
Time series: Linear Dynamical Systems (1940s-)

´The hidden state has linear dynamics with 
Gaussian noise and produces the observations 
using a linear model with Gaussian noise.

´Kalman Filter: A linearly transformed Gaussian is a 
Gaussian. So the distribution over the hidden 
state given the data so far is Gaussian. It can be 
computed using “Kalman filtering”. 

´To predict the next output (so that we can shoot 
down the missile) we need to infer the hidden 
state. 
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Hidden Markov Models (1970s-)
´ Hidden Markov Models have a discrete one-of-N 

hidden state. Transitions between states are 
stochastic and controlled by a transition matrix. 
The outputs produced by a state are stochastic. 
´ We cannot be sure which state produced a 

given output. So the state is “hidden”.
´ It is easy to represent a probability distribution 

across N states with N numbers.
´ To predict the next output we need to infer the 

probability distribution over hidden states.
´ HMMs have efficient algorithms (Baum-Welch 

or EM Algorithm) for inference and learning.
´ Jim Simons hires Lenny Baum as the founding 

member of Renaissance Technologies in 1979 
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Lenny Baum became a devoted Go player despite his deteriorating eyesight.

Simons with his favorite lemur at a Stony Brook event.



Recurrent Neural Networks (1986-)

´ The issue of a hidden Markov model (HMM):
´ At each time step it must select one of its hidden states. So with N hidden states it 

can only remember log(N) bits about what it generated so far.

´ RNNs are very powerful, because they combine two properties:
´ Distributed hidden state that allows them to store a lot of information about the 

past efficiently.

´ Non-linear dynamics that allows them to update their hidden state in 
complicated ways.

´ Rumelhart et al. enables training by BP algorithm

´ With enough neurons and time, RNNs can compute anything that can be 
computed by your computer. 

RNN

ht = �h(Whhht�1 +Whxxt) (1a)

yt = �y(Wyhht) (1b)

2

Vanilla Recurrent Neural Networks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201722

(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

State Space equations in feedback dynamical systems

The basics of decision trees.

Regression trees

• Trees can be applied to both regression and classifcation.

• CART refers to classification and regression trees.

• We first consider regression trees through an example of predicting
Baseball players’ salaries.

yt = softmax(Whyht)

Yuan YAO (HKUST) March 22, 2018 6 / 67
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Long-Short-Term-Memory (LSTM)

´ Sepp Hochreiter; Jürgen Schmidhuber (1997). "Long short-term 
memory". Neural Computation. 9 (8): 1735–1780. 
(https://www.bioinf.jku.at/publications/older/2604.pdf)

´ Introduction of short path to learn deep networks without vanishing 
gradient problem.
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Long Short-Term Memory (LSTM)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

You can think of the LSTM equations visually like this:

Compute the 
forget gate

Forget some 
cell content

Compute the 
input gate

Compute the 
new cell content

Compute the 
output gate

Write some new cell content

Output some cell content 
to the hidden state
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FIGURE 12.1. Support vector classifiers. The left panel shows the separable
case. The decision boundary is the solid line, while broken lines bound the shaded
maximal margin of width 2M = 2/∥β∥. The right panel shows the nonseparable
(overlap) case. The points labeled ξ∗j are on the wrong side of their margin by
an amount ξ∗j = Mξj; points on the correct side have ξ∗j = 0. The margin is
maximized subject to a total budget

∑

ξi ≤ constant. Hence
∑

ξ∗j is the total
distance of points on the wrong side of their margin.

Our training data consists of N pairs (x1, y1), (x2, y2), . . . , (xN , yN ), with
xi ∈ IRp and yi ∈ {−1, 1}. Define a hyperplane by

{x : f(x) = xTβ + β0 = 0}, (12.1)

where β is a unit vector: ∥β∥ = 1. A classification rule induced by f(x) is

G(x) = sign[xTβ + β0]. (12.2)

The geometry of hyperplanes is reviewed in Section 4.5, where we show that
f(x) in (12.1) gives the signed distance from a point x to the hyperplane
f(x) = xTβ+β0 = 0. Since the classes are separable, we can find a function
f(x) = xTβ + β0 with yif(xi) > 0 ∀i. Hence we are able to find the
hyperplane that creates the biggest margin between the training points for
class 1 and −1 (see Figure 12.1). The optimization problem

max
β,β0,∥β∥=1

M

subject to yi(x
T
i β + β0) ≥M, i = 1, . . . , N,

(12.3)

captures this concept. The band in the figure is M units away from the
hyperplane on either side, and hence 2M units wide. It is called the margin.

