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Recall: dimension reduction methods (using derived

inputs)

» When p is large, we may consider to regress on, not the
original inputs x, but some small number of derived features

P1, ..., Ok With k < p.

k
yi =0+ Z@'(ﬁj(X,’) +¢€, i=1,...,n
j=1

— ¢; can be linear: linear combinations of Xi,..., X,
— ¢; can be nonlinear: basis, kernels, neural networks, trees, etc.



Principal Component Regression (PCR)

For X = (X1,...,Xp),

» Define ¢; be the projection on the j-th eigenvector of
centralized data covariance ¥ = UAUT:

Z; = ¢5(X) = u] (X = )

» Principal Component Regression (PCR) model:

k
yi = 6o +29j2j+e,-, i=1,..,n.
j=1



Recall: Principal Component Analysis (PCA)

» Suppose there are n observations of p variables presented as
X = (x1,...x,)7 € R™P, where x| € RP.
» Define the sample covariance matrix
1 n
N T .
£ =) =)
A~ _ 1 .
where the sample mean fi = = % . x;.

» 3 has an eigenvalue decomposition
s = UNUT,

with UTU = I, (U = [u1,...,up]), A = diag(A1, ..., \p),
AM>X>... > ), >0.



Partial Least Square (PLS)

» In PCR, derived inputs ¢ (Z;) only depends on inputs X,
independent to y.
» PLS, exploits linear combinations of both X and y as derived
inputs.
» Assume that x;’s are standardized with zero mean and unit
variance. The PLS procedure is:
— First, let ¢y; = (xj,y) and Z; = > b1;x;, the first PLS
direction; A
— Regressing y on z; gives 6y;
— Orthogonalizing x; with respect to z; and repeating the
procedure above.



Partial Least Square (PLS)

Algorithm 3.3 Partial Least Squares.

1. Standardize each x; to have mean zero and variance one. Set y(© =
y1, and xJ(-O) =xj,j=1,....p.
2. Form=1,2,...,p

L (m—1)

m Z, 1 PmjX; =y

(a , where ¢ = (x;
(b

(c
(d

N

) y)-
) ém = (Zm,Y)/(Zm; Zm)-
) m) y(m 1) +0 Zy,.
) (m—1) (m) _ x;m—l) _

¥
Orthogonalize each x; with respect t0 z,,: X;

1
() 2t = 1.2,
3. Output the sequence of fitted vectors {§(™ 7. Since the {z,}}" are

linear in the original x;, so is ym = Xﬁpls(m). These linear coeffi-
cients can be recovered from the sequence of PLS transformations.

Figure: Partial Least Square Algorithm (Alg. 3.3 in ELS)
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About this chapter

Linear model is the most fundamental statistical model.

Its limitation is the mean response must be a linear function
of inputs/covariates.

This relation in practice often does not hold.

Nonlinear models are needed



The nonlinear models.

Polynomial regression.

Step functions

Regression splines
Smoothing splines

Local regression

Generalized additive models.
Trees, SVM, neural nets, ...



Polynomial regression
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Some general remark

» Rather than directly using inputs, we use polynomials, or step
functions, of the inputs as the “derived inputs”, in linear
regression.

» The approach can be viewed as derived inputs approach.
> More generally, the basis function approach.

» Starting from now, we only consider one input, for simplicity
of illustration.

Polynomial regression
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Data: (yi,x;),i =1,...,n.
The general model
yi = f(x;) + €

We can safely assume f(-) to be continuous:

— Stability: Any small change of inputs must have small
influence on outputs

Cannot search for arbitrary function f(-).

Limit the search space.

Continuous functions? (still infinite dimension but can be
approximated.

by Polynomial functions, or step functions, or certain basis
functions, ...

Polynomial regression
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» Linear model (restricting f(-) to be linear) :

yi = Bo+ Bixi + €

» Polynomial regression model (restricting f(-) to be polynomial
of degree p):

Vi = Bo + Bixi + Bax? + o+ BpxP + €

» This is a multiple linear regression model with p inputs:
P

(xiy X2, ..y xP).
> All linear regression results apply.
» Problem: how to determine the appropriate degree p.

