

Course Infomation

- Course web:
- https://aifin-hkust.github.io/
- Time and Venure:
- Lecture: Mon, 7:30-10:20pm, Rm-4619--Liff-31-32; Lecture Theatre F
- Instructor:
- Yuan YAO yuany@ust.hk (https://yao-lab.github.io/)
- Teaching Assistant:
- CAO, He : hcaoaf@connect.ust.hk
- LIU, Xuantong : xliude@connect.ust.hk
- Grading:
- 3 projects (warmup, midterm, final)
- 40% (A-AA+)

Course Content

- Supervised Learning:
- working knowledge about linear regression, classification, logistic regression, decision trees (CART), boosting, random forests, support vector machines, neural networks, etc.
- Unsupervised and Self-supervised Learning:
- PCA, Generative Models, Generative Adversarial Networks
- Self-supervision, e.g. masked language models etc.
- Reinforcement Learning:
- Markov Decision Process and online learning, etc.
- No exams. Project-based evaluation.

Session	Topic	Application \& Case Study
1	- Overview of History and Supervised learning	
2	- Introduction to Linear Regression and Classification	- Price and Default Risk Prediction
3	- Model Assessment and Selection with Regularization: Ridge Regression and LASSO	- Model selection and causal recovery
4	- Decision Trees, Random Forests and Boosting	- Credit analysis
5	- Support Vector Machines	- Tutorial on Machine Learning with Python
6	- An Introduction to Convolutional Neural Networks	- Price change patterns
	- Transfer Learning and Neurostyle	- Google deep dream
8	- An Introduction to Recurrent Neural Networks (RNN) and Long Short Term Memory (LSTM)	- Time series prediction
9	- Introduction to Unsupervised Learning: PCA, AutoEncoder, VAE and GANs	- Robust factor analysis - Anomaly detection
10	- An Introduction to Reinforcement Learning	- Deep Reinforcement Learning in Trading
11	- Projects and Class Wrap	

A Brief History of Al, Machine Learning, and Deep Learning

If you asked ChatGPT (3.5):

- Title: A Historical Overview of Artificial Intelligence (AI)
- Introduction:

Artificial Intelligence (AI) has a rich and fascinating history that spans several decades. This article provides a comprehensive overview of the historical milestones and key developments in the field of AI. By tracing the evolution of AI from its inception to the present day, we gain valuable insights into the progression of this groundbreaking discipline.

- The Birth of AI:

The origins of Al can be traced back to the Dartmouth Conference in 1956, where the term "artificial intelligence" was first coined. This event marked the beginning of a new era, with researchers envisioning the possibility of creating machines that could exhibit intelligent behavior.

- Early AI Approaches:

In the 1950 s and 1960 s, researchers explored various approaches to Al , such as symbolic reasoning and logical inference. The development of the Logic Theorist program by Allen Newell and Herbert Simon and the General Problem Solver by Newell and J.C. Shaw were significant milestones during this period.

- The Rise of Machine Learning:

In the 1980s and 1990s, there was a shift in focus towards machine learning approaches within Al. The emergence of expert systems and the development of algorithms like the backpropagation algorithm for training neural networks led to significant advancements in pattern recognition and decision-making.

- Knowledge-Based Systems:

During the 1980s, knowledge-based systems gained prominence in Al research. These systems utilized expert knowledge and rule-based reasoning to solve complex problems. The development of the MYCIN system for medical diagnosis and the DENDRAL system for chemical analysis were notable achievements in this era.

- Al Winter and Resurgence:

In the late 1980s and early 1990s, Al faced a period of reduced funding and disillusionment, known as the "Al winter." However, advancements in computing power and the emergence of new techniques, such as Bayesian networks and support vector machines, sparked a resurgence of interest in Al research in the late 1990 s.

- Big Data and Deep Learning:

In recent years, the availability of vast amounts of data and the development of powerful computational resources have revolutionized Al. Deep learning, a subfield of machine learning focused on neural networks with multiple layers, has achieved remarkable success in areas such as image and speech recognition, natural language processing, and autonomous vehicles.

