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Course Infomation

´ Course web: 
´ https://aifin-hkust.github.io/

´ Time and Venure:
´ Lecture: Wed, 7:30-10:20pm, Lecture Theatre G

´ Instructor:
´ Yuan YAO <yuany@ust.hk> (https://yao-lab.github.io/)

´ Teaching Assistant:
´ CAO, He� hcaoaf@connect.ust.hk

´ LIU, Xuantong� xliude@connect.ust.hk

´ Grading: 
´ 3 projects (warmup, midterm, final)

´ 40% (A-AA+)
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Course Content

´ Supervised Learning: 
´ working knowledge about linear regression, classification, logistic regression, decision 

trees (CART), boosting, random forests, support vector machines, neural networks, etc. 

´ Unsupervised and Self-supervised Learning:
´ PCA, Generative Models, Generative Adversarial Networks, Denoising Diffusion Models

´ Self-supervision, e.g. masked language models etc.

´ Reinforcement Learning:
´ Markov Decision Process and online learning, etc. 

´ No exams. Project-based evaluation.



Session Topic Application & Case Study

1 – Overview of History and Supervised learning

2 – Introduction to Linear Regression and Classification – Price and Default Risk Prediction

3 – Model Assessment and Selection with Regularization: Ridge 
Regression and LASSO

– Model selection and causal recovery

4 – Decision Trees, Random Forests and Boosting – Credit analysis

5 – Support Vector Machines – Tutorial on Machine Learning with Python

6 – An Introduction to Convolutional Neural Networks – Price change patterns

7 – Transfer Learning and Neurostyle – Google deep dream

8 – An Introduction to Recurrent Neural Networks (RNN) and Long 
Short Term Memory (LSTM)

– Time series prediction

9 – Introduction to Unsupervised Learning: PCA, AutoEncoder, 
VAE and GANs

– Robust factor analysis
– Anomaly detection

10 – An Introduction to Reinforcement Learning – Deep Reinforcement Learning in Trading

11 – Projects and Class Wrap

Note: Details may change depending on class progress, development of relevant technologies, as well as information and feedback from students’ surveys.

Course Schedule



A Brief History of AI, Machine 
Learning, and Deep Learning



If you asked ChatGPT (3.5):
´ Title: A Historical Overview of Artificial Intelligence (AI)

´ Introduction:
Artificial Intelligence (AI) has a rich and fascinating history that spans several decades. This article provides a comprehensive overview of the historical milestones and key 
developments in the field of AI. By tracing the evolution of AI from its inception to the present day, we gain valuable insights into the progression of this groundbreaking 
discipline.

´ The Birth of AI:
The origins of AI can be traced back to the Dartmouth Conference in 1956, where the term "artificial intelligence" was first coined. This event marked the beginning of a 
new era, with researchers envisioning the possibility of creating machines that could exhibit intelligent behavior.

´ Early AI Approaches:
In the 1950s and 1960s, researchers explored various approaches to AI, such as symbolic reasoning and logical inference. The development of the Logic Theorist program 
by Allen Newell and Herbert Simon and the General Problem Solver by Newell and J.C. Shaw were significant milestones during this period.

´ The Rise of Machine Learning:
In the 1980s and 1990s, there was a shift in focus towards machine learning approaches within AI. The emergence of expert systems and the development of algorithms 
like the backpropagation algorithm for training neural networks led to significant advancements in pattern recognition and decision-making.

´ Knowledge-Based Systems:
During the 1980s, knowledge-based systems gained prominence in AI research. These systems utilized expert knowledge and rule-based reasoning to solve complex 
problems. The development of the MYCIN system for medical diagnosis and the DENDRAL system for chemical analysis were notable achievements in this era.

´ AI Winter and Resurgence:
In the late 1980s and early 1990s, AI faced a period of reduced funding and disillusionment, known as the "AI winter." However, advancements in computing power and 
the emergence of new techniques, such as Bayesian networks and support vector machines, sparked a resurgence of interest in AI research in the late 1990s.

´ Big Data and Deep Learning:
In recent years, the availability of vast amounts of data and the development of powerful computational resources have revolutionized AI. Deep learning, a subfield of 
machine learning focused on neural networks with multiple layers, has achieved remarkable success in areas such as image and speech recognition, natural language 
processing, and autonomous vehicles.

