A Historical Overview
of
Artificial Intelligence (Al)

Yuan YAO
HKUST

Course Infomation

Course web:
» Nhitps://qifin-hkust.github.io/

Time and Venure:

» | ecture: Wed, 7:30-10:20pm, Lecture Theatre G
Instructor:

®» Yuan YAO <yuany@ust.hk> (https://yao-lab.github.io/)

Teaching Assistant:
» CAO, He : hcaooaf@connect.ust.hk

» LIU, Xuantong : xliude@connect.ust.hk

Grading:
» 3 projects (warmup, midterm, final)

» 40% (A-AA+)

Course Content

» Supervised Learning:

» working knowledge about linear regression, classification, logistic regression, decision
trees (CART), boosting, random forests, support vector machines, neural networks, etc.

» Unsupervised and Self-supervised Learning:

» PCA, Generative Models, Generative Adversarial Networks, Denoising Diffusion Models

» Self-supervision, e.g. masked language models etc.

» Reinforcement Learning:

= Markov Decision Process and online learning, etc.

= No exams. Project-based evaluation.

Course Schedule

Session Topic Application & Case Study
1 — Overview of History and Supervised learning
2 — Introduction to Linear Regression and Classification — Price and Default Risk Prediction
3 — Model Assessment and Selection with Regularization: Ridge — Model selection and causal recovery
Regression and LASSO
4 — Decision Trees, Random Forests and Boosting — Credit analysis
5 — Support Vector Machines — Tutorial on Machine Learning with Python
6 — An Introduction to Convolutional Neural Networks — Price change patterns
7 — Transfer Learning and Neurostyle — Google deep dream
8 — An Introduction to Recurrent Neural Networks (RNN) and Long - Time series prediction

Short Term Memory (LSTM)

9 — Introduction to Unsupervised Learning: PCA, AutoEncoder, — Robust factor analysis

VAE and GANs — Anomaly detection
10 — An Introduction to Reinforcement Learning — Deep Reinforcement Learning in Trading
11 — Projects and Class Wrap

Note: Details may change depending on class progress, development of relevant technologies, as well as information and feedback from students’ surveys.

A Brief History of Al, Machine
Learning, and Deep Learning

If you asked ChatGPT (3.5):

Title: A Historical Overview of Artificial Intelligence (Al)

Infroduction:

Artificial Intelligence (Al) has a rich and fascinating history that spans several decades. This article provides a comprehensive overview of the historical milestones and key
developments in the field of Al. By tracing the evolution of Al from its inception to the present day, we gain valuable insights into the progression of this groundbreaking
discipline.

The Birth of Al:
The origins of Al can be fraced back to the Dartmouth Conference in 1956, where the term "arfificial inteligence" was first coined. This event marked the beginning of a
new era, with researchers envisioning the possibility of creating machines that could exhibit intelligent behavior.

Early Al Approaches:
In the 1950s and 1960s, researchers explored various approaches to Al, such as symbolic reasoning and logical inference. The development of the Logic Theorist program
by Allen Newell and Herbert Simon and the General Problem Solver by Newell and J.C. Shaw were significant milestones during this period.

The Rise of Machine Learning:
1980s and 1990s, there was a shift in focus towards machine learning approaches within Al. The emergence of expert systems and the development of algorithms
the backpropagation algorithm for training neural networks led to significant advancements in pattern recognition and decision-making.

Knowledge-Based Systems:
During the 1980s, knowledge-based systems gained prominence in Al research. These systems utilized expert knowledge and rule-based reasoning to solve complex
problems. The development of the MYCIN system for medical diagnosis and the DENDRAL system for chemical analysis were notable achievements in this era.

Al Winter and Resurgence:
In the late 1980s and early 1990s, Al faced a period of reduced funding and disillusionment, known as the "Al winter." However, advancements in computing power and
the emergence of new techniques, such as Bayesian networks and support vector machines, sparked a resurgence of interest in Al research in the late 1990s.

Big Data and Deep Learning:

In recent years, the availability of vast amounts of data and the development of powerful computational resources have revolutionized Al. Deep learning, a subfield of
machine learning focused on neural networks with multiple layers, has achieved remarkable success in areas such as image and speech recognition, natural language
processing, and autonomous vehicles.

Al'in the Present and Future:
Al'is now an integral part of our daily lives, with applications ranging from virtual assistants and recommendation systems to autonomous robots and self-driving cars. The
field continues to evolve rapidly, with ongoing research in areas like explainable Al, reinforcement learning, and ethical considerations surrounding Al deployment.