- Al in the Present and Future

Al is now an integral part of our daily lives, with applications ranging from virtual assistants and recommendation systems to autonomous robots and self-driving cars. The field continues to evolve rapidly, with ongoing research in areas like explainable AI, reinforcement learning, and ethical considerations surrounding Al deployment.

- Conclusion:

The historical journey of Al showcases the remarkable progress made in this field. From its early beginnings to the present day, Al has transformed the way we interact with technology and holds immense potential for future advancements. By understanding its history, we gain a deeper appreciation for the challenges overcome and the possibilities that lie ahead in the exciting world of artificial intelligence.

Artificial Intelligence, Machine Learning, and Deep Learning

- Al is born in 1950s, when a handful of pioneers from the nascent field of computer science started asking whether computers could be made to "think"-a question whose ramifications we're still exploring today.

A brief history of Al

- 1943: McCulloch \& Pits proposed a boolean circuit model of neurons
- 1949: Donald Hebb proposed Hebbian learning rule.
- 1950: Alan Turing published "Computing Machinery and Intelligence" with Turing test.
- 1956: John McCarthy at the Dartmouth Conference coined terminology "Artificial Intelligence"
- 1957: Rosenblatt invented Perceptron
- 1960s: golden years till 1969 Minsky-Papert's critical book Perceptron
- 1970s: the first Al winter
- 1980s: boom of AI with Expert System
- 1990s: the second Al winter, rise of statistical machine learning
- 1997: IBM Deep Blue beats world chess champion Kasparov
- 2012: return of neural networks as deep learning (speech, ImageNet in computer vision, NLP, ...)
- 2016-2017: Google AlphaGo "Lee" and Zero
- 2020: Google AlphaFold
- 2022: OpenAI ChatGPT
-..

History of A.I.

Neural Networks Statistical Machine Learning

Statistical Machine Learning is a new paradigm of computer programming

- During 1950s-1980s, two competitive ideas of realizing Al exis \dagger
- Rule based inference, or called Expert System
- Statistics based inference, or called Machine Learning
- 1990s- Machine Learning becomes dominant

The $1^{\text {st }}$ machine learning method: Least Squares

- Invention:
- Carl Friederich Gauss (~1795/1809/1810),
- Adrien-Marie Legendre (1805)
- Robert/Adrain (1808)
- Application:
- Prediction of the location of asteroid Ceres after it emerged from behind the sun (Franz Xaver von Zach 1801)
- Orbits of planets, Newton Laws
- Statistics,

Fisher's Maximum Likelihood Principle (1912-1922)

- The least square method is the maximum likelihood estimate (most probable values of the unknown parameters) when the noise is Gaussian.
- Fisher, R. A. (1912) On an absolute criterion for fitting frequency curves. Messenger of Mathematics 41:155-160.
- Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philos. Trans. Roy. Soc. London Ser. A 222:309-368.
- Aldrich, John (1997). R. A. Fisher and the Making of Maximum Likelihood 1912 -- 1922. Statistical Science, 12(3):162-176.

The $1^{\text {st }}$ neural network: Perceptron

- Invented by Frank Rosenblatt (1957)

The Perceptron Algorithm for classification

$$
\ell(w)=-\sum_{i \in \mathcal{M}_{w}} y_{i}\left\langle w, \mathbf{x}_{i}\right\rangle, \quad \mathcal{M}_{w}=\left\{i: y_{i}\left\langle\mathbf{x}_{i}, w\right\rangle<0, y_{i} \in\{-1,1\}\right\}
$$

The Perceptron Algorithm is a Stochastic Gradient Descent method (Robbins-Monro 1951, Ann. Math. Statist. 22(3): 400-407):

$$
\begin{aligned}
w_{t+1} & =w_{t}-\eta_{t} \nabla_{i} \ell(w) \\
& =\left\{\begin{array}{lr}
w_{t}-\eta_{t} y_{i} \mathbf{x}_{i}, & \text { if } y_{i} w_{t}^{T} \mathbf{x}_{i}<0 \\
w_{t}, & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Finiteness of Stopping Time and Margin

The perceptron convergence theorem was proved by Block (1962) and Novikoff (1962). The following version is based on that in Cristianini and Shawe-Taylor (2000).