´ AI in the Present and Future:
AI is now an integral part of our daily lives, with applications ranging from virtual assistants and recommendation systems to autonomous robots and self-driving cars. The 
field continues to evolve rapidly, with ongoing research in areas like explainable AI, reinforcement learning, and ethical considerations surrounding AI deployment.

´ Conclusion:
The historical journey of AI showcases the remarkable progress made in this field. From its early beginnings to the present day, AI has transformed the way we interact 
with technology and holds immense potential for future advancements. By understanding its history, we gain a deeper appreciation for the challenges overcome and 
the possibilities that lie ahead in the exciting world of artificial intelligence.



Artificial Intelligence, Machine Learning, 
and Deep Learning
´ AI is born in 1950s, 

when a handful of 
pioneers from the 
nascent field of 
computer science 
started asking 
whether computers 
could be made to 
“think”—a question 
whose ramifications 
we’re still exploring 
today. 
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4 CHAPTER 1 What is deep learning?

1.1 Artificial intelligence, machine learning, 
and deep learning
First, we need to define clearly what we’re talking about when we mention AI. What
are artificial intelligence, machine learning, and deep learning (see figure 1.1)? How
do they relate to each other?

1.1.1 Artificial intelligence

Artificial intelligence was born in the 1950s, when a handful of pioneers from the
nascent field of computer science started asking whether computers could be made to
“think”—a question whose ramifications we’re still exploring today. A concise defini-
tion of the field would be as follows: the effort to automate intellectual tasks normally per-
formed by humans. As such, AI is a general field that encompasses machine learning and
deep learning, but that also includes many more approaches that don’t involve any
learning. Early chess programs, for instance, only involved hardcoded rules crafted by
programmers, and didn’t qualify as machine learning. For a fairly long time, many
experts believed that human-level artificial intelligence could be achieved by having
programmers handcraft a sufficiently large set of explicit rules for manipulating
knowledge. This approach is known as symbolic AI, and it was the dominant paradigm
in AI from the 1950s to the late 1980s. It reached its peak popularity during the expert
systems boom of the 1980s.

 Although symbolic AI proved suitable to solve well-defined, logical problems, such as
playing chess, it turned out to be intractable to figure out explicit rules for solving more
complex, fuzzy problems, such as image classification, speech recognition, and lan-
guage translation. A new approach arose to take symbolic AI’s place: machine learning.

1.1.2 Machine learning

In Victorian England, Lady Ada Lovelace was a friend and collaborator of Charles
Babbage, the inventor of the Analytical Engine: the first-known general-purpose,
mechanical computer. Although visionary and far ahead of its time, the Analytical

Artificial
intelligence

Machine
learning

Deep
learning

Figure 1.1 Artificial intelligence, 
machine learning, and deep learning
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A brief history of AI
´ 1943: McCulloch & Pits proposed a boolean circuit model of neurons
´ 1949: Donald Hebb proposed Hebbian learning rule.
´ 1950: Alan Turing published "Computing Machinery and Intelligence" with 

Turing test.
´ 1956: John McCarthy at the Dartmouth Conference coined terminology 

"Artificial Intelligence”
´ 1957: Rosenblatt invented Perceptron
´ 1960s: golden years till 1969 Minsky-Papert’s critical book Perceptron
´ 1970s: the first AI winter
´ 1980s: boom of AI with Expert System
´ 1990s: the second AI winter, rise of statistical machine learning
´ 1997: IBM Deep Blue beats world chess champion Kasparov
´ 2012: return of neural networks as deep learning (speech, ImageNet in 

computer vision, NLP, …) 
´ 2016-2017: Google AlphaGo “Lee” and Zero
´ 2020: Google AlphaFold
´ 2022: OpenAI ChatGPT
´ …



History of A.I.
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1956 1980 2000 2010

Source: Dr. Lee Kai-Fu • Sinovation Ventures and 2018 Conference on Neural Information Processing Systems

Expert System

Neural Networks
Statistical Machine Learning

“Deep Learning”
“In the first wave of AI you had to be 
a programmer. In the second wave 
of AI you have to be a data scientist. 
The third wave of AI — the more 
moral you are, the better.”