Conclusion:

The historical journey of Al showcases the remarkable progress made in this field. From its early beginnings fo the present day, Al has fransformed the way we intferact
with technology and holds immense potential for future advancements. By understanding its history, we gain a deeper appreciation for the challenges overcome and
the possibilities that lie ahead in the exciting world of artificial infelligence.

Artificial Intelligence, Machine Learning,
and Deep Learning

®» Alisbornin 1950s,
when a handful of
pioneers from the
nascent field of
computer science
started asking
whether computers
could be made to
“think”"—a question
whose ramifications
we're still exploring
today.

Artificial
intelligence

Machine
learning

Deep
learning

Nathaniel Rochester Marvin L. Minsky

Oliver G. Selfridge Ray Solomonoff Trenchard More Claude E. Shannon

A brief history of Al

1943: McCulloch & Pits proposed a boolean circuit model of neurons
1949: Donald Hebb proposed Hebbian learning rule.

1950: Alan Turing published "Computing Machinery and Intelligence" with
Turing test.

1956: John McCarthy at the Dartmouth Conference coined terminology
"Artificial Intelligence”

1957 Rosenblatt invented Perceptron

1960s: golden years till 1969 Minsky-Papert’s critical book Perceptron
1970s: the first Al winter

1980s: boom of Al with Expert System

1990s: the second Al winter, rise of statistical machine learning

1997:. IBM Deep Blue beats world chess champion Kasparov

2012: return of neural networks as deep learning (speech, ImageNet in
computer vision, NLP, ...)

2016-2017: Google AlphaGo “Lee” and Zero
2020: Google AlphaFold
2022: OpenAl ChatGPT

History of A.l.

Neural Networks

Expert System

ceptron

Statistical Machine Learning

“Deep Learning”

“In the first wave of Al you had to be
a programmer. In the second wave
of Al you have to be a data scientist.
The third wave of Al—the more
moral you are, the better.”

1956 1980 2000

Source: Dr. Lee Kai-Fu ¢ Sinovation Ventures and 2018 Conference on Neural Information Processing Systems

2010

Statistical Machine Learning is a new
paradigm of computer programming

» During 1950s-1980s, two
competitive ideas of realizing
Al exist

— .
Rules Classical

Data —»| Programming

— Answers

» Rule based inference, or
called Expert System

» Stafistics based inference, or
called Machine Learning

= 1990s- Machine Learning Data —

becomes dominant

Machine Rules

Answers —» learning

The 15t machine learning method:
Least Squares

® |nvention:
» Carl Friederich Gauss (~1795/1809/1810),
» Adrien-Marie Legendre (1805)
» Robert Adrain (1808)

» Application:

» Prediction of the location of asteroid Ceres after it
emerged from behind the sun (Franz Xaver von Zach
1801)

» QOrbits of planets, Newton Laws

» Staftistics,

-

Cr

Fisher's Maximum Likelihood Principle
(1912-1922)

» The least square method is the maximum likelihood estimate (most probable
values of the unknown parameters) when the noise is Gaussian.

= Fisher, R. A. (1912) On an absolute criterion for fitting frequency curves.
Messenger of Mathematics 41:155-160.

= Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics.
Philos. Trans. Roy. Soc. London Ser. A 222:309-368.

» Aldrich, John (1997). R. A. Fisher and the Making of Maximum Likelihood 1912
-- 1922. Statistical Science, 12(3):162-176.

The 15" neural network: Perceptron

@ Invented by Frank Rosenblatt (1957)

The Perceptron Algorithm
for classification

l(w) = — Z v (w,x;), My =1i:y; (x5, w) <0,y; € {—1,1}}.
1EMy

The Perceptron Algorithm is a Stochastic Gradient Descent method
(Robbins-Monro 1951, Ann. Math. Statist. 22(3): 400-407):

wir1 = wy — e Vib(w)

_ [we—myixa, i yiwf x <0,
Wy, otherwise.

Finiteness of Stopping Time and Margin

The perceptron converg—gence theorem was proved by Block (1962) and Novikoff (1962).
The following version is based on that in Cristianini and Shawe-Taylor (2000).