» Drawback: difficult to fit locally highly varying functions.

Polynomial regression 13



The generalized linear model

» Generalized linear model:
E(Y|X)=g(X'B)

where g is a given link function
» Examples:
1. linear regression: g(x) = x
2. logistic regression: g(x) = 1/(1 + e™*), the sigmoid function.
Y =1or0.
3. Probit model: g(x) = ®(x), the cdf of N(0,1). Y =1 or 0.
4. Poisson model: g(x) = e*. Y is count data.
5 ..

» They can be extended to generalized non-linear model in the
same fashion.

Polynomial regression

14



logistic model with polynomial regression

> For binary response y;, coded the binary events as 1 and 0.

exp(Bo + Bixi + ... + BpxF)
1+ exp(Bo + Bixi + ... + BpxP)

plyi = 1|x) =

» This is essentially just logistic model with p inputs.

» All results on logistic model apply here.

Polynomial regression 15



Example: Wage dataset

» income (wage) survey information for males from the central
Atlantic region of the United States

» p = 12 variables, e.g. year, age, education, wages, logwages,
etc. Hybrid numeric and categorical variables.

» n = 3000 samples

» Consider numeric y as wages, or binary y of indicator:

wages> 250, 000

Polynomial regression

16



Degree-4 Polynomial
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Figure: 7.1. The Wage data. Left: The solid blue curve is a degree-4 polynomial of
year (in thousands of dollars) as a function of age, fit by least squares. The dotted
curves indicate an estimated 95% confidence interval. Right: We model the binary
event wage> 250 using logistic regression, again with a degree-4 polynomial. The
fitted posterior probability of wage exceeding $250,000 is shown in blue, along with an

estimated 95% confidence interval.

Polynomial regression 17



Step functions

Step functions
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Step functions (piecewise constant functions)

v

Step functions are piece-wise constants.

v

Continuous functions can be well approximated by step
functions using linear combinations.

v

Create the cutpoints

—00 =00 < <..<C < Cpt1 =00

v

The entire real line is cut into p + 1 intervals.

v

Set ci(x) = I(ck < x < ck41), for k=0, ..., p.

v

Use linear combination of cx(x) to approximate functions.

Step functions 19



Regression model based on step functions

Model:

v

yi = Bo+ Brci(xi) + ... + Bpcp(xi) + €.

v

Again a multiple linear regression model.

v

Same extension works for generalized linear model.

v

Difficulty in creating the number and locations of cutpoints

v

Drawback: non-smooth, not even continuous.

Step functions

20



Piecewise Constant
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Figure: 7.2. The Wage data. Left: The solid curve displays the fitted
value from a least squares regression of wage (in thousands of dollars)
using step functions of age. The dotted curves indicate an estimated
95% confidence interval. Right: We model the binary event wage> 250
using logistic regression, again using step functions of age. The fitted
posterior probability of wage exceeding $250,000 is shown, along with an
estimated 95% confidence interval.

Step functions
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Basis functions

> In general, let bi(x), ..., bp(x) be a set of basis functions.
» We limit the search space of f(-) to the space that is linearly
spanned by these basis functions:

P
{g(x) : g(x) = a0+ Y aibi(x)}
j=1

» The model is

yi = Po+ Pibi(xi) + ... + ,BPbp(X,') + €.

» Again a multiple linear regression model.

» The polynomial functions or step functions are special cases of
basis functions approach.

» Other choices: wavelet functions or Fourier series or regression
splines.

Step functions 22



Regression splines

Regression splines
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Piecewise polynomial functions

v

A hybrid of step function approach and polynomial function
approach.

» Cut the entire real line (or the range of values of covariates)
into sub-intervals same as step function approach.

» These cut-points are called knots.
» Use a polynomial function on each sub-interval.
> Still a multiple linear regression model.

» Step function approach is a special case of piecewise
polynomial of degree 0.

» Advantage: capture local variation; the degree of polynomial
is generally low.

» disadvantage: dis-continuity at knots.