AI, Perceptron



Statistical Machine Learning is a new 
paradigm of computer programming

´ During 1950s-1980s, two 
competitive ideas of realizing 
AI exist
´ Rule based inference, or 

called Expert System

´ Statistics based inference, or 
called Machine Learning

´ 1990s- Machine Learning 
becomes dominant 
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5Artificial intelligence, machine learning, and deep learning

Engine wasn’t meant as a general-purpose computer when it was designed in the
1830s and 1840s, because the concept of general-purpose computation was yet to be
invented. It was merely meant as a way to use mechanical operations to automate cer-
tain computations from the field of mathematical analysis—hence, the name Analyti-
cal Engine. In 1843, Ada Lovelace remarked on the invention, “The Analytical Engine
has no pretensions whatever to originate anything. It can do whatever we know how to
order it to perform.… Its province is to assist us in making available what we’re
already acquainted with.”

 This remark was later quoted by AI pioneer Alan Turing as “Lady Lovelace’s objec-
tion” in his landmark 1950 paper “Computing Machinery and Intelligence,”1 which
introduced the Turing test as well as key concepts that would come to shape AI. Turing
was quoting Ada Lovelace while pondering whether general-purpose computers could
be capable of learning and originality, and he came to the conclusion that they could.

 Machine learning arises from this question: could a computer go beyond “what we
know how to order it to perform” and learn on its own how to perform a specified task?
Could a computer surprise us? Rather than programmers crafting data-processing
rules by hand, could a computer automatically learn these rules by looking at data?

 This question opens the door to a new programming paradigm. In classical pro-
gramming, the paradigm of symbolic AI, humans input rules (a program) and data to
be processed according to these rules, and out come answers (see figure 1.2). With
machine learning, humans input data as well as the answers expected from the data,
and out come the rules. These rules can then be applied to new data to produce orig-
inal answers.

A machine-learning system is trained rather than explicitly programmed. It’s presented
with many examples relevant to a task, and it finds statistical structure in these exam-
ples that eventually allows the system to come up with rules for automating the task.
For instance, if you wished to automate the task of tagging your vacation pictures, you
could present a machine-learning system with many examples of pictures already
tagged by humans, and the system would learn statistical rules for associating specific
pictures to specific tags.

1 A. M. Turing, “Computing Machinery and Intelligence,” Mind 59, no. 236 (1950): 433-460.

Answers
Rules

Data
Classical

programming

Rules
Data

Answers
Machine
learning

Figure 1.2 Machine learning: 
a new programming paradigm
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The 1st machine learning method:
Least Squares

´ Invention: 
´ Carl Friederich Gauss (~1795/1809/1810), 

´ Adrien-Marie Legendre (1805)

´ Robert Adrain (1808)

´ Application:
´ Prediction of the location of asteroid Ceres after it 

emerged from behind the sun (Franz Xaver von Zach 
1801) 

´ Orbits of planets, Newton Laws

´ Statistics, 

´ …
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Fisher’s Maximum Likelihood Principle 
(1912-1922)

´ The least square method is the maximum likelihood estimate (most probable 
values of the unknown parameters) when the noise is Gaussian. 

´ Fisher, R. A. (1912) On an absolute criterion for fitting frequency curves. 
Messenger of Mathematics 41:155-160.

´ Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. 
Philos. Trans. Roy. Soc. London Ser. A 222:309-368.

´ Aldrich, John (1997). R. A. Fisher and the Making of Maximum Likelihood 1912 
-- 1922. Statistical Science, 12(3):162-176.



The 1st neural network: Perceptron
Background Info

Perceptron, the basic block

Invented by Frank Rosenblatt (1957)

z = −→w · −→x + b

x1

x2

xd

···

b

f(z)

w1
w2

wd

15 / 50

“The theory reported here clearly demonstrates the feasibility and fruitfulness of a 
quantitative statistical approach to the organization of cognitive systems. By the study of 
systems such as the perceptron, it is hoped that those fundamental laws of organization 
which are common to all information handling systems, machines and men included, may 
eventually be understood.”  -- Frank Rosenblatt 

The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. In, 
Psychological Review, Vol. 65, No. 6, pp. 386-408, November, 1958.

Cybernetics/neural networks

Norbert Wiener Warren McCulloch & Walter Pitts Frank Rosenblatt



The Perceptron Algorithm 
for classification

Project 2 7

http://dx.doi.org/10.1016/j.acha.2015.11.005

In project 1, some explorations can be found here for your reference:

1) Jianhui ZHANG, Hongming ZHANG,Weizhi ZHU, and Min FAN: https://deeplearning-math.
github.io/slides/Project1_ZhangZhangZhuFan.pdf,

2) Wei HU, Yuqi ZHAO, Rougang YE, and Ruijian HAN: https://deeplearning-math.

github.io/slides/Project1_HuZhaoYeHan.pdf.