We showed that this problem can be more conveniently rephrased as

min
β,β0

∥β∥

subject to yi(x
T
i β + β0) ≥ 1, i = 1, . . . , N,

(12.4)

Appendix: Primal-Dual support vector classifiers

Appendix: Equivalent reformulation of
Hard Margin

maximize�0,�1,...,�pM

subject to
pX

j=1

�2
j = 1,

and yi(�0 + �1xi1 + ... + �pxip) � M for all i

,

minimize�0,�1,...,�pk�k2 :=
X

j

�2
j

subject to yi(�0 + �1xi1 + ... + �pxip) � 1 for all i ,

using M = 1/k�k.
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2000-2010: The Era of SVM, Boosting, … 
as nights of Neural Networks



Decision Trees and Boosting

´ Breiman, Friedman, Olshen, Stone, (1983): CART

´ ``The Boosting problem‘’ (M. Kearns & L. Valiant): 
Can a set of weak learners create a single strong 
learner? (����������	)

´ Breiman (1996): Bagging

´ Freund, Schapire (1997): AdaBoost (“the best off-
the-shelf algorithm” by Breiman)

´ Breiman (2001): Random Forests



Restricted Boltzman Machine, 2006
(Deep Learning)

´ Hinton and Salakhutdinov,
Reducing the Dimensionality of 
Data with Neural Networks,
Science, 2006

´ Reinvigorating research in Deep 
Learning 

´ Shows importance of pretraining
(greedy layer-wise, a.k.a. block 
coordinate descent)

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 20178

[Hinton and Salakhutdinov 2006]

Reinvigorated research in 
Deep Learning

A bit of history...

Illustration of Hinton and Salakhutdinov 2006  by Lane 
McIntosh, copyright CS231n 2017
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ResNet (2015) 
[He-Zhang-Ren-Sun, 2015]

Background Info

ResNet (2015)

Solves problem by adding
skip connections
Very deep: 152 layers
No dropout
Stride
Batch normalization

Source: Deep Residual Learning for Image Recognition
35 / 50



GPU + Big labeled data

"We’re at the beginning of a new day… 
This is the beginning of the AI revolution.” 
 — Jensen Huang, GTC Taiwan 2017



Reaching Human Performance Level in 
Games

The Deep Learning Tsunami

Why now?

Where are the Intellectuals?

Relevant Theoretical Approaches

Course Structure

The Sudden Emergence of Deep Learning

What’s Driving the Tsunami?

Intellectual Significance

Human Impact

Reaching Human Level Performance

1997 2004

2017
D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?

The Deep Learning Tsunami

Why now?

Where are the Intellectuals?

Relevant Theoretical Approaches

Course Structure

The Sudden Emergence of Deep Learning

What’s Driving the Tsunami?

Intellectual Significance

Human Impact

Reaching Human Level Performance

1997 2004

2017
D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?AlphaGo “LEE” 2016

AlphaGo ”ZERO” D Silver et al. Nature 550, 354–359 (2017) doi:10.1038/nature24270

Deep Blue in 1997



Natural Language Processing (NLP) 
and Machine Translation

´ In 2013-2015, LSTMs started achieving state-of-the-art results 
´ Successful tasks include: handwriting recognition, speech 

´ recognition, machine translation, parsing, image captioning 
´ LSTM became the dominant approach 

´ In 2019, other approaches (e.g. Transformers) have become more dominant for certain 
tasks. 
´ For example in WMT (a MT conference + competition): 

´ In WMT 2016, the summary report contains ”RNN” 44 times 

´ In WMT 2018, the report contains “RNN” 9 times and “Transformer” 63 times 

´ Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016, 
http://www.statmt.org/wmt16/pdf/W16-2301.pdf 

´ Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018, 
http://www.statmt.org/wmt18/pdf/WMT028.pdf 



