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Training error is not sufficient enough

I Training error easily computable with training data.

I Because of possibility of over-fit, it cannot be used to properly
assess test error.

I It is possible to “estimate” the test (prediction) error, by, for
example, making adjustments of the training error.

– The adjusted R-squared, Mallow’s Cp, AIC, BIC, etc serve
this purpose.

I General purpose method of prediction/test error estimate:
validation.
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Ideal scenario for performance assessment

I In a “data-rich” scenario, we can afford to separate the data
into three parts:

– training data: used to train various models.
– validation data: used to assess the models and identify the

best.
– test data: test the results of the best model.

I Usually, people also call validation data or hold-out data as
test data.
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Validation set approach
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Figure: 5.1. A schematic display of the validation set approach. A set of
n observations are randomly split into a training set (shown in blue,
containing observations 7, 22, and 13, among others) and a validation set
(shown in beige, and containing observation 91, among others). The
statistical learning method is fit on the training set, and its performance
is evaluated on the validation set.
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Example: Auto Data

I A non-linear relationship between mpg and horsepower

I mpg ∼ horsepower + horsepower2 is better than mpg ∼
horsepower.

I Should we add higher terms into the model? E.g. cubic or
even higher?

I One can check the p-values of regression coeffeicients to
answer the question.

I In fact, a model selection problem, and we can use validation
set approach.
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Example: Auto Data

I randomly split the 392 observations into two sets:

I a training set containing 196 of the data points, and a
validation set containing the remaining 196 observations.

I fit various regression models on the training sample

I The validation set error rates result from evaluating their
performance on the validation sample.

I Here we MSE as a measure of validation set error, are shown
in the left-hand panel of Figure 5.2.
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Validation Errors
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Figure: 5.2. The validation set approach was used on the Auto data set
in order to estimate the test error that results from predicting mpg using
polynomial functions of horsepower. Left: Validation error estimates for a
single split into training and validation data sets. Right: The validation
method was repeated ten times, each time using a different random split
of the observations into a training set and a validation set. This illustrates
the variability in the estimated test MSE that results from this approach.
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Example: Auto Data

I The validation set MSE for the quadratic fit is considerably
smaller than for the linear fit.

I Validation set MSE for the cubic fit is actually slightly larger
than for the quadratic fit.

I This implies that including a cubic term in the regression does
NOT lead to better prediction than simply using a quadratic
term.

I Repeat the process of randomly splitting the sample set into
two parts, we will get a somewhat different estimate for the
test MSE.
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Example: Auto Data

I A quadratic term has a dramatically smaller validation set
MSE than the model with only a linear term.

I Not much benefit in including cubic or higher-order
polynomial terms in the model.

I Each of the ten curves results in a different test MSE estimate
for each of the ten regression models considered.

I No consensus among the curves as to which model results in
the smallest validation set MSE.

I Based on the variability among these curves, all that we can
conclude with any confidence is that the linear fit is not
adequate for this data, and quadratic fit is preferred.
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A summary

I The validation estimate of the test error rate can be highly
variable, depending on the random split.

I Only a subset of the observations–the training set are used to
fit the model.

I Statistical methods tend to perform worse when trained on
fewer observations.

I The validation set error rate may tend to overestimate the
test error rate for the model fit on the entire data set.
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Cross validation: overcome the drawback of validation

set approach

I Our ultimate goal is to produce the best model with best
prediction accuracy.

I Validation set approach has a drawback of using ONLY
training data to fit model.

I The validation data do not participate in model building but
only model assessment.

I A “waste” of data.

I We need more data to participate in model building.
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The leave-one-out cross-validation

I Suppose the data contain n data points.

I First, pick data point 1 as validation set, the rest as training
set. fit the model on the training set, evaluate the test error,
on the validation set, denoted as say MSE1.

I Second, pick data point 2 as validation set, the rest as
training set. fit the model on the training set, evaluate the
test error on the validation set, denoted as say MSE2.

I ..... (repeat the procedure for all data point.)