Theorem 1 (Block, Novikoff). Let the training set $S=\left\{\left(\mathbf{x}_{1}, t_{1}\right), \ldots,\left(\mathbf{x}_{n}, t_{n}\right)\right\}$ be contained in a sphere of radius R about the origin. Assume the dataset to be linearly separable, and let $\mathbf{w}_{\mathrm{opt}},\left\|\mathbf{w}_{\mathrm{opt}}\right\|=1$, define the hyperplane separating the samples, having functional margin $\gamma>0$. We initialise the normal vector as $\mathbf{w}_{0}=0$. The number of updates, k, of the perceptron algorithms is then bounded by

$$
\begin{equation*}
k \leq\left(\frac{2 R}{\gamma}\right)^{2} \tag{10}
\end{equation*}
$$

Input ball: $\quad R=\max \left\|\mathbf{x}_{i}\right\|$.
Margin: $\quad \gamma:=\min _{i} y_{i} f\left(x_{i}\right)$

Hillbert's 13th Problem

Algebraic equations (under a suitable transformation) of degree up to 6 can be solved by functions of two variables. What about

$$
x^{7}+a x^{3}+b x^{2}+c x+1=0 ?
$$

Hilbert's conjecture: $x(a, b, c)$ cannot be expressed by a superposition (sums and compositions) of bivariate functions.

Question: can every continuous (analytic, C^{∞}, etc) function of n variables be represented as a superposition of continuous (analytic, C^{∞}, etc) functions of $n-1$ variables?

Theorem (D. Hilbert)
There is an analytic function of three variables that cannot be expressed as a superposition of bivariate ones.

Kolmogorov's Superposition Theorem

Theorem (A. Kolmogorov, 1956; V. Arnold, 1957)
Given $n \in \mathbb{Z}^{+}$, every $f_{0} \in C\left([0,1]^{n}\right)$ can be reprensented as

$$
f_{0}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\sum_{q=1}^{2 n+1} g_{q}\left(\sum_{p=1}^{n} \phi_{p q}\left(x_{p}\right)\right)
$$

where $\phi_{p q} \in C[0,1]$ are increasing functions independent of f_{0} and $g_{q} \in C[0,1]$ depend on f_{0}.

- Can choose g_{q} to be all the same $g_{q} \equiv g$ (Lorentz, 1966).
- Can choose $\phi_{p q}$ to be Hölder or Lipschitz continuous, but not C^{1} (Fridman, 1967).
- Can choose $\phi_{p q}=\lambda_{p} \phi_{q}$ where $\lambda_{1}, \cdots, \lambda_{n}>0$ and $\sum_{p} \lambda_{p}=1$ (Sprecher, 1972).
If f is a multivariate continuous function, then f can be written as a superposition of composite functions of mixtures of continuous functions of single variables:
finite composition of continuous functions of a single variable and the addition.

Kolmogorov's Exact Representation is not stable or smooth

Figure 1: The network representation of an improved version of Kolmogorov's theorem, due to Kahane (1975). The figure shows the case of a bivariate function. The Kahane's representation formula is $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{q=1}^{2 n+1} g\left[\sum_{p=1}^{n} l_{p} h_{q}\left(x_{p}\right)\right]$ where h_{q} are strictly monotonic functions and l_{p} are strictly positive constants smaller than 1.

- [Girosi-Poggio' 1989] Representation Properties of Networks: Kolmogorov's Theorem Is Irrelevant, https://www.mitpressjournals.org/d oi/pdf/10.1162/neco.1989.1.4.465
- Lacking smoothness in h and g [Vitushkin'1964] fails to guarantee the generalization ability (stability) against noise and perturbations
- The representation is not universal in the sense that g and h both depend on the function F to be represented.