Rapid Progress for NLP Pretraining
(GLUE Benchmark)
6. How’s the weather?
Rapid Progress from Pre-Training  (GLUE benchmark)
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More compute, more better?  
More compute, more better?
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ALBERT uses 10x more compute than RoBERTa



Protein Folding Structure Prediction
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Highly accurate protein structure prediction 
with AlphaFold

John Jumper1,4 ✉, Richard Evans1,4, Alexander Pritzel1,4, Tim Green1,4, Michael Figurnov1,4, 
Olaf Ronneberger1,4, Kathryn Tunyasuvunakool1,4, Russ Bates1,4, Augustin Žídek1,4, 
Anna Potapenko1,4, Alex Bridgland1,4, Clemens Meyer1,4, Simon A. A. Kohl1,4, 
Andrew J. Ballard1,4, Andrew Cowie1,4, Bernardino Romera-Paredes1,4, Stanislav Nikolov1,4, 
Rishub Jain1,4, Jonas Adler1, Trevor Back1, Stig Petersen1, David Reiman1, Ellen Clancy1, 
Michal Zielinski1, Martin Steinegger2,3, Michalina Pacholska1, Tamas Berghammer1, 
Sebastian Bodenstein1, David Silver1, Oriol Vinyals1, Andrew W. Senior1, Koray Kavukcuoglu1, 
Pushmeet Kohli1 & Demis Hassabis1,4 ✉

Proteins are essential to life, and understanding their structure can facilitate a 
mechanistic understanding of their function. Through an enormous experimental 
effort1–4, the structures of around 100,000 unique proteins have been determined5, but 
this represents a small fraction of the billions of known protein sequences6,7. Structural 
coverage is bottlenecked by the months to years of painstaking effort required to 
determine a single protein structure. Accurate computational approaches are needed 
to address this gap and to enable large-scale structural bioinformatics. Predicting the 
three-dimensional structure that a protein will adopt based solely on its amino acid 
sequence—the structure prediction component of the ‘protein folding problem’8—has 
been an important open research problem for more than 50 years9. Despite recent 
progress10–14, existing methods fall far short of atomic accuracy, especially when no 
homologous structure is available. Here we provide the first computational method 
that can regularly predict protein structures with atomic accuracy even in cases in which 
no similar structure is known. We validated an entirely redesigned version of our neural 
network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein 
Structure Prediction (CASP14)15, demonstrating accuracy competitive with 
experimental structures in a majority of cases and greatly outperforming other 
methods. Underpinning the latest version of AlphaFold is a novel machine learning 
approach that incorporates physical and biological knowledge about protein structure, 
leveraging multi-sequence alignments, into the design of the deep learning algorithm.

The development of computational methods to predict 
three-dimensional (3D) protein structures from the protein sequence 
has proceeded along two complementary paths that focus on either the 
physical interactions or the evolutionary history. The physical interac-
tion programme heavily integrates our understanding of molecular 
driving forces into either thermodynamic or kinetic simulation of pro-
tein physics16 or statistical approximations thereof17. Although theoreti-
cally very appealing, this approach has proved highly challenging for 
even moderate-sized proteins due to the computational intractability 
of molecular simulation, the context dependence of protein stability 
and the difficulty of producing sufficiently accurate models of protein 
physics. The evolutionary programme has provided an alternative in 
recent years, in which the constraints on protein structure are derived 
from bioinformatics analysis of the evolutionary history of proteins, 
homology to solved structures18,19 and pairwise evolutionary correla-
tions20–24. This bioinformatics approach has benefited greatly from 

the steady growth of experimental protein structures deposited in 
the Protein Data Bank (PDB)5, the explosion of genomic sequencing 
and the rapid development of deep learning techniques to interpret 
these correlations. Despite these advances, contemporary physical 
and evolutionary-history-based approaches produce predictions that 
are far short of experimental accuracy in the majority of cases in which 
a close homologue has not been solved experimentally and this has 
limited their utility for many biological applications.

In this study, we develop the first, to our knowledge, computational 
approach capable of predicting protein structures to near experimental 
accuracy in a majority of cases. The neural network AlphaFold that we 
developed was entered into the CASP14 assessment (May–July 2020; 
entered under the team name ‘AlphaFold2’ and a completely different 
model from our CASP13 AlphaFold system10). The CASP assessment is 
carried out biennially using recently solved structures that have not 
been deposited in the PDB or publicly disclosed so that it is a blind test 
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for the participating methods, and has long served as the gold-standard 
assessment for the accuracy of structure prediction25,26.

