Training examples {z}}™ , and labels {y*}™_,
@ Output of the network {4},
@ Objective

1 1, .19
JAWit, {bi}) = Eziﬂyz—xﬂz (1)
i=1
Other losses include cross-entropy, logistic loss, exponential loss, etc.
@ Gradient descent

W ‘ p— —8J
Vi=Wi=ngy
S o
/. /) y\f“ l - l B Tl
/s) 8bl

In practice: use Stochastic Gradient Descent (SGD)

Derivation of BP: Lagrangian Mulfiplier
LeCun et al. 1988

Given n training examples (1;, y;) = (input,target) and L layers
@ Constrained optimization

min i1 |z (L) — vl

subjectto z;(¢) = fy [ngz- (£—1) },
i=1,...,n, ¢=1,...,L, z;(0) =1,
@ Lagrangian formulation (Unconstrained)

min L(W, x, B)
W,x,B

‘C(vav B) — Zf?:l {|xZ(L) - y’&”% +

> Bi(0)T (%(f) — Je [Weiﬂi (£ —1) D }

http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf

Background Info

back-propagation — derivation

o 9L

0B

Forward pass

xi(ﬁ):fgh/wxi(ﬁ—lﬂ f=1... L i=1,....n

A;(€)

A\

Qo g—g,Zg — [Vfg]B(ﬁ)
Backward (adjoint) pass
z2(L) =2V L [Ai(L)} (yi — (L))
() = V| L) Wh z(t+1) £=0,...,L—1

\

o W+ W+ 255

Weight update
Wy = We+ A0 z(0)zf (0 —1) 21 /)50

Long-Short-Term-Memory (LSTM, 1997)

» Sepp Hochreiter; Jurgen Schmidhuber (1997). "Long short-term
memory". Neural Computation. 9 (8): 1735-1780.
(https://www.bioinf.jku.at/publications/older/2604.pdf)

» BP can not train deep networks due to gradient vanishing problem etc.

» |ntroduction of short path to train deep networks without vanishing
gradient problem.

» This idea will come back to Convolutional Networks as ResNet in 2015.

| Write some new cell content | @

Forget some T
cell content [——__| c N

-~
_— \ t
R n
i 0,
k ()) ——| Output some cell content
Compute the L] ' G to the hidden state
forget gate B [o] (o]
v o \<

Compute the ® Compute the Compute the
input gate new cell content output gate

Neural Network Pointwise Vector
Layer Operation ~ Transfer

Decision Trees and Boosting

CLASSIFICATION
AND
REGRESSION
TrEES

HTHR
Stone

Breiman, Friedman, Olshen, Stone, (1983). CART

" The Boosting problem*’ (M. Kearns & L. Valiant):
Can a set of weak learners create a single strong

learnere (=NMNREETRNMEETE ?)
Breiman (1996): Bagging
Freund, Schapire (1997). AdaBoost

Breiman (2001): Random Forests

Support Vector Machine (Max-Margin
Classifier)

C e 2 2
minimizeg, g, ..., 5, 18]]7 == Z Bj
J

subject to y;(Bo + Bixi1 + ... + Bpxip) > 1 for all 4
xTﬂ + By =0

Separable two classes with Max-Margin Solution

L I 1 b 1 L |
-1.5 -1 -0.5 0 0.5 1 1.5 2

Vliadmir Vapnik, 1994

Convex optimization + Reproducing Kernel Hilbert Spaces (Grace Wahba etc.)