I Obtain an estimate of the test error by combining the MSEi ,
i =, ..., n:

CV(n) =
1

n

n∑
i=1

MSEi
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LOOCV
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Figure: 5.3. A schematic display of LOOCV. A set of n data points is
repeatedly split into a training set (shown in blue) containing all but one
observation, and a validation set that contains only that observation
(shown in beige). The test error is then estimated by averaging the n
resulting MSE’s. The first training set contains all but observation 1, the
second training set contains all but observation 2, and so forth.
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Pros and Cons of LOOCV

I Advantages:

– Far less bias, since the training data size (n− 1) is close to the
entire data size (n).

– One single test error estimate (thanks to the averaging),
without the variability in validation set approach.

I Disadvantages:

– A disadvantage: could be computationally expensive since the
model need to be fit n times.

– The MSEi may be too much correlated.
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K-fold cross validation

I Divide the data into K subsets, usually of equal or similar sizes
(n/K ).

I Treat one subset as validation set, the rest together as a
training set. Run the model fitting on training set. Calculate
the test error estimate on the validation set, denoted as
MSEi , say.

I Repeat the procedures over every subset.

I Average over the above K estimates of the test errors, and
obtain

CV(K) =
1

K

K∑
i=1

MSEi

I Leave-One-Out Cross Validation (LOOCV) is a special case of
K-fold cross validation, actually n-fold cross validation.
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K-fold cross validation
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Figure: 5.5. A schematic display of 5-fold CV. A set of n observations is
randomly split into five non-overlapping groups. Each of these fifths acts
as a validation set (shown in beige), and the remainder as a training set
(shown in blue). The test error is estimated by averaging the five
resulting MSE estimates.
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*Cross Validation in Time Series

Figure: A schematic illustration for 4-fold cross validation for time series.
For time-series models, cross-validation is on a rolling basis. Start with a
small subset of data for training purpose, forecast for the later data
points and then checking the accuracy for the forecasted data points.
The same forecasted data points are then included as part of the next
training dataset and subsequent data points are forecasted.
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K-fold cross validation

I Common choices of K : K = 5 or K = 10.
I Advantage over LOOCV:

– Computationally lighter, especially for complex model with
large data.

– Likely less variance.

I Advantage over validation set approach: Less variability
resulting from the data-split, thanks to the averaging.
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LOOCV applied to Auto data:
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Figure: 5.4. Cross-validation was used on the Auto data set in order to
estimate the test error that results from predicting mpg using polynomial
functions of horsepower. Left: The LOOCV error curve. Right: 10-fold
CV was run nine separate times, each with a different random split of the
data into ten parts. The figure shows the nine slightly different CV error
curves.
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*LOOCV in linear model

I Consider linear model:

yi = xTi β + εi , i = 1, .., n

and the fitted values ŷi = xTi β̂, where β̂ is the least squares
estimate of β based on all data (xi , yi ), i = 1, ..., n.

I Using LOOCV, the

CV(n) =
1

n

n∑
i=1

(yi − ŷ
(i)
i )2

where ŷ
(i)
i = xTi β̂

(i) is the model predictor of yi based on the
linear model fitted by all data except (xi , yi ) (delete one), i.e.,
β̂(i) is the least squares estimate of β based on all data but
(xi , yi ).
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Simple Formula of LOOCV in linear model

I In fact, one does NOT need to compute least squares
estimate n times.

I Easy formula:

Theorem

CV(n) =
1

n

n∑
i=1

(yi − ŷi
1− hi

)2
where ŷi is the fitted values of least squares method based on all
data, hi is the leverage.
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Definition: Leverage

I Recall the hat matrix

H = X(XTX)−1XT as ŷ = Hy .

Let hij = xTi (XTX)−1xj be the (i , j) elements of H.

I The leverage of the i-th observation is just the i-th diagonal
element of H, denoted as hii .

I A high leverage implies that observation is quite influential.
Note that the average of hii is (p + 1)/n.