Moreover, the following report by Shun ZHANG from Fudan University presents a comparison
with Neural Style features:

3) https://www.dropbox.com/s/ccver43xxvo14is/ZHANG.Shun_essay.pdf?dl=0.

Appendix
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i2Mw

yi hw,xii , Mw = {i : yi hxi, wi < 0, yi 2 {�1, 1}}.
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⇢
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Margin

� := min
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yif(xi)

Normalized Margin

�n :=
�

Q2
i=1 kWik

The Perceptron Algorithm is a Stochastic Gradient Descent method 
(Robbins-Monro 1951, Ann. Math. Statist. 22(3): 400-407 ):
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Finiteness of Stopping Time and Margin

The Perceptron Algorithm

When talking about the functional margin, we are referring to the functional margin of
the entire dataset, defined as the minimum of all functional margins:

� =min
i

tiwTxi . (9)

With these definitions in place, we can now continue to prove the convergence theorem.
The perceptron convergence theoremwas proved by Block (1962) andNoviko↵ (1962).

The following version is based on that in Cristianini and Shawe-Taylor (2000).

Theorem 1 (Block, Noviko↵). Let the training set S = {(x1, t1), . . . , (xn, tn)} be contained in
a sphere of radius R about the origin. Assume the dataset to be linearly separable, and let
wopt , kwoptk = 1, define the hyperplane separating the samples, having functional margin
� > 0. We initialise the normal vector asw0 = 0. The number of updates, k, of the perceptron
algorithms is then bounded by

k 
 
2R
�

!2
. (10)

Proof. Though the proof can be done using the augmented normal vector and samples
defined in the beginning, the notation will be a lot easier if we introduce a di↵erent
augmentation: ŵ = (wT, b/R)T = (w1, . . . ,wD,b/R)T and x̂ = (xT,R)T = (x1, . . . ,xD,R)T.
We first derive an upper bound on how fast the normal vector grows. As the hyper-

plane is unchanged if we multiply ŵ by a constant, we can set ⌘ = 1 without loss of
generality. Let ŵk+1 be the updated (augmented) normal vector after the kth error has
been observed.

kŵk+1k2 = (ŵk + ti x̂i )T(ŵk + ti x̂i ) (11)

= ŵT
k ŵk + x̂Ti x̂i +2tiŵT

k x̂i (12)

= kŵkk2 + kx̂ik2 + 2tiŵT
k x̂i . (13)

Since an update was triggered, we know that tiŵT
k x̂i  0, thus

kŵkk2 + kx̂ik2 + 2tiŵT
k x̂i  kŵkk2 + kx̂ik2 (14)

= kŵkk2 + (kxik2 +R2) (15)

 kŵkk2 + 2R2 . (16)

This implies that kŵkk2  2kR2, thus

kŵk+1k2  2(k +1)R2 . (17)

We then proceed to show how the inner product between an update of the normal
vector and ŵopt increase with each update:

ŵT
optŵk+1 = ŵT

optŵk + tiŵT
optx̂i (18)

� ŵT
optŵk +� (19)

� (k +1)� , (20)

since ŵT
optŵk � k� . We therefore have

k2�2  (ŵT
optŵk)2  kŵoptk2kŵkk2  2kR2kŵoptk2 , (21)

where we have made use of the Cauchy-Schwarz inequality. As k2�2 grows faster than
2kR2, Eq. (21) can hold if and only if

k  2kŵoptk2
R2

�2 . (22)
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k ŵk + x̂Ti x̂i +2tiŵT
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= kŵkk2 + (kxik2 +R2) (15)
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The Perceptron Algorithm

Figure 1 A dataset consisting of two classes separated by a hyperplane wTx + b = 0. The func-
tional margin � is the shortest distance from the hyperplane to any of the samples. The
distance from the hyperplane to the origin is b.

steps such that it, on average, moves closer to the minimum of Eq. (3). More formally,
we obtain the normal vector of iteration k +1 as follows:

wk+1 =wk +�w. (4)

The minimisation scheme we will use is known as stochastic gradient descent (SGD)
and updates the normal vector each time it encounters a misclassified point. In SGD
�w = �⌘rE(w), where ⌘ is the so-called learning rate parameter. Thus,

wk+1 =wk � ⌘rE(w) (5)
=wk + ⌘tixi . (6)

To update the normal vector, all we have to do is to add (or subtract) one of the mis-
classified samples.
This concludes the perceptron learning algorithm. To find a hyperplane separating

the classes of the training set, we continuously apply Eq. (6) until no misclassified
points are left. Note, however, that each time we update the normal vector, some of the
previously correctly classified samples may become misclassified, so the perceptron
learning algorithm (Eq. (6)) is not guaranteed to reduce the overall error with each
update. The perceptron convergence theorem, however, states that if it is possible to
separate the two classes of the dataset with a hyperplane, then the perceptron learning
algorithm is guaranteed to find it in a finite number of iterations.