Simple SVM performs
as well as Multilayer
Convolutional Neural
Networks which need
careful tuning (LeNets)

Second dark era for NN:
2000s

Linear
[deslant] Linear
Pairwise

K-NN Euclidean
[deslant] K-NN Euclidean
40 PCA + quadratic

1000 RBF + linear
[16x16] Tangent Distance
SVM poly 4

RS-SVM poly 5

[dist] V-SVM poly 9

28x28-300-10
[dist] 28x28-300-10
[deslant] 20x20-300-10
28x28-1000-10

[dist] 28x28-1000-10
28x28-300-100-10

[dist] 28x28-300-100-10
28x28-500-150-10

[dist] 28x28-500~150-10

[16x16] LeNet-1
LeNet-4

LeNet-4 / Local
LeNet-4 / K-NN
LeNet-5

[dist] LeNet-5

[dist] Boosted LeNet-4

MNIST Challenge Test Error: SVM vs. CNN
LeCun et al. 1998

-—120—1->
——84—1
-—76-—%

I I B
I I R

I I

ﬂ
! | | |
IR N S

I 095

24

3.05

2.95

3.3

3.6

3.6

3.8

45

4.7

0 0.5 1 15 2

25

3.5

45

LeNet

C3: f. maps 16@10x10

INPUT g1@ 2fgitzusre maps S4: f. maps 16@5x5
32x32 S2: f. maps C5: layer :
6@14x14 I 120 o dager e

Full coanection ‘ Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

= Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, november 1998.

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input

3072

—>

Wax

10 x 3072
weights

activation
/4 10
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Convolution

__— 32x32x3 image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

) wiz+b

™~ 1 number:

Convolution Layer: a first (blue) filter

—

V
——0

32

32x32x3 iImage
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

V-

28

-

Convolution Layer: a second (green)

fllter

Vo

B

—

V
——0

32

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

y

b

28

Convolution Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

32

32

3

Convolution Layer

activation maps

y

28

A

We stack these up to get a “new image” of size 28x28x0!

A Closer Look at Convolution: stride=1

7 7
7X7 input (spatially) . .
assume 3x3 filter X7 input (spa_mally)

assume 3xa3 filter
7
7
7
7X7 input (spatially)
assume 3xa3 filter 7
7X7 input (spatially)
7 assume 3x3 filter
. => 5x5 output
7
7X7 input (spatially)

assume 3x3 filter

A Closer Look at Convolution: stride=2

! 7X7 input (spatially)
assume 3x3 filter
applied with stride 2
7
N
Output size:
! 7x7 input (spatially) F (N - F) / stride + 1
assume 3x3 filter
applied with stride 2 N eg.N=7,F=3:
F stride 1=>(7-3)1+1=5
7 stride2=>(7-3)2+1=3
stride 3=> (7-3)/3+1=2.33:\
7 . .
7X7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!
7

A Closer Look at Convolution: Padding

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
0
7x7 output!
0 in general, common to see CONV layers with

stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F =5 => zero pad with 2

F =7 =>zero pad with 3

ConvNet:

32

RelLU
e.g.6
5x5x3

32 filters

Stride =1
Padding =0

CONYV,

28

28

CONV,

RelLU
e.g. 10
ox5x6
filters

10

24

CONV,
RelLU

24

Formula: NewlmageSize =
floor((ImagesSize - Filter + 2*Padding)/Stride + 1)

Summary. To summarize, the Conv Layer:

» Accepts a volume of size W x H; x Dy
» Requires four hyperparameters:
Number of filters K,
their spatial extent F',
the stride .S,
the amount of zero padding P.
 Produces a volume of size Wy x Hs x D5 where:
o Wo=(W; —F+2P)/S+1
o Hy =(H; — F +2P)/S + 1 (i.e. width and height are computed equally by symmetry)
° D2 = I
« With parameter sharing, it introduces F' - F' - D, weights per filter, for a total of (F' - F'- Dy) - K weights
and K biases.
« In the output volume, the d-th depth slice (of size W5 x Hs) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

o

o

o

o

RelLU

@ Non-saturating function and therefore faster convergence
when compared to other nonlinearities

@ Problem of dying neurons

. ReLU

R(z) =max(0, z}

]
-10 -5 /] 5 10

Source: https://ml4a.github.io/mld4a/neural_networks/

Single depth slice

Max Pooling

11112 | 4
S| 6|7 |8
312|110
1123 | 4

max pool with 2x2 filters
and stride 2

2000-2010: The Era of SVM, Boosting, ...
as nights of Neural Networks

Resiricted Boltizman Machine
(Deep Learning)

__

i i : Decoder!