I E.g., if hii is greater than 2(p + 1)/n, twice of the average, is
generally considered large.
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Why? Fast computation of cross-validation I

I The leave-one-out cross-validation statistic is given by

CV =
1

N

N∑
i=1

e2[i ],

where e[i ] = yi − ŷ[i ], and ŷ[i ] is the predicted value obtained when
the model is estimated with the ith case deleted.

I Suppose we have a linear regression model Y = Xβ + e. The
β̂ = (XTX)−1XTY and H = X(XTX)−1XT is the hat matrix. It
has this name because it is used to compute Ŷ = Xβ̂ = HY. If the
diagonal values of H are denoted by h1, . . . , hN , then the
leave-one-out cross-validation statistic can be computed using

CV =
1

N

N∑
i=1

[ei/(1− hi )]2,

where ei = yi − ŷi is predicted value obtained when the model is
estimated with all data included.
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Fast computation of cross-validation II

Proof
I Let X[i ] and Y[i ] be similar to X and Y but with the ith row deleted

in each case. Let xTi be the ith row of X and let

β̂[i ] = (XT
[i ]X[i ])

−1XT
[i ]Y[i ]

be the estimate of β without the ith case. Then e[i ] = yi − xTi β̂[i ].

I Now XT
[i ]X[i ] = (XTX− xixTi ) and xTi (XTX)−1xi = hi . So by the

Sherman-Morrison-Woodbury formula,

(XT
[i ]X[i ])

−1 = (XTX)−1 +
(XTX)−1xixTi (XTX)−1

1− hi
.
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Fast computation of cross-validation III

Proof
I Also note that XT

[i ]Y[i ] = XTY − xiyi . Therefore

β̂[i ] =

[
(XTX)−1 +

(XTX)−1xixTi (XTX)−1

1− hi

]
(XTY − xiyi )

= β̂ −
[

(XTX)−1xi
1− hi

]
[yi (1− hi )− xTi β̂ + hiyi ]

= β̂ − (XTX)−1xiei/(1− hi )

I Thus

e[i ] = yi − xTi β̂[i ]

= yi − xTi

[
β̂ − (XTX)−1xiei/(1− hi )

]
= ei + hiei/(1− hi ) = ei/(1− hi ).
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Simplicity of LOOCV in linear model

I One fit (with all data) does it all!

I The prediction error rate (in terms of MSE) is just weighted
average of the least squares fit residuals.

I High leverage point gets more weight in prediction error
estimation.
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Inference of Estimate Uncertainty

I Suppose we have data x1, ..., xn, representing the ages of n
randomly selected people in HK.

I Use sample mean x̄ to estimate the population mean µ, the
avearge age of all residents of HK.

I How to justify the estimation error x̄ − µ? Usually by
t-confidence interval, test of hypothesis.

I They rely on normality assumption or central limit theorm.

I Is there another reliable way?

I Just bootstrap:
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Bootstrap: a resampling procedure.

I Take n random sample (with replacement) from x1, ..., xn.
I calculate the sample mean of the “re-sample”, denoted as x̄∗1 .
I Repeat the above a large number B times. We have

x̄∗1 , x̄
∗
2 , ..., x̄

∗
B .

I Use the distribution of x̄∗1 − x̄ , ..., x̄∗B − x̄ to approximate that
of x̄ − µ.

Figure: Bootstrap is firstly developed by Bradley Efron (1979)
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I Essential idea: Treat the data distribution (more professionally
called empirical distribution) as a proxy of the population
distribution.

I Mimic the data generation from the true population, by trying
resampling from the empirical distribution.

I Mimic your statistical procedure (such as computing an
estimate x̄) on data, by doing the same on the resampled
data.

I Evaluate your statistical procedure (which may be difficult
because it involves randomness and the unknown population
distribution) by evaluating your analogue procedures on the
re-samples.
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Example

I X and Y are two random variables (e.g. stocks). Then
minimizer of var(αX + (1− α)Y )) (e.g. minimal risk) is

α =
σ2Y − σXY

σ2X + σ2Y − 2σXY

I Data: (X1,Y1), ..., (Xn,Yn).

I We can compute sample variances and covariances.