Theorem 1 (Block, Novikoff). Let the training set S ={(x1,t1),...,(X,,, t,,)} be contained in
a sphere of radius R about the origin. Assume the dataset to be linearly separable, and let
Wopt » [Woptll = 1, define the hyperplane separating the samples, having functional margin
y > 0. We initialise the normal vector as wg = 0. The number of updates, k, of the perceptron
algorithms is then bounded by
2
e<(2F)
Y

(10)

Input ball: R = max]||x;||.
1

Margin: 7 = miin yi f(z3)

\/

Hilbert’s 13th Problem

Algebraic equations (under a suitable transformation) of degree up to 6
can be solved by functions of two variables. What about

't axd+ bx? 4+ ex+1=07

Hilbert's conjecture: x(a, b, c) cannot be expressed by a superposition
(sums and compositions) of bivariate functions.

Question: can every continuous (analytic, C*°, etc) function of n

variables be represented as a superposition of continuous (analytic, C*°,
etc) functions of n — 1 variables?

Theorem (D. Hilbert)

There is an analytic function of three variables that cannot be expressed as
a superposition of bivariate ones.

_d

Kolmogorov's Superposition Theorem

Theorem (A. Kolmogorov, 1956; V. Arnold, 1957)
Given n € Z*, every fy € C([0,1]") can be reprensented as

2n+1 n

fO(X17X2a"' aXn) — Z &q Z¢pq(xp))
g=1 p=1

/ where ¢pq € C[0, 1] are increasing functions independent of fy and
gq € C[0, 1] depend on fy.

@ Can choose g to be all the same g4 = g (Lorentz, 1966).

o Can choose ¢pq to be Holder or Lipschitz continuous, but not C!
(Fridman, 1967).

@ Can choose ¢pq = Appg Where A1, --- , A, > 0 and Zp Ap =1
(Sprecher, 1972).

If fis a multivariate continuous function, then f can be written as a superposition of composite
functions of mixtures of continuous functions of single variables:
finite composition of continuous functions of a single variable and the addition.

Kolmogorov's Exact Representation is
not stable or smooth

» [Girosi-Poggio’1989] Representation
Properties of Networks:
Kolmogorov's Theorem Is Irrelevant,
hitps.//www.mitpressjournals.org/d
oi/pdf/10.1162/neco.1989.1.4.465

» | acking smoothnessin h and g
[Vitushkin'1964] fails to guarantee
the generalization ability (stability)
against noise and perturbations

» The representation is not universal in
F the sense that g and h both
depend on the function F to be
represented.

Figure 1: The network representation of an improved version of Kolmogorov’s
theorem, due to Kahane (1975). The figure shows the case of a bivariate function.
The Kahane’s representation formula is f(z1,...,z,) = Zgi{'l g[Z;l:l lphg(zp)]
where h, are strictly monotonic functions and [, are strictly positive constants
smaller than 1.

A Simplified illustration by David McAllester

A Simpler, Similar Theorem

For (possibly discontinuous) f : [0, 1] — R there exists (pos-
sibly discontinuous) g, h; : R — R.

flz1, ..., zN) =g Zhi(fb‘z’)

Proof: Select h; to spread out the digits of its argument so
that >, h;(x;) contains all the digits of all the x;.

Jniversal Approximate Representation
‘Cybenko'1989, Hornik et al. 1989, Poggio-Girosi’1989, ...]

For continuous f : [0, 1] — R and & > 0 there exists

F(z) = a'c(Wz+)

= ZO&Z'O‘ (Z Wz’,j X j —1—5@)
2 J

such that for all z in [0, 1]"Y we have |F(z) — f(z)| < €.

Complexity (regularity, smoothness) thereafter becomes the central pursuit in
Approximation Theory.

KAN: Kolmogorov-Arnold Networks

KAN: Kolmogorov—Arnold Networks

Model | Multi-Layer Perceptron (MLP) | Kolmogorov-Arnold Network (KAN)

Ziming Liu'** Yixuan Wang® ~ Sachin Vaidya' Fabian Ruehle”! Theorem Universal Approximation Theorem Kolmogorov-Arnold Representation Theorem