A Simplified illustration by David McAllester

A Simpler, Similar Theorem

For (possibly discontinuous) $f:[0,1]^{N} \rightarrow \mathbb{R}$ there exists (possibly discontinuous) $g, h_{i}: \mathbb{R} \rightarrow \mathbb{R}$.

$$
f\left(x_{1}, \ldots, x_{N}\right)=g\left(\sum_{i} h_{i}\left(x_{i}\right)\right)
$$

Proof: Select h_{i} to spread out the digits of its argument so that $\sum_{i} h_{i}\left(x_{i}\right)$ contains all the digits of all the x_{i}.

Universal Approximate Representation

 [Cybenko' 1989, Hornik et al. 1989, Poggio-Girosi' 1989, ...]For continuous $f:[0,1]^{N} \rightarrow \mathbb{R}$ and $\varepsilon>0$ there exists

$$
\begin{aligned}
F(x) & =\alpha^{\top} \sigma(W x+\beta) \\
& =\sum_{i} \alpha_{i} \sigma\left(\sum_{j} W_{i, j} x_{j}+\beta_{i}\right)
\end{aligned}
$$

such that for all x in $[0,1]^{N}$ we have $|F(x)-f(x)|<\varepsilon$.

Complexity (regularity, smoothness) thereafter becomes the central pursuit in Approximation Theory.

Locality or Sparsity of Computation

Minsky and Papert, 1969
Perceptron can't do XOR classification
Perceptron needs infinite global
information to compute connectivity

Locality or Sparsity is important:
Locality in time?
Locality in space?

Expanded Edition

Marvin L. Minsky
Seymour A. Papert

Multilayer Perceptrons (MLP) and Back-Propagation (BP) Algorithms

D.E. Rumelhart, G. Hinton, R.J. Williams (1986)

Learning representations by back-propagating errors, Nature, 323(9): 533-536

BP algorithms as stochastic gradient descent algorithms (Robbins-Monro 1950; Kiefer-
Wolfowitz 1951) with Chain rules of Gradient maps

Deep network may classify XOR. Yet topology?

We address complexity and geometric invariant properties first.

Parallel Distributed Processing

by Rumelhart and McClelland, 1986

Minsky and Papert set out to show which functions can and cannot be computed by this class of machines. They demonstrated, in particular, that such perceptrons are unable to calculate such mathematical functions as parity (whether an odd or even number of points are on in the retina) or the topological function of connectedness (whether all points that are on are connected to all other points that are on either directly or via other points that are also on) without making use of absurdly large numbers of predicates. The analysis is extremely elegant and demonstrates the importance of a mathematical approach to analyz-
of multilayer networks that compute parity). Similarly, it is not difficult to develop networks capable of solving the connectedness or inside/outside problem. Hinton and Sejnowski have analyzed a version of such a network (see Chapter 7).

Essentially, then, although Minsky and Papert were exactly correct in their analysis of the one-layer perceptron, the theorems don't apply to systems which are even a little more complex. In particular, it doesn't apply to multilayer systems nor to systems that allow feedback loops.

Topology can be learned with finite information if the manifold is stable

Blum-Shub-Smale models of Real Computation

A Model of Real Computation

- Starting from Blum, Shub, Smale (1989)
- It admits inputs and operations (addition, substraction, multiplication, and (in the case of fields) division) of real (complex) numbers with infinite precision
- "The key importance of the condition number, which measures the closeness of a problem instance to the manifold