Regression splines 24
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Figure 7.3. (Figure of previous page) Various piecewise
polynomials are fit to a subset of the Wage data, with a knot at
age= 50. Top Left: The cubic polynomials are unconstrained. Top
Right: The cubic polynomials are constrained to be continuous at
age= 50. Bottom Left: The cubic polynomials are constrained to

be continuous, and to have continuous first and second derivatives.

Bottom Right: A linear spline is shown, which is constrained to be
continuous

Regression splines
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Constraining the piecewise polynomial

» When fit the least squares, one can add constraints to the
least squares minimization

» The constraints can be such that the piecewise polynomial is
forced to be continuous at knots.

» The constraints can be stronger such that the piecewise
polynomial is forced to be differentiable at knots with
continuous first derivatives.

» The constraints can be stronger such that the piecewise
polynomial is forced to be differentiable at knots with
continuous second derivatives.

Regression splines 27



The effect of constraints

» Each constraint can be expressed as a linear equation.
> It reduces one degree of freedom.

» And reduces the complexity of the model.

Regression splines
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Spline functions

» Spline functions of degree d are piecewise polynomial
functions of degree d but have continuous derivatives up to
order d — 1 at knots.

» Cubic spline: piecewise cubic polynomials but are continuous
and have continuous 1st and second derivatives at knots.

» The degree of freedom of a cubic spline with K knots is:
4x(K+1)—3K=K+4.

Totally K 4+ 1 cubic functions, each has 4 free parameters, but
each of the K knot has 3 constraints on continuity, continuity
of 1st and 2nd derivatives.

Regression splines 29



Spline basis representation

» Suppose the K knots &1 < ... < &k are determined.

» We may find 1, bi(x), ..., b3 to form the space of cubic
splines with knots at &1, ..., &k.

> Then the spline regression model is

yi = Bo + Bib1(xi) + ... + Brrsbkis(xi) + €

» How to find these basis functions by(x)?

» Each must be a polynomial of order 3 and must be

continuous, continuous at 1st and 2nd derivates at all knots.

Regression splines
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Spline basis representation

» x , x? and x3 satisfy the requirement.

> Let
3 (x—¢&)?3 ifx>¢
X =
hx, &) = (x = &) = {0 otherwise
> h(x, &) also satisfy the requirement.

v

The basis functions of cubic splines can be

17X7X25X3a h(X7£1)7 ce0y h(X)fK)

Totally K + 4 dimension with K + 3 features.

v

Regression splines
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Natural spline

» The behavior of the cubic spline at boundary can be quite
unstable.

» Natural spline is cubic spline but require the function to be
linear on (—o0,&1] and [¢k, 00).

» With further restriction near boundary, natural spline
regression generally behaves better than cubic spline
regression.

Regression splines 32
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Figure: 7.4. A cubic spline and a natural cubic spline, with three knots,
fit to a subset of the Wage data. Natural spline has narrower confidence
intervals near boundary

Regression splines



Degree of Freedom

> Degree of freedom of natural spline with K knots is
K 4+ 4 — 4 = K as only 2 parameters on 2 boundary intervals,
but excluding the constant (absorbed in intercept), we usually
call it K — 1 degree of freedom.

» Example: natural cubic splines has 4 = K — 1 degree of
freedom corresponds to K =5 knots and K — 2 = 3 interior
knots.

Regression splines 34



Natural spline basis representation

» K knots &1, ...,&k, and K basis (as DF is K +4 — 4 = K).

» Recursive construction of Natural spline basis:
Ni(x) =1, No(x) = x, Niy2 = di(x) — dk—1(x)

where 3 5
dk(X): (X_é-k)_}__(x_é-K)_;'_
Ek — &k

» Regression function is

K
F(x) = BiNj(x)
j=1

Regression splines
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Natural Cubic Spline
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Figure: 7.5. A natural cubic spline function with four degrees of freedom
is fit to the Wage data. Left: A spline is fit to wage (in thousands of
dollars) as a function of age. Right: Logistic regression is used to model
the binary event wage> 250 as a function of age. The fitted posterior
probability of wage exceeding $250,000 is shown.