The perceptron convergence theorem

To prove the perceptron convergence theorem, we need to introduce some definitions.
Fig. 1 illustrates the situation of a hyperplane separating a dataset consisting of two
classes. The first definition we will need is the concept of a containing sphere centred
at the origin. This sphere will have a radius R, such that

R =max
i
kxik . (7)

The second definition we will need is that of the functional margin. This is simply the
distance from the hyperplane to a sample xi ,

�i = tiwTxi . (8)
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17 Kolmogorov’s Superposition Theorem

If f is a multivariate continuous function, then f can be written as a superposition of composite
functions of mixtures of continuous functions of single variables:
finite composition of continuous functions of a single variable and the addition.

Theorem (A. Kolmogorov, 1956; V. Arnold, 1957)

Given n 2 Z+
, every f0 2 C ([0, 1]n) can be reprensented as

f0(x1, x2, · · · , xn) =
2n+1X

q=1

gq

0

@
nX

p=1

�pq(xp)

1

A ,

where �pq 2 C [0, 1] are increasing functions independent of f0 and

gq 2 C [0, 1] depend on f0.

Can choose gq to be all the same gq ⌘ g (Lorentz, 1966).

Can choose �pq to be Hölder or Lipschitz continuous, but not C 1

(Fridman, 1967).

Can choose �pq = �p�q where �1, · · · ,�n > 0 and
P

p �p = 1
(Sprecher, 1972).

Xiling Zhang PG Colloquium 06 Oct 2016 4 / 14



18 Kolmogorov’s Exact Representation is
not stable or smooth

´ [Girosi-Poggio’1989] Representation 
Properties of Networks:
Kolmogorov’s Theorem Is Irrelevant,
https://www.mitpressjournals.org/d
oi/pdf/10.1162/neco.1989.1.4.465

´ Lacking smoothness in h and g
[Vitushkin’1964] fails to guarantee
the generalization ability (stability)
against noise and perturbations

´ The representation is not universal in
the sense that g and h both
depend on the function F to be
represented.



A Simplified illustration by David McAllester

A Simpler, Similar Theorem

For (possibly discontinuous) f : [0, 1]N ! R there exists (pos-
sibly discontinuous) g, hi : R ! R.

f (x1, . . . , xN ) = g

0

@
X

i

hi(xi)

1

A

Proof: Select hi to spread out the digits of its argument so
that

P
i hi(xi) contains all the digits of all the xi.

10



Universal Approximate Representation
[Cybenko’1989, Hornik et al. 1989, Poggio-Girosi’1989, ...]Cybenko’s Universal Approximation Theorem (1989)

For continuous f : [0, 1]N ! R and " > 0 there exists

F (x) = ↵
>
�(Wx + �)

=
X

i

↵i�

0

@
X

j

Wi,j xj + �i

1

A

such that for all x in [0, 1]N we have |F (x)� f (x)| < ".

11Complexity (regularity, smoothness) thereafter becomes the central pursuit in
Approximation Theory.



KAN: Kolmogorov-Arnold Networks

Ziming Liu et al. arXiv:2404.19756

KAN: Kolmogorov–Arnold Networks
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Abstract
Inspired by the Kolmogorov-Arnold representation theorem, we propose Kolmogorov-
Arnold Networks (KANs) as promising alternatives to Multi-Layer Perceptrons (MLPs).
While MLPs have fixed activation functions on nodes (“neurons”), KANs have learnable
activation functions on edges (“weights”). KANs have no linear weights at all – every
weight parameter is replaced by a univariate function parametrized as a spline. We show
that this seemingly simple change makes KANs outperform MLPs in terms of accuracy
and interpretability, on small-scale AI + Science tasks. For accuracy, smaller KANs can
achieve comparable or better accuracy than larger MLPs in function fitting tasks. Theo-
retically and empirically, KANs possess faster neural scaling laws than MLPs. For inter-
pretability, KANs can be intuitively visualized and can easily interact with human users.
Through two examples in mathematics and physics, KANs are shown to be useful “collabo-
rators” helping scientists (re)discover mathematical and physical laws. In summary, KANs
are promising alternatives for MLPs, opening opportunities for further improving today’s
deep learning models which rely heavily on MLPs.
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Figure 0.1: Multi-Layer Perceptrons (MLPs) vs. Kolmogorov-Arnold Networks (KANs)
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KAN vs. MLP?