= Hinton and Salakhutdinov, Wy I%I o §
Reducing the Dimensionallity of =~ L temd g
Data with Neural Networks, , - 4y

Science, 2006

®» Reinvigorating research in Deep
Learning

Restricted Boltzmann Machines

Pretraining RBM:-initialized autoencoder Fine-tuning with backprop

lllustration of Hinton and Salakhutdinov 2006 by Lane
Mclntosh, copyright CS231n 2017

Around the year of 2012...

Speech Recognition: TIMIT Computer Vision: ImageNet

TIMIT Speech Recognition Dataset
P g @ ImageNet (subset):

25 | e 1.2 million training images
e 100,000 test images
e 1000 classes

225 @ ImageNet large-scale visual recognition Challenge

30%

Error 20 .q o

20%

15%

Error Rate in Image Classification(%)

17.5
10%
IHuman Performance Zone

5%
1 5 0% NEC-UIUC XRCE AlexNet ZFNet GoogLeNet ResNet SENet
(2010) (2011) (2012) (2013) (2014) (2015) (2017)

2004 2006 2008 201 0 201 2 201 4 Neural Network Architecture
Y ; source: https://www.linkedin.com/pulse/must-r@ad-path-breaking-papers-image-classification-muktabh-mayank
- -
Deep Learning

Deep Learning

Depth as function of year

28.2

152 layers

\ 16.4

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

[He et al., 2016]

AlexNet (2012): Architecture

@ 8 layers: first 5 convolutional, rest fully connected
@ RelLU nonlinearity

@ Local response normalization

@ Max-pooling

@ Dropout

w |

N

192 192 128

13

\ - ” “ 13 A
..... _'::_-_; 43\[%_3\ 1 43\ . e X
L N Ejia e 1T hs dense’| [dense "
4 N”,,L*° 1000
’ 192 192 128 Max

Max 128 Max pooling <
pooling pooling

=1
I~
a1

2048

Source: [Krizhevsky et al., 2012]

(b) After applying dropout.

Dropout

N

/5

Source: [Srivastava et al., 2014]

No7ANe

W/ RO XS
olp“.#ﬂﬂmouw.ﬁo
Q

i
e s @sves O
AR KD
..«ﬂsr ANY A :
m\ W Zag

AYL A\
B ﬁ\n’wﬁ 7%/
AN N\
t@%vf/ %«0”4)

(a) Standard Neural Net

@ Zero every neuron with probability 1 — p
@ At test time, multiply every neuron by p

N
-
2l
——
O
Z
X
0
<

VGG (2014) [Simonyan-Zisserman'14]

Deeper than AlexNet: 11-19 layers versus 8
No local response normalization
Number of filters multiplied by two every few layers

Spatial extent of filters 3 x 3 in all layers

Instead of 7 x 7 filters, use three layers of 3 x 3 filters
e Gain intermediate nonlinearity
e Impose a regularization on the 7 x 7 filters

22 % 224 %3 224 x 224 % 6d

112 x 128

56 56 x 256
77 /las x 28 x 512 TxTx512
ﬁ\] %Lp 1154096 131 1000

ﬂ convolution+ Rel.LT

7 max pooling
fully connected+HRel.U
[softmax

Source: https://blog.heuritech.com/2016/02/29/

GoogleNet [Szegedy ef al., 2014]

» 77 |ayers

» Efficient “Inception” module

=» No FC |layers

» Only 5 milion parameters!