Regression splines
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Choice of number and locations of knots

» Usually choose equally spaced knots within the range of
values of inputs.

» If we know a function is highly varying somewhere, place more
knots there, so that the spline function is also highly varying
in the area.

» Try several choices of the number of knots, and use
validation/cross-validation approach to determine the best.

» Many statistics software provide automatic choice of number
and location of knots.

Regression splines
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Example: Wage data
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Figure: Ten-fold cross-validated mean squared errors for selecting the
degrees of freedom when fitting splines to the Wage data. The response
is wage and the predictor age. Left: A natural cubic spline. Right: A
cubic spline. It seems that three degrees of freedom for the natural spline
and four degrees of freedom for the cubic spline are quite adequate

Regression splines 38



Comparison with Polynomial Regression

» Regression splines often give superior results to polynomial
regression.

» Splines introduce flexibility by increasing the number of knots
but keeping the degree fixed.

» Polynomial increase model flexibility by increased order of
power function, which can be dangerously inapproximate for
moderately large or small X in absolute value.

» Polynomial function has poor boundary behavior.

» Natural spline is much better.

Regression splines 39



o = Natural Cubic Spline
8 7 — Polynomial
o
3 -
«
o
S
o «
&
2 g
3
o
S |
o |
s}

Figure: 7.7. On the Wage data set, a natural cubic spline with 15 degrees of freedom
is compared to a degree-15 polynomial. Polynomials can show wild behaviour,
especially near the tails.

Regression splines
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Smoothing spline

Smoothing spline
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Data Adaptive Choice of knots

» It remains an art to choose the number and locations of knots
in Natural Splines.

— Equally spaced knots within the range of values of inputs, or
— More knots in highly varying regions.

» Smoothing Spline will use a data adaptive choice of knots:

— Every sample will be a knot

— Knot selection is equivalent to sample selection

— It constructs reproducing kernel Hilbert spaces [Spline Models
for Observational Data, by Grace Wahba]

Smoothing spline 42



Smoothing spline

» With to minimize .

> (i — (i)

i=1
subject to certain smoothness constraints on f(-).

» The most common constraint is f the second derivative do
not vary much.

> A natural choice is: minimizng

n

Z(y; — f(x))? subject to/ f(x)%dx <'s

i=1

Smoothing spline
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Smoothing spline

» This is equivalent to

n
> (i — F(xi)* + )\/f(x)2dx (7.11)
i=1
where \ is the tuning parameter.
> The first term is loss; the second term is roughness penalty.
» The function f minimizing the above is called smoothing
spline.

» The function that minimize that loss+roughness penalty is a
natural cubic spline with data adaptive knots xi, ..., X,
(Exercise!).

Smoothing spline
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Smoothing spline representation

» n knots xi, ..., X, and n Natural spline basis N;.

> Regression function: f(x) = 3_7_; B;N;.

» Penalized least square

S 0= )2 A [ FOPax = lly = NBI + A3
i=1

where [Qn]jk = f Nj(t)Nk(t)dt
» Solution is A
Br=(N"N+2Q,)'NTy

» Prediction
§=NA =N(N"N+X2,)"'N"y =S,y

Smoothing spline
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The tuning parameter

v

A controls the amount of roughness penalty

> A = 0: no penalty, degree of freedom = n; overfit.

fOx) =yi

v

A = oo: infinity penalty; f must be linear, degree of freedom
=2.

f(x) = Bo + B1x;, the least squares estimate

v

What the degree of freedom when A\ > 0 and is finite?

v

We call it effective degree of freedom, denoted as df;.

Smoothing spline
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Effective degree of freedom

» The dfy is a measure of the flexibility of the smoothing
splinethe higher it is, the more flexible (and the lower-bias but
higher-variance) the smoothing spline

» Minimizing (7.11), let the fitted values be
y =Sy (7.12)

where § = (y1,...,yn) | is an n-vector, representing the fitted
values at xi, ..., Xn; and the sensitivity matrix Sy is an n X n
matrix, depending only on covariates.