Runpeng Yu et al. arXiv: 2407.16674

KAN or MLP: A Fairer Comparison

Runpeng Yu, Weihao Yu, and Xinchao Wang

National University of Singapore

� https://github.com/yu-rp/KANbeFair
TL;DR-Under the same number of parameters or FLOPs, we find KAN outperforms MLP only

in symbolic formula representing, but remains inferior to MLP on other tasks of machine

learning, computer vision, NLP, and audio processing.

Figure 1: Performance comparison between KAN and MLP under fair setup. MLP yields higher
average accuracy in machine learning, computer vision, natural language processing, and audio
processing, while KAN leads to lower average root mean square error. For the Symbolic Formula
Representation task, a lower RMSE is better.

Abstract

This paper does not introduce a novel method. Instead, it offers a fairer and
more comprehensive comparison of KAN and MLP models across various tasks,
including machine learning, computer vision, audio processing, natural language
processing, and symbolic formula representation. Specifically, we control the
number of parameters and FLOPs to compare the performance of KAN and MLP.
Our main observation is that, except for symbolic formula representation tasks,
MLP generally outperforms KAN. We also conduct ablation studies on KAN and
find that its advantage in symbolic formula representation mainly stems from its
B-spline activation function. When B-spline is applied to MLP, performance in
symbolic formula representation significantly improves, surpassing or matching
that of KAN. However, in other tasks where MLP already excels over KAN, B-
spline does not substantially enhance MLP’s performance. Furthermore, we find
that KAN’s forgetting issue is more severe than that of MLP in a standard class-
incremental continual learning setting, which differs from the findings reported in
the KAN paper. We hope these results provide insights for future research on KAN
and other MLP alternatives.
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23 Locality or Sparsity of Computation

Why are compositional 
functions important?

Which one of these reasons: 
Physics? 

Neuroscience? <=== 
Evolution?

What is special about 
locality of computation?


Locality in “space”? 

Locality in “time”?

Locality of Computation

Locality or Sparsity is important:
Locality in time?
Locality in space? 

Minsky and Papert, 1969
Perceptron can’t do XOR classification
Perceptron needs infinite global 

information to compute connectivity

ᐟᕪᗑᕶጱᒫӞེ੆٧

Marvin Minsky
(1927-2016)

Seymour Papert
(1928-)

1969ଙڊᇇ̽Perceptrons̾Ӟԡ҅ᦊԅՐᶌ
ੴ᮱ᬳളጱᐟᕪᗑᕶ෫ဩํප୏઀ᦒᕞ
զ݊உग़ᤩݸ๶ጱ᧛ᘏժզᦝփᦝጱᥡᅩ



24
Multilayer Perceptrons (MLP) and 
Back-Propagation (BP) Algorithms

D.E. Rumelhart, G. Hinton, R.J. Williams (1986)
Learning representations by back-propagating 

errors, Nature, 323(9): 533-536

BP algorithms as stochastic gradient descent 
algorithms (Robbins–Monro 1950; Kiefer-
Wolfowitz 1951) with Chain rules of Gradient maps

Deep network may classify XOR. Yet topology?

Background Info

Multi-layer perceptron

17 / 50

We address complexity 
and geometric invariant 
properties first.
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Multilayer Perceptrons (MLP) and 
Back-Propagation (BP) Algorithms
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Learning representations by back-propagating 
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BP algorithms as stochastic gradient descent 
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Deep network may classify XOR. Yet topology?

Background Info

Multi-layer perceptron

17 / 50

We address complexity 
and geometric invariant 
properties first.