I Estimate α by

α̂ =
σ̂2Y − σ̂XY

σ̂2X + σ̂2Y − 2σ̂XY

I How to evaluate α̂− α, (remember α̂ is random and α is
unknown).

I Use Bootstrap
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Example

I Sample n resamples from (X1,Y1), ..., (Xn,Yn), and compute
the sample the sample variance and covariances for this
resample. And then compute

α̂∗ =
(σ̂∗Y )2 − σ̂∗XY

(σ̂∗X )2 + (σ̂∗Y )2 − 2σ̂∗XY
I Repeat this procedure, and we have α̂∗1, ..., α̂

∗
B for a large B.

I Use the distribution of α̂∗1 − α̂, ..., α̂∗B − α̂ to approximate the
distribution of α̂− α.

I For example, we can use

1

B

B∑
j=1

(α̂∗j − α̂)2

to estimate E(α̂− α)2.
I Use Bootstrap
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Figure 5.11. A graphical illustration of the bootstrap approach on
a small sample containing n = 3 observations. Each bootstrap
data set contains n observations, sampled with replacement from
the original data set. Each bootstrap data set is used to obtain an
estimate of α.
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Figure: 5.10. Left: A histogram of the estimates of α obtained by
generating 1,000 simulated data sets from the true population. Center: A
histogram of the estimates of α obtained from 1,000 bootstrap samples
from a single data set. Right: The estimates of α displayed in the left
and center panels are shown as boxplots. In each panel, the pink line
indicates the true value of α.
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Interpretability vs. Prediction

Flexibility
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Figure: 2.7. As models become flexible, interpretability drops. Occam
Razor principle: Everything has to be kept as simple as possible, but not
simpler (Albert Einstein).
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About this chapter

I Linear model already addressed in detail in Chapter 3.

Y = β0 + β1X1 + ...+ βpXp + ε

I Model assessment: cross-validation (prediction) error in
Chapter 5.

I This chapter is about model selection for linear models.

I The model selection techniques can be extended beyond linear
models.

I Details about AIC, BIC, Mallow’s Cp mentioned in Chapter 3.
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Feature/variable selection

I Not all existing input variables are useful for predicting the
output.

I Keeping redundant inputs in model can lead to poor
prediction and poor interpretation.

I We consider three ways of variable/model selection:

– Subset selection.
– Shrinkage/regularization: constraining some regression

parameters to 0, e.g. Ridge and Lasso.
– Dimension reduction: actually using the “derived inputs” by,

for example, principle component approach.
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Best subset selection

I Exhaust all possible combinations of inputs.

I With p variables, there are 2p many distinct combinations.

I Identify the best model among these models.
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Pros and Cons of best subset selection

I Seems straightforward to carry out.

I Conceptually clear.

I The search space too large (2p models), may lead to overfit.

I Computationally infeasible: too many models to run.

I if p = 20, there are 220 > 1000, 000 models.
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Forward stepwise selection

I Start with the null model.

I Find the best one-variable model.

I With the best one-variable model, add one more variable to
get the best two-variable model.

I With the best two-variable model, add one more variable to
get the best three-variable model.

I ....

I Find the best among all these best k-variable models.
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Pros and Cons of forward stepwise selection

I Less computation

I Less models (
∑p−1

k=0(p − k) = 1 + p(p + 1)/2 models).

I (if p = 20, only 211 models, compared with more than 1
million models for best subset selection).

I No problem for first n-steps if p > n.

I Once an input is in, it does not get out.
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Backward stepwise selection

I Start with the largest model (all p inputs in).

I Find the best (p − 1)-variable model, by reducing one from
the largest model

I Find the best (p − 2)-variable model, by reducing one variable
from the best (p − 1)-variable model.

I Find the best (p − 3)-variable model, by reducing one variable
from the best (p − 2)-variable model.

I ....

I Find the best 1-varible model, by reducing one variable from
the best 2-variable model.

I The null model.
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Pros and Cons of backward stepwise selection

I Less computation

I Less models (
∑p−1

k=0(p − k) = 1 + p(p + 1)/2 models).

I (if p = 20, only 211 models, compared with more than 1
million models for best subset selection).