In CASP14, AlphaFold structures were vastly more accurate than 
competing methods. AlphaFold structures had a median backbone 
accuracy of 0.96 Å r.m.s.d.95 (Cα root-mean-square deviation at 95% 
residue coverage) (95% confidence interval = 0.85–1.16 Å) whereas 
the next best performing method had a median backbone accuracy 
of 2.8 Å r.m.s.d.95 (95% confidence interval = 2.7–4.0 Å) (measured on 
CASP domains; see Fig. 1a for backbone accuracy and Supplementary 
Fig. 14 for all-atom accuracy). As a comparison point for this accuracy, 
the width of a carbon atom is approximately 1.4 Å. In addition to very 
accurate domain structures (Fig. 1b), AlphaFold is able to produce 
highly accurate side chains (Fig. 1c) when the backbone is highly accu-
rate and considerably improves over template-based methods even 
when strong templates are available. The all-atom accuracy of Alpha-
Fold was 1.5 Å r.m.s.d.95 (95% confidence interval = 1.2–1.6 Å) compared 
with the 3.5 Å r.m.s.d.95 (95% confidence interval = 3.1–4.2 Å) of the best 
alternative method. Our methods are scalable to very long proteins with 
accurate domains and domain-packing (see Fig. 1d for the prediction 
of a 2,180-residue protein with no structural homologues). Finally, the 
model is able to provide precise, per-residue estimates of its reliability 
that should enable the confident use of these predictions.

We demonstrate in Fig. 2a that the high accuracy that AlphaFold dem-
onstrated in CASP14 extends to a large sample of recently released PDB 

structures; in this dataset, all structures were deposited in the PDB after 
our training data cut-off and are analysed as full chains (see Methods, 
Supplementary Fig. 15 and Supplementary Table 6 for more details). 
Furthermore, we observe high side-chain accuracy when the back-
bone prediction is accurate (Fig. 2b) and we show that our confidence 
measure, the predicted local-distance difference test (pLDDT), reliably 
predicts the Cα local-distance difference test (lDDT-Cα) accuracy of the 
corresponding prediction (Fig. 2c). We also find that the global super-
position metric template modelling score (TM-score)27 can be accu-
rately estimated (Fig. 2d). Overall, these analyses validate that the high 
accuracy and reliability of AlphaFold on CASP14 proteins also transfers 
to an uncurated collection of recent PDB submissions, as would be 
expected (see Supplementary Methods 1.15 and Supplementary Fig. 11 
for confirmation that this high accuracy extends to new folds).

The AlphaFold network
AlphaFold greatly improves the accuracy of structure prediction by 
incorporating novel neural network architectures and training proce-
dures based on the evolutionary, physical and geometric constraints 
of protein structures. In particular, we demonstrate a new architecture 
to jointly embed multiple sequence alignments (MSAs) and pairwise 
features, a new output representation and associated loss that enable 
accurate end-to-end structure prediction, a new equivariant attention 
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Fig. 1 | AlphaFold produces highly accurate structures. a, The performance 
of AlphaFold on the CASP14 dataset (n = 87 protein domains) relative to the top-
15 entries (out of 146 entries), group numbers correspond to the numbers 
assigned to entrants by CASP. Data are median and the 95% confidence interval 
of the median, estimated from 10,000 bootstrap samples. b, Our prediction of 
CASP14 target T1049 (PDB 6Y4F, blue) compared with the true (experimental) 
structure (green). Four residues in the C terminus of the crystal structure are 
B-factor outliers and are not depicted. c, CASP14 target T1056 (PDB 6YJ1).  

An example of a well-predicted zinc-binding site (AlphaFold has accurate side 
chains even though it does not explicitly predict the zinc ion). d, CASP target 
T1044 (PDB 6VR4)—a 2,180-residue single chain—was predicted with correct 
domain packing (the prediction was made after CASP using AlphaFold without 
intervention). e, Model architecture. Arrows show the information flow among 
the various components described in this paper. Array shapes are shown in 
parentheses with s, number of sequences (Nseq in the main text); r, number of 
residues (Nres in the main text); c, number of channels.