Parallel Distributed Processing
by Rumelhart and McClelland, 1986
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Parallel Distributed Processing
by Rumelhart and McClelland, 1986
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Topology can be learned with finite 
information if the manifold is stable
Blum-Shub-Smale models of Real Computation



A Model of Real Computation

´ Starting from Blum, Shub, Smale (1989)

´ It admits inputs and operations 
(addition, substraction, multiplication, 
and (in the case of fields) division) of 
real (complex) numbers with infinite 
precision

´ “The key importance of the condition 
number, which measures the closeness 
of a problem instance to the manifold 
of ill-posed instances, is clearly 
developed.” – Richard Karp

x PREFACE 

isterio de Educaci6n y Ciencia of Spain, and the Generalitat de Catalunya. To all 
of these institutions we give our thanks. 

We note how the work here fits well into the spirit of the new organization 
"Foundations of Computational Mathematics" (FoCM). FoCM has held its first 
international meetings (Park City, Utah, July 1995, and IMPA, Rio de Janeiro, 
January 1997) and the proceedings of these meetings [Renegar, Shub, and Smale 
1996; Cucker and Shub 1997] contain a number of research papers extending and 
developing the ideas of this book. 

Throughout this book, the square 0 denotes the end of a proof or its absence. 

Hong Kong, March 1997 Lenore Blum 
Felipe Cucker 
Michael Shub 

Steve Smale 
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literature. Finally, it is also worth noting that there is a body of work on persistence
homology [7 , 20] that seeks alternative topological characterizations of the manifold
and its homology. See the discussion after Proposition 3.1.

In conclusion, we hope that researchers in graphics, pattern recognition, solid
modeling, molecular biology, finance, and other areas where large amounts of high-
dimensional data are available may find some use for the topological perspective on
data analysis embodied in the algorithms and analyses of this paper.

2 Preliminaries

Consider a compact Riemannian submanifold M of a Euclidean space RN . Sam-
ple the manifold according to a uniform probability measure on it. Thus points
x1, . . . , xn ∈ M are generated. This set of points x̄ = {x1, . . . , xn} is the data set on
the basis of which homology groups will be calculated. In later sections we consider
the case when the data are drawn from a probability measure with support close to
the manifold.

Throughout our discussion, we associate to M a condition number (1/τ ) where τ

is defined as the largest number having the property: The open normal bundle about
M of radius r is embedded in RN for every r < τ . Its image Tubτ is a tubular
neighborhood of M with its canonical projection map

π0 : Tubτ → M.

Note that τ encodes both local curvature considerations as well as global ones: If M
is a union of several components, then τ bounds their separation. For example, if M
is a sphere, then τ is equal to its radius. If M is an annulus, then τ is the separation
of its components. In Sect. 6 we relate the condition number 1/τ to classical notions
of curvature in differential geometry via the second fundamental form.

Finally, it is also useful to relate τ to the notions of medial axis and local feature
size that have been developed in the computational geometry community. Given M,
one may define the set

G =
{
x ∈ RN such that ∃ distinct p,q ∈M where d(x,M) = ∥x − p∥ = ∥x − q∥

}
,

where d(x,M) = infy∈M∥x − y∥ is the distance of x to M. The closure of G is
called the medial axis and for any point p ∈ M the local feature size σ (p) is the
distance of p to the medial axis. Then it is easy to check that

τ = inf
p∈M

σ (p).

3 An Outline of Our Main Results

Ultimately we wish to compute the homology of the manifold M ⊂ RN from the
randomly sampled datapoints x̄ = {x1, . . . , xn} ⊂ M. We first begin by considering
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Find Homology with Finite Samples
[Niyogi, Smale, Weinberger (2008)]
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Euclidean balls (in the ambient space RN ) of radius ϵ and center xi . We denote these
balls as Bϵ(xi). We can now define the open set U ⊂ RN given by

U =
⋃

x∈x̄

Bϵ(x).

Our first proposition states that if x̄ = {x1, . . . , xn} is ϵ/2 dense in M, then M is a
deformation retract of U .

Proposition 3.1 Let x̄ be any finite collection of points x1, . . . , xn ∈ RN such that it is
(ϵ/2) dense in M, i.e., for every p ∈M, there exists an x ∈ x̄ such that ∥p−x∥RN <

ϵ/2. Then for any ϵ <
√

3
5τ , we have that U deformation retracts to M. Therefore

the homology of U equals the homology of M.

We prove this proposition in Sect. 4. Subsequent to our work, the authors of [7]
presented a different type of calculation of the homology of M based on their homol-
ogy approximation theorem together with the method of computing persistent homol-
ogy (e.g., [20]). Their method does not give the homotopy type of M. On the other
hand, it does apply to a class of metric spaces more general than well-conditioned
manifolds. A related approach appears in [5].