» (Reproducing Kernel Hilbert Spaces, Wahba 1990) It can be
shown that the fitted values are linear functions of y.
» Then, the effective degree of freedom is

dfy = trace(S,)

Smoothing spline 47



Choice of )\

By cross validation.

For leave-one-out cross-validation (LOOCV), it can be shown

n

RSScv(A) = Z(y,- — f)f_")(xl_))z _ Z [Lf)\(x,)r

1—sy
i—1 i—1 il

where sy ;i is the i-th diagonal element of S,.
One fit does it all!
Recall that this is the same as linear regression. In fact,

Sec =H

where H = X(X7X)~1XT is the hat matrix in linear
regression.

Smoothing spline
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Fast computation of cross-validation |

» The leave-one-out cross-validation statistic is given by

L
_ 2
V=1 e
i=1
where e[ = y; — ), the observations are given by y1,..., yn, and

V17 is the predicted value obtained when the model is estimated
with the ith case deleted.

> Suppose we have a linear regression model Y = X3 +e. The
B = (XTX)"IXTY and H = X(X7X) !XT is the hat matrix. It
has this name because it is used to compute Y= X,@ = HY. If the
diagonal values of H are denoted by hy, ..., hy, then the
leave-one-out cross-validation statistic can be computed using

1< )
v = N ;[e//(l — )%,

where e; = y; — y; is predicted value obtained when the model is

estimated with all data included.
Smoothing spline 49



Fast computation of cross-validation Il

Proof

> Let X[;; and Y[; be similar to X and Y but with the ith row deleted
in each case. Let x| be the ith row of X and let

By = (X[ X))~ X[ Y

be the estimate of 3 without the ith case. Then e = y; — x,-TB[,-].

» Now X[lT.]X[,-] = (XTX —x;x[) and x| (X"X)~1x; = h;. So by the
Sherman-Morrison-Woodbury formula,

(XTX)"1x;x] (XTX)~!

(XX ™ = (XTX) 7! + 1—h

Smoothing spline 50



Fast computation of cross-validation IlI

Proof
> Also note that X[T]Y[,'] = XTY — xy;. Therefore

(XTX) " Ix;x] (XTX)~1

By = [(XTX)l T (XTY = xiy:)

1—h;
~ XTX 71X,’ ~
—p [ - ) - T+

=B - (XTX)x;ei/(1— h;)
» Thus
e =Yi— xiTﬁ[i]
—yi—xT [B - (XTX) e /(1 - )]
=e + hiei/(L — hi) = e&/(1 - hi)

Smoothing spline 51



Smoothing Spline
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Figure: 7.8. Smoothing spline fits to the Wage data. The red curve results from
specifying 16 effective degrees of freedom. For the blue curve, A was found
automatically by leave-one-out cross-validation, which resulted in 6.8 effective degrees
of freedom.

Smoothing spline



Local regression
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Local view

» Rather than considering fitting a function f to the data, we
just focus on a target point, say xp, and try to estimate
f(Xo) = 60.

» Consider a weight function, often called kernel function, k(t)

which is nonnegative symmetric and becomes small when |t
is large.

Local regression 54



Typical choice of (Nadaraya-Watson) kernels

» Uniform kernel: k(t) =1/2/(]t] <1).

» Triangle kernel: k(t) = (1 — [t])/(]t] < 1).
> Gaussian kernel: k(t) = e t/2/\/2

» Epanecknikov kernel: k(t) = 3/4(1 — t?),
» Logistic kernel: k(t) =1/(ef + et +2).

» Sigmoid kernel: k(t) = 2/(n(et + e7Y)).

» Note that this is NOT reproducing kernel!

Local regression 55



Local view: Nadaraya-Watson Kernel Regression

Use the kernel function to create weights on each observation
so that those with x; closer to xp gets more weights:
1 x— X
KiO _ Ek( i ; 0)
These weights create the “Localness” surrounding xg. h is the
bandwidth that is usually small.
We can consider minimization

> Kiolyi = Bo — Bu(xi — x0))°
i—1

Then, fo is the estimator of f(xo).

This estimator is local linear estimator, since locally around
Xo, we used linear function to approximate f(x).