Condition
The Geometry of Numerical Algorithms

The Condition Number of a Manifold

Throughout our discussion, we associate to \mathcal{M} a condition number $(1 / \tau)$ where τ is defined as the largest number having the property: The open normal bundle about \mathcal{M} of radius r is embedded in \mathbb{R}^{N} for every $r<\tau$. Its image Tub_{τ} is a tubular neighborhood of \mathcal{M} with its canonical projection map

$$
\pi_{0}: \operatorname{Tub}_{\tau} \rightarrow \mathcal{M}
$$

Smallest Local Feature Size

$G=\left\{x \in \mathbb{R}^{N}\right.$ such that \exists distinct $p, q \in \mathcal{M}$ where $\left.d(x, \mathcal{M})=\|x-p\|=\|x-q\|\right\}$,
where $d(x, \mathcal{M})=\inf _{y \in \mathcal{M}}\|x-y\|$ is the distance of x to \mathcal{M}. The closure of G is called the medial axis and for any point $p \in \mathcal{M}$ the local feature size $\sigma(p)$ is the distance of p to the medial axis. Then it is easy to check that

$$
\tau=\inf _{p \in \mathcal{M}} \sigma(p)
$$

Find Homology with Finite Samples [Niyogi, Smale, Weinberger (2008)]

Theorem 3.1 Let \mathcal{M} be a compact submanifold of \mathbb{R}^{N} with condition number τ. Let $\bar{x}=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of n points drawn in i.i.d. fashion according to the uniform probability measure on \mathcal{M}. Let $0<\epsilon<\tau / 2$. Let $U=\bigcup_{x \in \bar{x}} B_{\epsilon}(x)$ be a correspondingly random open subset of \mathbb{R}^{N}. Then for all

$$
n>\beta_{1}\left(\log \left(\beta_{2}\right)+\log \left(\frac{1}{\delta}\right)\right)
$$

the homology of U equals the homology of \mathcal{M} with high confidence (probability $>1-\delta$).

$$
\beta_{1}=\frac{\operatorname{vol}(\mathcal{M})}{\left(\cos ^{k}\left(\theta_{1}\right)\right) \operatorname{vol}\left(B_{\epsilon / 4}^{k}\right)} \quad \text { and } \quad \beta_{2}=\frac{\operatorname{vol}(\mathcal{M})}{\left(\cos ^{k}\left(\theta_{2}\right)\right) \operatorname{vol}\left(B_{\epsilon / 8}^{k}\right)}
$$

Here k is the dimension of the manifold \mathcal{M} and $\operatorname{vol}\left(B_{\epsilon}^{k}\right)$ denotes the k-dimensional Partha Niyogi@Chiccago, volume of the standard k-dimensional ball of radius ϵ. Finally, $\theta_{1}=\arcsin (\epsilon / 8 \tau)$ and 1967-2010 $\theta_{2}=\arcsin (\epsilon / 16 \tau)$.

BP algorithm = Gradient Descent Method

- Training examples $\left\{x_{0}^{i}\right\}_{i=1}^{n}$ and labels $\left\{y^{i}\right\}_{i=1}^{n}$
- Output of the network $\left\{x_{L}^{i}\right\}_{i=1}^{m}$
- Objective Square loss, cross-entropy loss, etc.

$$
\begin{equation*}
J\left(\left\{W_{l}\right\},\left\{b_{l}\right\}\right)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{2}\left\|y^{i}-x_{L}^{i}\right\|_{2}^{2} \tag{1}
\end{equation*}
$$

- Gradient descent

$$
\begin{aligned}
W_{l} & =W_{l}-\eta \frac{\partial J}{\partial W_{l}} \\
b_{l} & =b_{l}-\eta \frac{\partial J}{\partial b_{l}}
\end{aligned}
$$

In practice: use Stochastic Gradient Descent (SGD)

Derivation of BP: Lagrangian Multiplier

 LeCun et al. 1988Given n training examples $\left(I_{i}, y_{i}\right) \equiv$ (input,target) and L layers

- Constrained optimization

$$
\begin{array}{ll}
\min _{W, x} & \sum_{i=1}^{n}\left\|x_{i}(L)-y_{i}\right\|_{2} \\
\text { subject to } & x_{i}(\ell)=f_{\ell}\left[W_{\ell} x_{i}(\ell-1)\right], \\
& i=1, \ldots, n, \quad \ell=1, \ldots, L, x_{i}(0)=I_{i}
\end{array}
$$