AlphaFold



AI for Science
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indispensable tools for researchers by optimizing parameters and 
functions4, automating procedures to collect, visualize, and process 
data5, exploring vast spaces of candidate hypotheses to form theories6, 
and generating hypotheses and estimating their uncertainty to suggest 
relevant experiments7.

The power of AI methods has vastly increased since the early 2010s 
because of the availability of large datasets, aided by fast and massively 
parallel computing and storage hardware (graphics processing units 
and supercomputers) and coupled with new algorithms. The latter 
includes deep representation learning (Box 1), particularly multilayered 
neural networks capable of identifying essential, compact features 
that can simultaneously solve many tasks that underlie a scientific 
problem. Of these, geometric deep learning (Box 1) has proved to be 
helpful in integrating scientific knowledge, presented as compact math-
ematical statements of physical relationships, prior distributions, 
constraints and other complex descriptors, such as the geometry of 
atoms in molecules. Self-supervised learning (Box 1) has enabled neural 
networks trained on labelled or unlabelled data to transfer learned 
representations to a different domain with few labelled examples, for 
example, by pre-training large foundation models8 and adapting them 
to solve diverse tasks across different domains. In addition, genera-
tive models (Box 1) can estimate the underlying data distribution of a 
complex system and support new designs. Distinct from other uses of 
AI, reinforcement-learning methods (Box 1) find optimal strategies for 
an environment by exploring many possible scenarios and assigning 
rewards to different actions based on metrics such as the information 
gain expected from a considered experiment.

In AI-driven scientific discovery, scientific knowledge can be incorpo-
rated into AI models using appropriate inductive biases (Box 1), which 
are assumptions representing structure, symmetry, constraints and 
prior knowledge as compact mathematical statements. However, apply-
ing these laws can lead to equations that are too complex for humans 
to solve, even with traditional numerical methods9. An emerging 

approach is incorporating scientific knowledge into AI models by 
including information about fundamental equations, such as the laws 
of physics or principles of molecular structure and binding in protein 
folding. Such inductive biases can enhance AI models by reducing 
the number of training examples needed to achieve the same level of 
accuracy10 and scaling analyses to a vast space of unexplored scientific  
hypotheses11.

Using AI for scientific innovation and discovery presents unique 
challenges compared with other areas of human endeavour where AI 
is utilized. One of the biggest challenges is the vastness of hypothesis 
spaces in scientific problems, making systematic exploration infeasible. 
For instance, in biochemistry, an estimated 1060 drug-like molecules 
exist to explore12. AI systems have the potential to revolutionize scien-
tific workflows by accelerating processes and providing predictions 
with near-experimental accuracy. However, there are challenges to 
obtaining reliably annotated datasets for AI models, which can involve 
time-consuming and resource-intensive experimentation and simu-
lations13. Despite these challenges, AI systems can enable efficient, 
intelligent and highly autonomous experimental design and data col-
lection, where AI systems can operate under human supervision to 
assess, evaluate and act on results. Such capabilities have facilitated 
the development of artificially intelligent agents that continuously 
interact in dynamic environments and can, for example, make real-time 
decisions to navigate stratospheric balloons14. AI systems can play a 
valuable role in interpreting scientific datasets and extracting relation-
ships and knowledge from scientific literature in a generalized manner. 
Recent findings demonstrate the potential for unsupervised language 
AI models to capture complex scientific concepts15, such as the periodic 
table, and predict applications of functional materials years before 
their discovery, suggesting that latent knowledge regarding future 
discoveries may be embedded in past publications.

Recent advances, including the successful unraveling of the 
50-year-old protein-folding problem10 and AI-driven simulations 
of molecular systems with millions of particles16, demonstrate the 
potential of AI to address challenging scientific problems. However, 
the remarkable promise of discovery is accompanied by significant 
challenges for the emerging field of ‘AI for Science’ (AI4Science). As 
with any new technology, the success of AI4Science depends on our 
ability to integrate it into routine practices and understand its potential 
and limitations. Barriers to the widespread adoption of AI in scientific 
discovery include internal and external factors specific to each stage of 
the discovery process and concerns regarding the utility of methods, 
theory, software and hardware, as well as potential misuse. We explore 
the developments and address critical questions in AI4Science, includ-
ing the conduct of science, traditional scepticism and implementation 
challenges.