I Once an input is out, it does not get in.

I No applicable to the case with p > n.
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Find the best model based on prediction error.

I General approach by Validation/Cross-Validation (addressed
in ISLR Chapter 5).

I Model-based approach by Adjusted R2, AIC, BIC or Cp (ISLR
Chapter 3).
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R-squared

I Residue

ε̂i = yi − β̂0 −
p∑

j=1

β̂jxij

I Residual Sum of Squares as the Training Error

RSS =
n∑

i=1

ε̂2i =
n∑

i=1

(yi − β̂0 −
p∑

j=1

β̂jxij)
2

I R-squared

R2 = 1− RSS

TSS

where the Total Sum of Squares TSS :=
∑n

i=1(yi − ȳ)2.
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Example: Credit data
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Figure: 6.1. For each possible model containing a subset of the ten
predictors in the Credit data set, the RSS and R2 are displayed. The red
frontier tracks the best model for a given number of predictors, according
to RSS and R2. Though the data set contains only ten predictors, the
x-axis ranges from 1 to 11, since one of the variables is categorical and
takes on three values, leading to the creation of two dummy variables.
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The issues of R-squared

I The R-squared is the percentage of the total variation in
response due to the inputs.

I The R-squared reflects the training error.

I However, a model with larger R-squared is not necessarily
better than another model with smaller R-squared when we
consider test error!

I If model A has all the inputs of model B, then model A’s
R-squared will always be greater than or as large as that of
model B.

I If model A’s additional inputs are entirely uncorrelated with
the response, model A contain more noise than model B. As a
result, the prediction based on model A would inevitably be
poorer or no better.
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a) Adjusted R-squared

I The adjusted R-squared, taking into account of the degrees
of freedom, is defined as

adjusted R2 = 1− RSS/(n − p − 1)

TSS/(n − 1)

I With more inputs, the R2 always increase, but the adjusted
R2 could decrease since more inputs is penalized by the
smaller degree of freedom of the residuals.

I Maximizing the adjusted R-squared, is equivalent to

minimize RSS/(n − p − 1).
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b) Mallow’s Cp

I Recall that our linear model (2.1) has p covariates, and
σ̂2 = RSS/(n − p − 1) is the unbiased estimator of σ2.

I Suppose we use only d predictors and RSS(d) is the residual
sum of squares for the linear model with d predictors.

I The statistic of Mallow’s Cp is defined as

Cp =
RSS(d) + 2d σ̂2

n

I The smaller Mallows’ Cp is, the better the model is.

I The following AIC is more often used, despite that Mallows’
Cp and AIC usually give the same best model.
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c) AIC

I AIC stands for Akaike information criterion, defined as

AIC =
RSS(d) + 2d σ̂2

nσ̂2
,

for a linear model with d ≤ p predictors, where
σ̂2 = ‖y − ŷ‖2/(n − p − 1) is the unbiased estimator of σ2

using the full model.

I AIC aims at maximizing the expected predictive likelihood (or
minimizing the expected predictive error). The model with the
smallest AIC is preferred.
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d) BIC

I BIC stands for Schwarz’s Bayesian information criterion,
which is defined as

BIC =
RSS(d) + d σ̂2 log(n)

nσ̂2
,

for a linear model with d inputs.

I The model with the smallest BIC is preferred. The derivation
of BIC results from Bayesian statistics and has Bayesian
interpretation. It is seen that BIC is formally similar to AIC.
The BIC penalizes more heavily the models with more number
of samples, log n > 2.
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Penalized log-likelihood

I In general AIC/BIC are penalized maximum likelihood, e.g.
BIC aims

minimize− (log likelihood) + d log(n)/n

where, the first term is called deviance (some refer it to
−2 log likelihood). In the case of linear regression with
normal errors, the deviance is the same as log(s2).
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Example: credit dataset

Variables Best subset Forward stepwise

one rating rating
two rating, income rating, income
three rating, income, student rating, income, student
four cards, income, student, limit rating, income, student, limit

TABLE 6.1. The first four selected models for best subset selection
and forward stepwise selection on the Credit data set. The first
three models are identical but the fourth models differ.
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Example
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Figure: 6.3. For the Credit data set, three quantities are displayed for the
best model containing d predictors, for d ranging from 1 to 11. The
overall best model, based on each of these quantities, is shown as a blue
cross. Left: Square root of BIC. Center: Validation set errors (75%
training data). Right: 10-fold Cross-validation errors.
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The one standard deviation rule

I In the above figure, model with 6 inputs do not seem to be
much better than model with 4 or 3 inputs.