One can certainly consider local polynomial estimation, by
considering local polynomial approximation.

Local regression
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Remark.

» Local linear estimate is also a linear function of y, and there
has expression of the form of (7.12).

» The degree of freedom controlled by the bandwidth.

» Small bandwidth results in small bias but high variance (and
high effective degree of freedom).

» Can be difficult to implement with high dimension data, by
the curse of dimensionality.

Local regression
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Local Regression
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Figure: 7.9. Local regression illustrated on some simulated data, where the blue
curve represents f(x) from which the data were generated, and the light orange curve
corresponds to the local regression estimate f(x). The orange colored points are local
to the target point xp, represented by the orange vertical line. The yellow bell-shape
superimposed on the plot indicates weights assigned to each point, decreasing to zero
with distance from the target point. The fit f(xo) at xp is obtained by fitting a
weighted linear regression (orange line segment), and using the fitted value at xp
(orange solid dot) as the estimate #(x).

Local regression
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Generalized additive model
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v

With p inputs, the general model should be
yi = f(X,'l, ...,X,'p) + €.

Difficult to model multivariate nonlinear function.

v

v

Restrict search space to

{f(x1, .., %p) : fi(x1) + Fa(x2) + ...Tp(xp) }

v

The multivariate function is simple sum of nonlinear function
of each variable.

This leads to the generalized additive model (GAM).

v

Generalized additive model
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The GAM

The model:

v

v

The statistical estimation of fi, ..., f, can be solved by taking
advantage of

v

1. the methodologies for nonlinear model for single input case.

v

2. a backfit algorithm.

Generalized additive model
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The backfitting algorithm

» Initialize the estimator of f1, ..., f,, denoted as 7?1, - fp.
» Given estimates 1?1, . fk,l, ka, fp, compute
Vi =yi — fi(xi1) = fem1(Xik—1) — fepr(Xi k1) — - — Fo(Xip)

» Run nonlinear regression with response y; and single input Xix,
to obtain the estimate of f;. Update f; by this estimate.

» Continue with the update of f4;1. (If Kk = p continue the
update of f1.)

» Repeat till convergence.

Generalized additive model
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Example: Wage data
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Figure: 1.1. Left: wage as a function of age. On average, wage increases
with age until about 60 years of age, at which point it begins to decline.
Center: wage as a function of year. There is a slow but steady increase of
approximately 10,000 in the average wage between 2003 and 2009.
Right: Boxplots displaying wage as a function of education, with 1
indicating the lowest level (no high school diploma) and 5 the highest
level (an advanced graduate degree).
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Example: Wage data
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Figure: 7.11. For the Wage data, plots of the relationship between each
feature and the response, wage, in the fitted model (7.16). Each plot
displays the fitted function and pointwise standard errors. The first two
functions are natural splines in year and age, with four and five degrees
of freedom, respectively. The third function is a step function, fit to the
qualitative variable education.
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Figure: 7.12. Details are as in Figure 7.11, but now f; and £, are
smoothing splines with four and five degrees of freedom, respectively.
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Pros and Cons of GAM

» It is nonlinear (potentially more accurate than linear if linear
relation is not true)
> Additivity:
— examine the effect of each x; on the response y while holding
all of the other variables fixed;
— inference is possible;
— the smoothness of the function f; for the variable X; can be
summarized via degrees of freedom.
> Interactions are missed: add low-dimensional interaction
functions of the form fj(Xj, Xk), or high order interactions.
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GAM also work for generalized linear model

> In general we have
E(Y|X) =g(A(X1)+ ... + f(Xp))

where g is known link function.

» For example, for logistic GAM:

- B exp(f(X1) + ... + f(Xp))
P(Y =1|X) = 1+ exp(A(X1) + ... :fp(pxp))
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Logistic GAM
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Figure: 7.13. For the Wage data, the logistic regression GAM given in
(7.19) is fit to the binary response |(wage> 250) Each plot displays the
fitted function and pointwise standard errors. The first function is linear
in year, the second function a smoothing spline with five degrees of
freedom in age, and the third a step function for education. There are
very wide standard errors for the first level <HS of education.
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