James Halverson®* Marin Solja¢i¢'* Thomas Y. Hou? Max Tegmark'*
1 Massachusetts Institute of Technology Formula Ne) Zutl 2
2 California Institute of Technology (Shallow) fx) = Z ao(W;- X+ b)) fx) = Z @, z $yp%,)
3 Northeastern University =1 = r=!
4 The NSF Institute for Artificial Intelligence and Fundamental Interactions (a) fixed activation functions | (b) /T\ learnable activation functions
on nodes N U M N on edges
Model
(Shallow) i / S~ sum operation on nodes
Abstract learnable weights NINV NN DY
on edges
Inspired by the Kolmogorov-Arnold representation theorem, we propose Kolmogorov-
Arnold Networks (KANSs) as promising alternatives to Multi-Layer Perceptrons (MLPs). Formula
While MLPs have fixed activation functions on nodes (“neurons”), KANs have learnable (Deep) MLP(x) = (W3 °0y° W2 °0|° W 1)(X) KAN(X) = ((D3 ° (I)z o 1)(X)
activation functions on edges (“weights”). KANs have no linear weights at all — every
weight parameter is replaced by a univariate function parametrized as a spline. We show MLP(x) | (d)
that this seemingly simple change makes KANs outperform MLPs in terms of accuracy
and interpretability, on small-scale AI + Science tasks. For accuracy, smaller KANs can M -
odel nonlinear,

achieve comparable or better accuracy than larger MLPs in function fitting tasks. Theo- (Deep) fixed nonlinear,
retically and empirically, KANs possess faster neural scaling laws than MLPs. For inter- learnable
pretability, KANs can be intuitively visualized and can easily interact with human users.
Through two examples in mathematics and physics, KANs are shown to be useful “collabo- lez::::l};le
rators” helping scientists (re)discover mathematical and physical laws. In summary, KANs X X
are promising alternatives for MLPs, opening opportunities for further improving today’s

deep learning models which rely heavily on MLPs.

Figure 0.1: Multi-Layer Perceptrons (MLPs) vs. Kolmogorov-Arnold Networks (KANs)

Ziming Liu et al. arXiv:2404.19756

KAN vs. MLP<¢

KAN or MLP: A Fairer Comparison

Runpeng Yu, Weihao Yu, and Xinchao Wang
National University of Singapore

© https://github.com/yu-rp/KANbeFair

Abstract

This paper does not introduce a novel method. Instead, it offers a fairer and
more comprehensive comparison of KAN and MLP models across various tasks,
including machine learning, computer vision, audio processing, natural language
processing, and symbolic formula representation. Specifically, we control the
number of parameters and FLOPs to compare the performance of KAN and MLP.
Our main observation is that, except for symbolic formula representation tasks,
MLP generally outperforms KAN. We also conduct ablation studies on KAN and
find that its advantage in symbolic formula representation mainly stems from its
B-spline activation function. When B-spline is applied to MLP, performance in
symbolic formula representation significantly improves, surpassing or matching
that of KAN. However, in other tasks where MLP already excels over KAN, B-
spline does not substantially enhance MLP’s performance. Furthermore, we find
that KAN’s forgetting issue is more severe than that of MLP in a standard class-
incremental continual learning setting, which differs from the findings reported in
the KAN paper. We hope these results provide insights for future research on KAN
and other MLP alternatives.

Which network to use under fair comparison?

i

Symbolk: Formuda Machine Computer Naturad Languige (Audio
Reprosorting Leaming Vision Procassing Processing
i ' - Il
J ’ .
ey a7 18 1774
85,06 8416
3]
g‘r' ELL 7 16 {1540
:] §
1.20-3
Te-2 a3 14
KAN NP KAN MLP KAN MLP

(ow) (r) () () (e)

Figure 1: Performance comparison between KAN and MLP under fair setup. MLP yields higher
average accuracy in machine leaming. computer vision, natural language processing, and audio
processing, while KAN leads to lower average root mean square error. For the Symbolic Formula
Representation task, a lower RMSE is better.

Runpeng Yu et al. arXiv: 2407.16674

Locality or Sparsity of Computation

Minsky and Papert, 1969

Perceptron can’t do XOR classification
Perceptron needs infinite global
information to compute connectivity

Expanded Edition

CI;S_SA é><>(y|as<s>st :
o e e g
Byt e PR
+i‘$_‘;+3+§-+ & 0% A
. ¥*+++$“';¢1 ,,..%%s%o%.&; b
4t *++4+¢#‘q_ + ¢ @%06%00:?)
Yougg et
e che 0480@)% g +‘m.;+£+f*.
%% W
B g el thene
9 Qo007 Lk T T b P t
g0 " ¥]
B s creepirons
o5 0 1 s

Locality or Sparsity is important:
Locality in fimee
Locality in space?