- Lagrangian formulation (Unconstrained)

$$
\begin{aligned}
& \min _{W, x, B} \mathcal{L}(W, x, B) \\
& \mathcal{L}(W, x, B)=\sum_{i=1}^{n} \quad\left\{\left\|x_{i}(L)-y_{i}\right\|_{2}^{2}+\right. \\
&\left.\sum_{\ell=1}^{L} B_{i}(\ell)^{T}\left(x_{i}(\ell)-f_{\ell}\left[W_{\ell} x_{i}(\ell-1)\right]\right)\right\}
\end{aligned}
$$

- Cascade of repeated [linear operation followed by coordinatewise nonlinearity]'s
- Nonlinearities: sigmoid, hyperbolic tangent, (recently) ReLU.

```
Algorithm 1 Forward pass
Input: }\mp@subsup{x}{0}{
Output: }\mp@subsup{x}{L}{
    1: for }\ell=1\mathrm{ to }L\mathrm{ do
2:
3: end for
```


back-propagation - derivation

- $\frac{\partial \mathcal{L}}{\partial B}$

Forward pass

$$
x_{i}(\ell)=f_{\ell}[\underbrace{W_{\ell} x_{i}(\ell-1)}_{A_{i}(\ell)}] \quad \ell=1, \ldots, L, \quad i=1, \ldots, n
$$

$$
\text { - } \frac{\partial \mathcal{L}}{\partial x}, z_{\ell}=\left[\nabla f_{\ell}\right] B(\ell)
$$

Backward (adjoint) pass

$$
\begin{aligned}
& z(L)=2 \nabla f_{L}\left[A_{i}(L)\right]\left(y_{i}-x_{i}(L)\right) \\
& z_{i}(\ell)=\nabla f_{\ell}\left[A_{i}(\ell)\right] W_{\ell+1}^{T} z_{i}(\ell+1) \quad \ell=0, \ldots, L-1
\end{aligned}
$$

- $W \leftarrow W+\lambda \frac{\partial \mathcal{L}}{\partial W}$

Weight update

$$
W_{\ell} \leftarrow W_{\ell}+\lambda \sum_{i=1}^{n} z_{i}(\ell) x_{i}^{T}(\ell-1)
$$

Convolutional Neural Networks: shift invariances and locality

- Can be traced to Neocognitron of Kunihiko Fukushima (1979)
- Yann LeCun combined convolutional neural networks with back propagation (1989)
- Imposes shift invariance and locality on the weights
- Forward pass remains similar
- Backpropagation slightly changes - need to sum over the gradients from all spatial positions

Time series: Linear Dynamical Systems (1940s-)

- The hidden state has linear dynamics with Gaussian noise and produces the observations using a linear model with Gaussian noise.
- Kalman Filter: A linearly transformed Gaussian is a Gaussian. So the distribution over the hidden state given the data so far is Gaussian. It can be computed using "Kalman filtering".
To predict the next output (so that we can shoot down the missile) we need to infer the hidden state.

$$
\begin{aligned}
& h_{t}=W_{h h} h_{t-1}+W_{h x} x_{t}+\epsilon_{t}^{h} \\
& y_{t}=W_{y h} h_{t}+W_{y x} x_{t}+\epsilon_{t}^{y}
\end{aligned}
$$

Hidden Markov Models (1970s-)

- Hidden Markov Models have a discrete one-of-N hidden state. Transitions between states are stochastic and controlled by a transition matrix. The outputs produced by a state are stochastic.
- We cannot be sure which state produced a given output. So the state is "hidden".
- It is easy to represent a probability distribution across N states with N numbers.
- To predict the next output we need to infer the probability distribution over hidden states.
- HMMs have efficient algorithms (Baum-Welch or EM Algorithm) for inference and learning.
- Jim Simons hires Lenny Baum as the founding
 member of Renaissance Technologies in 1979