In the case under consideration here, the points x1, . . . , xn are sampled in i.i.d.
fashion from the uniform probability distribution on M. By probabilistic considera-
tions, we will then prove (in Sect. 5) the following proposition.

Proposition 3.2 Let x̄ be drawn by sampling M in i.i.d. fashion according to the
uniform probability measure on M. Then with probability greater than 1 − δ, we
have that x̄ is (ϵ/2)-dense (ϵ < τ/2) in M provided

|x̄| > β1

(
log(β2) + log

(
1
δ

))
,

where

β1 = vol(M)

(cosk(θ1))vol(Bk
ϵ/4)

and β2 = vol(M)

(cosk(θ2))vol(Bk
ϵ/8)

.

Here k is the dimension of the manifold M and vol(Bk
ϵ ) denotes the k-dimensional

volume of the standard k-dimensional ball of radius ϵ. Finally, θ1 = arcsin(ϵ/8τ ) and
θ2 = arcsin(ϵ/16τ ).

Putting these two propositions together, we see that we are able to provide a finite
sample estimate for how many times we need to sample M so that we are guaranteed
with high confidence that the homology of the random set U equals the homology
of M. Thus our main theorem is

Theorem 3.1 Let M be a compact submanifold of RN with condition number τ .
Let x̄ = {x1, . . . , xn} be a set of n points drawn in i.i.d. fashion according to the
Discrete Comput Geom (2008) 39: 419–441 423

uniform probability measure on M. Let 0 < ϵ < τ/2. Let U = ⋃
x∈x̄ Bϵ(x) be a

correspondingly random open subset of RN . Then for all

n > β1

(
log(β2) + log

(
1
δ

))
,

the homology of U equals the homology of M with high confidence (probability
>1 − δ).

Remark Note that no version of our main theorem exists in the literature so far. How-
ever, versions of our Proposition 3.1 do exist. We have characterized Proposition 3.1
in terms of τ but one may obtain an alternate characterization in terms of the medial
axis and the local feature size. In fact, if one considers the union of balls centered
at the data points given by U = ⋃

x∈x̄ Bϵx (x) where ϵx = rσ (x), then it is possible
to show that the homology of U coincides with that of M if x̄ is (ϵx/2)-dense in
M and for all r < 0.21. For the case of surfaces in R3, a similar result is obtained
by Amenta et al. [2] for r < 0.06. The set x̄ is said to be (ϵx/2)-dense if for every
p ∈ M there exists some x ∈ x̄ such that ∥p − x∥ < ϵx/2. We will prove this in a
later paper. It is not obvious, however, how to obtain a version of our main theorem
in terms of the local feature size. Finally, we recall the recent results of [7] that we
have already alluded to.

3.1 Computing the Homology of U

One now needs to consider algorithms to compute the homology of U . Noting that
the Bϵ(xi)’s form a cover of U , one can construct the nerve of the cover. The nerve
is an abstract simplicial complex constructed as follows: One puts in a k-simplex for
every (k + 1)-tuple of intersecting elements of the cover. The Nerve Lemma (see [4])
applies in our case, as balls are convex, to show that the homology of U is the same as
the homology of this complex. The algorithm consists of the following components:

1. Given an ϵ, and a set of points x̄ = {x1, . . . , xn} in RN , each j -simplex is given by
a subset of the n points that have non-zero intersection. Thus we may define Lj to
be the collection of all j -simplices. Each simplex σ ∈ Lj is associated with a set
of j + 1 points (p0(σ ), . . . , pj (σ ) ∈ x̄) such that

j⋂

i=0

Bϵ(pi(σ )) ̸= ∅.

An orientation for the simplex is chosen by picking an ordering and we denote the
oriented simplex by |p0(σ ), . . . , pj (σ )|.

2. A very crude upper bound on the size of Lj (denoted by |Lj |) is given by
( n
j+1

)
.

However, it is clear that if two points xm and xl are more than 2ϵ apart, they cannot
be associated to a simplex. Therefore, there is a locality condition that the pi(σ )’s
must obey, which results in |Lj | being much smaller than this crude number. The
simplicial complex Kj = ⋃j

i=0 Lj together with face relations. The simplicial
complex corresponding to the nerve of U is K = KN .
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