Marvin L.. Minsky
Seymour A. Papert

Marvin Minsky Seymour Papert
A U N

Multilayer Perceptrons (MLP) and
Back-Propagation (BP) Algorithms

NATURE VOL. 323 9 OCTOBER 1946 LETTERS TONATURE 533

D.E. Rumelhart, G. Hinton, R.J. Williams (1986)
Learning representations by back-propagating

errors, Nature, 323(?): 533-536

BP algorithms as stochastic gradient descent
algorithms (Robbins—-Monro 1950; Kiefer-
Wolfowitz 1951) with Chain rules of Gradient maps

Deep network may classify XOR. Yet topology?

mmm We address complexity
and geometric invariant

properties first.

Learning representations
by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hintont
& Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California,
San Diego, La Jolla, California 92093, USA

+ Department of Computer Science, Carnegic-Mellon University,
Pitisburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for
networks of like units. The adjusts
the weights of the connections in the network so as to minimize a
measure of the difference between the actual output vector of the
net and the desired output vector. As a result of the weight
adjustnients, internal ‘*hidden’ units which are not part of the input
or output come to represent important features of the task domain,
and the regularities in the task are captured by the interactions
of these units. The ability to create useful new features distin-
guishes back-propagation from eaclier, simpler methods such as
the perceptron-convergence procedure’.

There have been many attempts to design self-organizing
neural networks, The aim is to find a powerful synaptic
modification rule that will allow an arbitrarily connected neural
network to develop an internal structure that is appropriate for
a particular task domain. The task is specificd by giving the
desired state vector of the output units for each state vector of
the input units, If the input units are directly connected to the
output units it is relatively easy to find learning rules that
iteratively adjust the relative strengths of the connections so as
to progressively reduce the difference between the actual and
desired output vectors®. Learning becomes more interesting but

+Ta whom correspondence should be addressed

more difficult when we introduce hidden units whose actual or
desired states are not specified by the task. (In perceptrons,
there are ‘feature analysers’ between the input and output that
are not true hidden units because their input connections are
fixed by hand, so their states are completely determined by the
input vector: they do not learn representations.) The learning
procedure must decide under what circumstances the hidden
units should be active in order to help achieve the desired
input-output behaviour. This amounts to deciding what these
units should represent. We demonstrate that a general purpose
and relatively simple procedure is powerful enough to construct
iate internal i

The simplest form of the learning procedure is for layered
networks which have a layer of input units at the bottom; any
number of intermediate layers; and a layer of output units at
the top. Connections within a layer or from higher to lower
layers are forbidden, but connections can skip intermediate
layers. An input vector is presented to the network by setting
the states of the input units. Then the states of the units in each
layer are determined by applying equations (1) and (2) to the
connections coming from lower layers. All units within a layer
have their states set in paraliel, but different layers have their
states set sequentially, starting at the bottom and working
upwards until the states of the output units are determined

The total input, X;, to unit j is a linear function of the outputs,
y, of the AT THAATE conaaeied to 1 and of The Werghtsw,

on these connections

%=Ly [¢V]

Units can be given biases by introducing an extra input to each
unit which always has a value of 1. The weight on this extra
input is called the bias and is equivalent to a threshold of the
opposite sign. It can be treated just like the other weights.

A unit has a real-valued awm:u

function of its total input
=

1
1+e

(&)

Parallel Distributed Processing
by Rumelhart and McClelland, 1986

Minsky and Papert set out to show which functions can and cannot
be computed by this class of machines. They demonstrated, in particu-
lar, that such perceptrons are unable to calculate such mathematical
functions as parity (whether an odd or even number of points are on in
the retina) or the topological function of connectedness (whether all
points that are on are connected to all other points that are on either
directly or via other points that are also on) without making use of
absurdly large numbers of predicates. The analysis is extremely elegant
and demonstrates the importance of a mathematical approach to analyz-

of multilayer networks that compute parity). Similarly, it is not diffi-
cult to develop networks capable of solving the connectedness or
inside/outside problem. Hinton and Sejnowski have analyzed a version
of such a network (see Chapter 7).

Essentially, then, although Minsky and Papert were exactly correct in
their analysis of the one-layer perceptron, the theorems don’t apply to
systems which are even a little more complex. In particular, it doesn’t
apply to multilayer systems nor to systems that allow feedback loops.