AI-aided data collection and curation for scientific 
research
The ever-increasing scale and complexity of datasets collected by 
experimental platforms have led to a growing dependence on real-time 
processing and high-performance computing in scientific research to 
selectively store and analyse data generated at high rates17.

Data selection
A typical particle collision experiment generates over 100 terabytes 
of data every second18. Such scientific experiments are pushing the 
limits of existing data transmission and storage technologies. In these 
physics experiments, over 99.99% of raw instrument data represents 
background events that must be detected in real time and discarded 
to manage the data rates18. To identify rare events for future scien-
tific enquiry, deep-learning methods18 replace pre-programmed 
hardware event triggers with algorithms that search for outlying 
signals to detect unforeseen or rare phenomena that may otherwise 
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Synthetic electronic
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Fig. 1 | Science in the age of artificial intelligence. Scientific discovery is a 
multifaceted process that involves several interconnected stages, including 
hypothesis formation, experimental design, data collection and analysis. AI is 
poised to reshape scientific discovery by augmenting and accelerating 
research at each stage of this process. The principles and illustrative studies 
shown here highlight the contributions to enhance scientific understanding 
and discovery.
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Scientific discovery in the age of artificial 
intelligence

Hanchen Wang1,2,37,38,39, Tianfan Fu3,39, Yuanqi Du4,39, Wenhao Gao5, Kexin Huang6, 
 Ziming Liu7, Payal Chandak8, Shengchao Liu9,10, Peter Van Katwyk11,12, Andreea Deac9,10, 
Anima Anandkumar2,13, Karianne Bergen11,12, Carla P. Gomes4, Shirley Ho14,15,16,17, 
Pushmeet Kohli18, Joan Lasenby1, Jure Leskovec6, Tie-Yan Liu19, Arjun Manrai20, 
Debora Marks21,22, Bharath Ramsundar23, Le Song24,25, Jimeng Sun26, Jian Tang9,27,28, 
Petar Veličković17,29, Max Welling30,31, Linfeng Zhang32,33, Connor W. Coley5,34, 
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Artificial intelligence (AI) is being increasingly integrated into scientific discovery to 
augment and accelerate research, helping scientists to generate hypotheses, design 
experiments, collect and interpret large datasets, and gain insights that might not 
have been possible using traditional scientific methods alone. Here we examine 
breakthroughs over the past decade that include self-supervised learning, which 
allows models to be trained on vast amounts of unlabelled data, and geometric deep 
learning, which leverages knowledge about the structure of scientific data to enhance 
model accuracy and efficiency. Generative AI methods can create designs, such as 
small-molecule drugs and proteins, by analysing diverse data modalities, including 
images and sequences. We discuss how these methods can help scientists throughout 
the scientific process and the central issues that remain despite such advances. Both 
developers and users of AI toolsneed a better understanding of when such approaches 
need improvement, and challenges posed by poor data quality and stewardship remain. 
These issues cut across scientific disciplines and require developing foundational 
algorithmic approaches that can contribute to scientific understanding or acquire it 
autonomously, making them critical areas of focus for AI innovation.

The foundation for forming scientific insights and theories is laid by 
how data are collected, transformed and understood. The rise of deep 
learning in the early 2010s has significantly expanded the scope and 
ambition of these scientific discovery processes1. Artificial intelligence 
(AI) is increasingly used across scientific disciplines to integrate mas-
sive datasets, refine measurements, guide experimentation, explore 
the space of theories compatible with the data, and provide actionable 
and reliable models integrated with scientific workflows for autono-
mous discovery.

Data collection and analysis are fundamental to scientific understand-
ing and discovery, two of the central aims in science2, and quantitative 

methods and emerging technologies, from physical instruments such 
as microscopes to research techniques such as bootstrapping, have 
long been used to reach these aims3. The introduction of digitization in 
the 1950s paved the way for the general use of computing in scientific 
research. The rise of data science since the 2010s has enabled AI to 
provide valuable guidance by identifying scientifically relevant pat-
terns from large datasets.