I Keep in mind the Occam’s razor: Choose the simplest model
if they are similar by other criterion.
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The one standard deviation rule

I Calculate the standard error of the estimated test MSE for
each model size,

I Consider the models with estimated test MSE of one standard
deviation within the smallest test MSE.

I Among them select the one with the smallest model size.

I (Apply this rule to the Example in Figure 6.3 gives the model
with 3 variable.)
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Ridge Regression

I The least squares estimator β̂ is minimizing

RSS =
n∑

i=1

(yi − β0 −
p∑

j=1

βjxij)
2

I The ridge regression β̂Rλ is minimizing

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2 + λ

p∑
j=1

β2j

where λ ≥ 0 is a tuning parameter.
I The first term measures goodness of fit, the smaller the better.
I The second term λ

∑p
j=1 β

2
j is called shrinkage penalty, which

shrinks βj towards 0.
I The shrinkage reduces variance (at the cost increased bias)!
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Tuning parameter λ.

I λ = 0: no penalty, β̂R0 = β̂LS .

I λ =∞: infinity penalty, β̂R∞ = 0.

I Large λ: heavy penalty, more shrinkage of the estimator.

I Note that β0 is not penalized.
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Remark.

I If p > n, ridge regression can still perform well by trading off
a small increase in bias for a large decrease in variance.

I Ridge regression works best in situations where the least
squares estimates have high variance.

I Ridge regression also has substantial computational
advantages

I Closed form estimator

β̂Rλ = (XTX + λI )−1XTy

where I is p + 1 by p + 1 diagonal with diagonal elements
(0, 1, 1, ..., 1).
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Example: Ridge Regularization Path in Credit data

1e−02 1e+00 1e+02 1e+04

−
3
0
0

−
1
0
0

0
1
0
0

2
0
0

3
0
0

4
0
0

S
ta

n
d

a
rd

iz
e

d
 C

o
e

ff
ic

ie
n

ts

Income
Limit
Rating
Student

0.0 0.2 0.4 0.6 0.8 1.0

−
3
0
0

−
1
0
0

0
1
0
0

2
0
0

3
0
0

4
0
0

S
ta

n
d

a
rd

iz
e

d
 C

o
e

ff
ic

ie
n

ts

λ ‖β̂R
λ ‖2/‖β̂‖2

Figure: 6.4. The standardized ridge regression coefficients are displayed
for the Credit data set, as a function of λ and ‖β̂R

λ ‖2/‖β̂‖2. Here

‖a‖2 =
√∑p

j=1 a
2
j .
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The Lasso

I Lasso stands for Least Absolute Shrinkage and Selection
Operator.

I The Lasso estimator β̂Lλ is the minimizer of

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2 + λ

p∑
j=1

|βj |

I We may use ‖β‖1 =
∑p

j=1 |βj |, which is the l1 norm.

I LASSO often shrinks coefficients to be identically 0. (This is
not the case for ridge)

I Hence it performs variable selection, and yields sparse models.
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Example: Lasso Path in Credit data.
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Figure: 6.6. The standardized lasso coefficients on the Credit data set are
shown as a function of λ and ‖β̂L

λ‖1/‖β̂‖1.
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Another formulation

I For Lasso: Minimize

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2 subject to

p∑
j=1

|βj | ≤ s

I For Ridge: Minimize

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2 subject to

p∑
j=1

β2j ≤ s

I For l0: Minimize
n∑

i=1

(yi − β0 −
p∑

j=1

βjxij)
2 subject to

p∑
j=1

I (β 6= 0) ≤ s

l0 method penalizes number of non-zero coefficients. A
difficult (NP-hard) problem for optimization.
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Variable selection property for Lasso