Topology can be learned with finite
InNformation if the manitold is stable

Blum-Shub-Smale models of Real Computation

A Model of Real Computation

» Starting from Blum, Shub, Smale (1989)

® [t admits inputs and operations
(addition, substraction, multiplication,
and (in the case of fields) division) of
real (complex) numbers with infinite
precision

» “The key importance of the condition
number, which measures the closeness
of a problem instance to the manifold
of ill-posed instances, is clearly
developed.” — Richard Karp

Peter Biirgisser
Felipe Cucker

Condition

The Geometry of Numerical Algorithms

&) Springer

The Condition Number of a Manifold

Throughout our discussion, we associate to M a condition number (1/7) where T
is defined as the largest number having the property: The open normal bundle about
M of radius r is embedded in R”Y for every r < t. Its image Tub, is a tubular

neighborhood of M with its canonical projection map

o . Tub;y — M.

Smallest Local Feature Size

G = {x € R" such that 3 distinct p, g € M where d(x, M) = ||x — p|| = |x — ql|},

where d(x, M) = infycpq|lx — y|| is the distance of x to M. The closure of G is
called the medial axis and for any point p € M the local feature size o (p) is the
distance of p to the medial axis. Then it is easy to check that

T = 1Inf o(p).
Ry (p)

-iInd Homology with Finite Samples
:Niyogi, Smale, Weinberger (2008)]

Theorem 3.1 Let M be a compact submanifold of RN with condition number t.
Let x = {x1,...,Xx,} be a set of n points drawn in i.i.d. fashion according to the

uniform probability measure on M. Let 0 <€ < 1/2. Let U = | J, .z Be(x) be a
correspondingly random open subset of RY . Then for all

1
n> p (10g(,32) + log(g)),

the homology of U equals the homology of M with high confidence (probability
>1 —).

vol(M) and vol(M)

Pr= (cost (@1)vol(BE) P2 = (cos* (02))vol(BE)

' Here k is the dimension of the manifold M and vol(Bé‘) denotes the k-dimensional
lyogi@Chiccago, volume of the standard k-dimensional ball of radius €. Finally, 01 = arcsin(e /87) and
6> = arcsin(e/167).

BP algorithm = Gradient Descent Method

@ Training examples {z}}™_, and labels {y*}™_,
@ Output of the network {z% },
@ Objective square loss, cross-entropy loss, etc.

I) = 5 3 5l o (1)
@ Gradient descent
Wi =W, - n%
by = b — 772—;

In practice: use Stochastic Gradient Descent (SGD)

Derivation of BP: Lagrangian Multiplier
LeCun et al. 1988

Given n training examples (1;, y;) = (input,target) and L layers
@ Constrained optimization

min i1 |z (L) — yill2

subjectto x;(¢) = fo [Wgﬂfi (£—1) },
b=y enylly £=1yun. b, 3300} =1
@ Lagrangian formulation (Unconstrained)
Vr[g’rjlgﬁ(W, x, B)

LW,z,B) =3/, {Ilfcz'(L) —yill3 +

Zgj:l BZ'(K)T (xz (f) — fr [ngi (f — 1) }) }

http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf

BP Algorithm: Forward Pass

@ Cascade of repeated [linear operation followed by
coordinatewise nonlinearity]’s

@ Nonlinearities: sigmoid, hyperbolic tangent, (recently)
RelLU.

Algorithm 1 Forward pass

Input: z
Output: =

W3

1: for/=1to L do
2. wxp= fo(Wizy—1 + by)
3: end for

Background Info

back-propagation — derivation

o 9L

oB

xi(ﬁ):fg[}/l/gxi(ﬁ—l)j] (=1,....L, i=1,...,n

Ai(€)

o £ 2 = [Vf]B(¢)
Backward (adjoint) pass
z(L) =2V fi, [Az'(L)] (i — zs(L))
2(0) = Vo | 4O |Wh z(t+1) £=0,...,L—1

o W+ W+ 2\2%

Weight update

Wo +— We+ A0, z(0)z] (£ —1) 21 /550

Convolutional Neural Networks: shift
Invariances and locality

@ Can be traced to Neocognitron of Kunihiko Fukushima
(1979)
@ Yann LeCun combined convolutional neural networks with
back propagation (1989)
4 g . . :
B, et 36192202 (190 | @ Imposes shift invariance and locality on the weights
@ Forward pass remains similar
s @ Backpropagation slightly changes — need to sum over the
il s oo s, g e gradients from all spatial positions

1

Neocognitron: A Self-organizing Neural Network Model
for a Mechanism of Pattern Recognition
Unaffected by Shift in Position

\&
\

C3: 1. maps 16@10x10
INPUT C1: leature maps S4: 1. maps 16@5x5

o 7J

-l
__M

|
Ful canection ‘ Gaussian connections
Convolutions Subsampling Comvolutions Subsampling Full connection

\E@\]
@