Although scientific practices and procedures vary across stages 
of scientific research, the development of AI algorithms cuts across 
traditionally isolated disciplines (Fig. 1). Such algorithms can enhance 
the design and execution of scientific studies. They are becoming 
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ChatGPT (GPT 3.5-4)

´ https://poe.com/



Number of AI papers on arXiv, 2010-2019

Artificial Intelligence Index Report 2019
Chapter 1 Research & Development - Papers on arXiv

In recent years, AI researchers have adopted the 
practice of publishing paper pre-prints (frequently 
before peer-review) on arXiv, an online repository 
of electronic preprints. The graph below shows the 
number of AI papers on arXiv by each paper’s primary 
subcategory (Figure 1.6). 

The number of AI papers on arXiv is increasing 
overall and in a number of subcategories, reflecting a 
broader growth in AI researchers publishing preprints 
of their research. Between 2010 and 2019, the total 
number of AI papers on arXiv increased over twenty-
fold. Submissions to the Computation & Language 
arXiv sub-category have grown almost sixty-fold 
since 2010.

AI papers on arXiv 
In terms of volume, Computer Vision (CV) and Pattern 
Recognition had been the largest AI subcategory on 
arXiv since 2014 but Machine Learning has become 
the largest category of AI papers in 2019. In addition 
to showing a growing interest in Computer Vision 
and Machine Learning (and its general applied 
applications), this chart also indicates growth in 
other AI application areas, such as Robotics growing 
over thirty-fold between 2010 and 2019. See 
Technical Appendix for data and methodology.

[Research_Development_Technical_Appendix]
[Access_Data]

21

Fig. 1.6.
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Growth of Deep Learning
‘Deep Learning’ is coined by Hinton et al. in their Restricted Boltzman Machine paper, Science 2006, 
not yet popular until championing ImageNet competitions.

The Deep Learning Tsunami

Why now?

Where are the Intellectuals?

Relevant Theoretical Approaches

Course Structure

The Sudden Emergence of Deep Learning

What’s Driving the Tsunami?

Intellectual Significance

Human Impact

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?
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Deep networks are unsafe

2

“black hole”
87.7% confidence

“donut”
99.3% confidence

Deep networks are unsafe

2

“black hole”
87.7% confidence

“donut”
99.3% confidence



59 CNN learns texture features, not 
shapes

Geirhos et al. ICLR 2019

https://videoken.com/embed/W2HvLBMhCJQ?tocitem=46

Published as a conference paper at ICLR 2019

IMAGENET-TRAINED CNNS ARE BIASED TOWARDS
TEXTURE; INCREASING SHAPE BIAS IMPROVES
ACCURACY AND ROBUSTNESS

Robert Geirhos
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ABSTRACT

Convolutional Neural Networks (CNNs) are commonly thought to recognise ob-
jects by learning increasingly complex representations of object shapes. Some
recent studies suggest a more important role of image textures. We here put these
conflicting hypotheses to a quantitative test by evaluating CNNs and human ob-
servers on images with a texture-shape cue conflict. We show that ImageNet-
trained CNNs are strongly biased towards recognising textures rather than shapes,
which is in stark contrast to human behavioural evidence and reveals fundamen-
tally different classification strategies. We then demonstrate that the same standard
architecture (ResNet-50) that learns a texture-based representation on ImageNet
is able to learn a shape-based representation instead when trained on ‘Stylized-
ImageNet’, a stylized version of ImageNet. This provides a much better fit for
human behavioural performance in our well-controlled psychophysical lab setting
(nine experiments totalling 48,560 psychophysical trials across 97 observers) and
comes with a number of unexpected emergent benefits such as improved object
detection performance and previously unseen robustness towards a wide range of
image distortions, highlighting advantages of a shape-based representation.

(a) Texture image
81.4% Indian elephant
10.3% indri

8.2% black swan

(b) Content image
71.1% tabby cat
17.3% grey fox

3.3% Siamese cat

(c) Texture-shape cue conflict
63.9% Indian elephant
26.4% indri

9.6% black swan

Figure 1: Classification of a standard ResNet-50 of (a) a texture image (elephant skin: only texture
cues); (b) a normal image of a cat (with both shape and texture cues), and (c) an image with a
texture-shape cue conflict, generated by style transfer between the first two images.