» |2xless than AlexNet

» |[[SVRC'14 classification winner Incenti | -}
ption module |
(6.7% top 5 error) ﬁiﬁj

ResNet (2015) [HGRS-15] oz iopsamon e

@ Solves problem by adding m"“‘ [
skip connections B
@ Very deep: 152 layers ==
@ No dropout : T
@ Stride 2
@ Batch normalization R
|

®

£
“‘5‘-
#

weight layer

lrelu

weight layer

2
£f

Source: Deep Residual Learning for Image Recognition

Batch Normalization

original data zero-centered data normalized data

10 10

1g S0 =5 0 5 19 10 = 0 5 10

X -= np.mean(X, axis = 0) . X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)

Batch Normalization

Algorithm 2 Batch normalization [loffe and Szegedy, 2015]

Input: Values of = over minibatch z; ... x g, where z is a certain
channel in a certain feature vector
Output: Normalized, scaled and shifted values y; ... yg

. 1 B
10 = 5D o1 T
1 B
2: 0% = 5 Yy (wp — p)?
3: Tp = Lo [
Vit
4: yp = yIp + 0

@ Accelerates training and makes initialization less sensitive
@ Zero mean and unit variance feature vectors

BatchNorm at Test

Input: Values of x over a mini-batch: B = {1, };
Parameters to be learned: v, 8

Output: {y; = BN, g(z;)}

1 ™m
— — T // mini-batch mean
“B = ;
1 m
2 2 - v
Op — — T; — // mini-batch variance
B ;(1B)
Li — UB

T; — // normalize

Y; + YZ; + B = BN, g(z;) // scale and shift

Note: at test time BatchNorm layer
functions differently:

The mean/std are not computed
based on the batch. Instead, a single
fixed empirical mean of activations
during training is used.

(e.g. can be estimated during training
with running averages)

Complexity vs. Accuracy of Different
Networks

Top-1 accuracy [%]

Inception-v4
80 -
Inception-v3 ‘ ResNet-152
75 ResNet-50 . 5 VGG-16 VGG-19
1 ResNet-101
. ResMNet-34
70 - ’ ResNet-18
ooglLeNe
oo G LeNet
ENet
65 -
o BN-NIN
60 - 5M 35M 65M 95M 125M 1'_:-'5M
BM-AlexMNet
55 AlexNet 0
50 + r v] r ; ! T
0 5 10 15 20 25 30 35 40

Operations [G-Ops]

Inception-v4 = ResNet + Inception

“Inception” module:

» |nfroduced by Szegedy et al., 2014 in
GoogleNet

» |[LSVRC'14 classification winner (6.7%
top 5 error)

Apply parallel filter operations on the
input from previous layer:

®» Dimensionality reduction (1x1 conv)

» Multiple receptive field sizes for
convolution (1x1, 3x3, 5x5)

= Pooling operation (3x3) i

Concatenate all filter outputs]
together depth-wise ==

Filter
concatenation
5x5
C(convolution
1x1 1x1 3x3 max
t pooling
Previous Layer
I tion module
T T
IZT)
"""" B T g | | g
= = : - 1
x ’ =]] %
1 | o " 3
/ 19:) IT) B ‘l;"f;"
.:;T.. o o Avg Pocing ‘T’ ""'”w ~—
2 : . i

.....
56) (2s6)

31 Gonv

Games

May 11th, 1997

Computer won world champion of chess
(Deep Blue) (Garry Kasparoy)

Deep Blue in 1997

5,000 1
4,000 A
3,000 -
2,000 -
1,000 -

Elo rating

-1,000 4

-2,000 4

AlphaGo "ZERQO” D Silver et al. Nature 550, 354—-359 (2017) doi:10.1038/nature24270

— AlphaGo Zero 40 blocks
--- AlphaGo Master
--- AlphaGo Lee

0 5

10

15

20 25 30 35 40
Days

Reaching Human Performance Level In

Elo rating

Deep Learning Softwares

» Pytorch (developed by Yann LeCun and Facebook):

» Nhitp://pytorch.org/tutorials/

» Tensorflow (developed by Google based on Caffe)

» Nhitps://www.tensorflow.org/tutorials/

» Theano (developed by Yoshua Bengio)

» Nhitp://deeplearning.net/software/theano/tutorial/

» Keras (based on Tensorflow or Pytorch)

» hitps:// www.manning.com/books/deep-learning-with-
pyithon<a aid=keras&a bid=76564dff

Show some examples by jupyter
notelbooks

Thank you!