Figure: 6.7. Contours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint
regions, |β1|+ |β2| ≤ s and β2

1 + β2
2 ≤ s , while the red ellipses are the

contours of the RSS.
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Simple cases

I Consider the simple model yi = βi + εi , i = 1, ..., n and n = p.
Then,

– The least squares: β̂j = yj ;

– The ridge: β̂R
j = yj/(1 + λ);

– The Lasso: β̂L
j = sign(yj)(|yj | − λ/2)+.

I Slightly more generally, suppose input columns of the X are
standardized to be mean 0 and variance 1 and are orthogonal.

β̂Rj = β̂LSEj /(1 + λ)

β̂Lj = sign(β̂LSEj )(|β̂LSEj | − λ/2)+

for j = 1, ..., p.
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Example
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Figure: 6.10. The ridge regression and lasso coefficient estimates for a
simple setting with n = p and X a diagonal matrix with 1 on the
diagonal. Left: The ridge regression coefficient estimates are shrunken
proportionally towards zero, relative to the least squares estimates. Right:
The lasso coefficient estimates are soft-thresholded towards zero.
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Example for curse of dimensionality
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Figure: 6.24. see next page
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Figure 6.24. The lasso was performed with n = 100 observations
and three values of p, the number of features. Of the p features,
20 were associated with the response. The boxplots show the test
MSEs that result using three different values of the tuning
parameter λ in (6.7). For ease of interpretation, rather than
reporting , the degrees of freedom are reported; for the lasso this
turns out to be simply the number of estimated non-zero
coefficients. When p = 20, the lowest test MSE was obtained with
the smallest amount of regularization. When p = 50, the lowest
test MSE was achieved when there is a substantial amount of
regularization. When p = 2, 000 the lasso performed poorly
regardless of the amount of regularization, due to the fact that only
20 of the 2,000 features truly are associated with the outcome.
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Caution when p > n.

I Extreme multicollinearity.

I Refrain from over-statement. (What we find may be one of
many possible models.)

I Avoid using sum of squares, p-values, R2, or other traditional
measures of model on training as evidence of good fit.

I Place more emphasis on test error or cross validation error.
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Dimension reduction methods (using derived inputs)

I When p is large, we may consider to regress on, not the
original inputs x , but some small number of derived features
φ1, ..., φk with k < p.

yi = θ0 +
k∑

j=1

θjφj(xi ) + εi , i = 1, ..., n.

– φj can be linear: linear combinations of X1, . . . ,Xp

– φj can be nonlinear: basis, kernels, neural networks, trees, etc.

Linear Model Selection 73



Principal Component Analysis (PCA)

I Suppose there are n observations of p variables presented as
X = (x1, . . . xn)T ∈ Rn×p, where xTi ∈ Rp.

I Define the sample covariance matrix

Σ̂ =
1

n

n∑
i=1

(xi − µ̂)T (xi − µ̂)

where the sample mean µ̂ = 1
n

∑
i xi .

I Σ̂ has an eigenvalue decomposition

Σ̂ = UΛUT ,

with UTU = Ip (U = [u1, . . . , up]), Λ = diag(λ1, . . . , λp),
λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0.

Linear Model Selection 74



Principal Component Regression

For X = (X1, . . . ,Xp),

I Define φj be the projection on the j-th eigenvector of
centralized data:

Zj = φj(X ) = uTj (X − µ̂)

I Principal Component Regression (PCR) model:

yi = θ0 +
k∑

j=1

θjZj + εi , i = 1, ..., n.
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A summary table of PCs

eigenvalue eigenvector percent of P.C.s as
(variance) (combination variation projections

coefficient) explained of X − µ
1st P.C. Z1 λ1 u1 λ1/

∑p
j=1 λj Z1 = u′1(X − µ)

2nd P.C. Z2 λ2 u2 λ2/
∑p

j=1 λj Z2 = u′2(X − µ)
...

...
...