⇤Joint senior authors
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Lack of Causality or Interpretability
´ ImageNet training learns non-semantic texture features: after random 

shuffling of patches, shapes information are destroyed which does not
affect CNN’s performance much.Interpreting Adversarially Trained Convolutional Neural Networks
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(a) Original Image (b) Patch-Shuffle 2 (c) Patch-Shuffle 4 (d) Patch-Shuffle 8
Figure 6. Visualization of patch-shuffling transformation. The first row shows probability of “cake” assigned by different models.
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(a) Caltech-256 (b) Tiny ImageNet
Figure 7. “Accuracy on correctly classified images” for different models on patch-shuffled Tiny ImageNet and Caltech-256 with different
splitting numbers. Detailed results are listed in the appendix.

When decreasing the saturation level, all models have simi-
lar degree of performance degradation, indicating that AT-
CNNs are not robust to all kinds of image distortions. They
tend to be more robust for fixed types of distortions. We
leave the further investigation regarding this issue as future
work.

4.2.3. PATCH-SHUFFLING

Stylizing and saturation operation aim at changing or re-
moving the texture information of original images, while
preserving the features of shapes and edges. In order to test
the different bias of AT-CNN and standard CNN in the other
way around, we shatter the shape and edge information by
splitting the images into k ⇥ k patches and then randomly
shuffling them. This operation could still maintains the local
textures if k is not too large.

Figure 6 shows one example of patch-shuffled images under
different numbers of splitting. The first row shows the proba-
bilities assigned by different models to the ground truth class

of the original image. Obviously, after random shuffling,
the shapes and edge features are destroyed dramatically,
the prediction probability of the adverarially trained CNNs
drops significantly, while the normal CNNs still maintains
a high confidence over the ground truth class. This reveals
AT-CNNs are more baised towards shapes and edges than
normally trained ones.

Moreover, Figure 7 depicts the “ accuracy of correctly classi-
fied images” for all the models measured on “Patch-shuffled”
test set with increasing number of splitting pieces. AT-
CNNs, especially trained against with a stronger attack are
more sensitive to “Patch-shuffling” operations in most of
our experiments.

Note that under “Patch-shuffle 8” operation, all models have
similar “ accuracy of correctly classified images”, which is
largely due to the severe information loss. Also note that this
accuracy of all models on Tiny ImageNet shown in 7(a) is
mush lower than that on Caltech-256 in 7(b). That is, under
“Patch-shuffle 1”, normally trained CNN has an accuracy

Zhanxing Zhu et al., ICML 2019



Capture spurious correlations and can’t 
do causal inference on counterfactuals

The statistical problem is only a proxy
Example: detection of the action “giving a phone call”

(Oquab et al., CVPR 2014)
~70% correct (SOTA in 2014)

Convnet
m

achinery

Bbox

Image

Action 
labels

The statistical problem is only a proxy
Example: detection of the action “giving a phone call”

Not giving a phone call.

Giving a phone call ????

Leon Bottou, ICLR 2019
https://videoken.com/embed/8UxS4ls6g1g?tocitem=2



62 Overfitting causes privacy leakage

´ Model inversion attack leaks privacy
Break Privacy of the Face Recognition System

Figure: Recovered (Left), Original (Right)

We can recover the private training data by model-inversion attack.

Fredrikson et al., Proc. CCS, 2016

6 / 53

Fredrikson et al. Proc. CCS, 2016
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”

Shall we see soon an 
emergence 
from Alchemy to Science
in deep leaning?

How can we teach our students in the next generation science rather than 
alchemy? 



Kaggle survey: Top Data Science Methods

Academic Industry

https://www.kaggle.com/surveys/2017



What type of data is used at work?
https://www.kaggle.com/surveys/2017

Academic Industry



All models are wrong, but some are
useful …

What is Statistical Learning?
Assessing Model Accuracy

The Bias-Variance Trade-O↵

Figure 7: George Box: “Essentially, all models are wrong, but some are useful.”

Yuan Yao Overview



In this class

´ Understand its principles: statistics, optimization

´ Analyze the real world data with the methods

´ Team-work in projects



Thank you!