...
...

...
p-th P.C. Zp λp up λp/

∑p
j=1 λj Zp = u′p(X − µ)

I where top k principal components explained the following
percentage of total variations

k∑
j=1

λj/trace(Σ)
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Ridge Regression as Shrinkage on Principal Components

I Assume the (centralized) design matrix admits the singular
value decomposition

X = ΦSΨT , S = diag(σi ) with σi ≥ 0

where ΦTΦ = ΨTΨ = I , then covariance matrix has
eigenvalue decomposition: Σ̂ := XTX = ΨΛΨT , where
Λ = diag(λi = σ2i ) (λ1 ≥ λ2 ≥ · · · ≥ 0).

I Ridge regression prediction

ŷ = Xβ̂Rλ = X(XTX + λI )−1XTy

=
∑
j

σ2j
σ2j + λ

〈φj , y〉φj

– σ2
j � λ, σ2

j /(σ2
j + λ) ≈ 0,

– σ2
j � λ, σ2

j /(σ2
j + λ) ≈ 1.
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High dimensionality p > n

I gλ(x) = (x + λ)−1 is the regularization function, s.t.
β̂Rλ = gλ(XTX)XTy

I XTX has rank r no more than n < p, thus not invertible

I Ridge regression as λ→ 0+ gives pseudo-inverse

β̂Rε = X†y

= (XTX + εI )−1XTy

=
∑

1≤j≤r :σ2
j >0

σ2j
σ2j + ε

〈φj , y〉ψj
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Gradient Descent Method

I Gradient Descent Algorithm:

β̂k+1 = β̂k + γkXT (y − Xβ̂k), (1)

– Initialization: β̂0 = 0 or small random ones
– Stepsize: γk > 0
– β̂1 = (1− γ1XTX)β̂0 + γ0XTy,

– β̂2 =
∏1

k=0(1− γkXTX)β̂0 + β̂1γ1XTy + γ0(1− γ1XTX)XTy,
– and so on ...
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Implicit Regularization in Gradient Descent

I Gradient Descent regularization path:

β̂t = πt−10 (XTX)β̂0 + gt(XTX)XTy (2)

where
– For x ∈ R, define a polynomial of degree t − k + 1,

πt
k(x) =

{ ∏t
i=k (1− γix) , k ≤ t;

1, k > t.
(3)

– Regularization polynomial at iteration t:

gt(x) =
t−1∑
k=0

γkπ
t−1
k+1(x); (4)

where 1− xgt(x) = πt−1
0 (x) by telescope sum.
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Implicit Regularization in Gradient Descent

I Consider constant stepsize γk = α < 1/‖XTX‖2 and β̂0 = 0

I Regularization polynomial:

gt(x) = α

t−1∑
k=0

(1− αx)t−k−1 =
1− (1− αx)t

x
;

I Regularization path:

β̂t = gt(XTX)XTy =
∑
j

1− (1− ασ2j )t

σj
〈φj , y〉ψj (5)

– Large σj : gt(σj) drops slowly; small σi , gt(σj) drops fast
– A similar role as gλ(x) = 1/(x + λ) in ridge regression, yet

better in nonparametrics (Yao-Rosasco-Caponnetto (2007))
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Early Stopping Regularization in Gradient Descent

I For y = Xβ + ε, the estimation error

β − β̂t = β − gt(XTX)XT (Xβ + ε)

= (1− αXTX)tβ + gt(XTX)XT ε,

=
∑
j

{
(1− ασ2j )t〈ψj , β〉ψj + . . .

+
1− (1− ασ2j )t

σj
〈φj , ε〉ψj

}
.

– The first term is bias that decreases with t →∞
– The second term is variance that increases with t
– Early stopping: take the optimal stopping time t∗ towards a

bias-variance trade-off

Linear Model Selection 82


	Model Assessment
	Cross Validation
	Bootstrap 

	Linear Model Selection
	Subset selection: Forward and Backward stagewise
	Ridge Regression
	The Lasso 
	Principal Component Regression
	*Early Stopping Regularization in Gradient Descent Method