Recurrent Neural Networks (1986-)

- The issue of a hidden Markov model (HMM):
- At each time step it must select one of its hidden states. So with N hidden states it can only remember log(N) bits about what it generated so far.
- RNNs are very powerful, because they combine two properties:
- Distributed hidden state that allows them to store a lot of information about the past efficiently.
- Non-linear dynamics that allows them to update their hidden state in complicated ways.
- Rumelhart et al. enables training by BP algorithm
- With enough neurons and time, RNNs can compute anything that can be computed by your computer.

$$
\begin{aligned}
h_{t} & =\sigma_{h}\left(W_{h h} h_{t-1}+W_{h x} x_{t}\right) \\
y_{t} & =\sigma_{y}\left(W_{y h} h_{t}\right)
\end{aligned}
$$

Long-Short-Term-Memory (LSTM)

- Sepp Hochreiter; Jürgen Schmidhuber (1997). "Long short-term memory". Neural Computation. 9 (8): 1735-1780. (https://www.bioinf.jku.at/publications/older/2604.pdf)
- Introduction of short path to learn deep networks without vanishing gradient problem.

Max-Margin Classifier (SVM)

$$
\operatorname{minimize}_{\beta_{0}, \beta_{1}, \ldots, \beta_{p}}\|\beta\|^{2}:=\sum_{j} \beta_{j}^{2}
$$

subject to $y_{i}\left(\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{p} x_{i p}\right) \geq 1$ for all i

Separable two classes with Max-Margin Solution

Vladmir Vapnik, 1994

MNIST Dataset Test Error LeCun et al. 1998

Dark era for NN: 1998-2012

2000-2010: The Era of SVM, Boosting, ...

 as nights of Neural Networks

Decision Trees and Boosting

－Breiman，Friedman，Olshen，Stone，（1983）：CART
－＂＇The Boosting problem＂（M．Kearns \＆L．Valiant）： Can a set of weak learners create a single strong learner？（三个臭皮匠顶个诸葛亮？）
－Breiman（1996）：Bagging
－Freund，Schapire（1997）：AdaBoost（＂the best off－ the－shelf algorithm＂by Breiman）
－Breiman（2001）：Random Forests

Restricted Boltzman Machine, 2006 (Deep Learning)

- Hinton and Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks, Science, 2006
- Reinvigorating research in Deep Learning
- Shows importance of pretraining (greedy layer-wise, a.k.a. block coordinate descent)

Around the year of 2012: return of NN as `deep learning'

Speech Recognition: TIMIT

Deep Learning

Computer Vision: ImageNe†

Depth as function of year

ResNet (2015)
 [He-Zhang-Ren-Sun, 2015]

- Solves problem by adding skip connections
- Very deep: 152 layers
- No dropout
- Stride
- Batch normalization

Source: Deep Residual Learning for Image Recognition

GPU＋Big labeled data

＂We＇re at the beginning of a new day． This is the beginning of the Al revolution．＂
－Jensen Huang，GTC Taiwan 2017

程式設計人員無法轎造出可以更有效率䋁現更多指令級並行性的的CPU架榾

TWO FORCES DRIVING THE FUTURE OF COMPUTING

Reaching Human Performance Level in Games

May 11th, 1997
Computer won world champion of chess
(Garry Kasparov)

Deep Blue in 1997

AlphaGo "LEE" 2016

Natural Language Processing (NLP) and Machine Translation

- In 2013-2015, LSTMs started achieving state-of-the-art results
- Successful tasks include: handwriting recognition, speech
- recognition, machine translation, parsing, image captioning
- LSTM became the dominant approach
- In 2019, other approaches (e.g. Transformers) have become more dominant for certain tasks.
- For example in WMT (a MT conference + competition):
- In WMT 2016, the summary report contains "RNN" 44 times
- In WMT 2018, the report contains "RNN" 9 times and "Transformer" 63 times
- Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016, http://www.statmt.org/wmt16/pdf/W16-2301.pdf
- Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018, http://www.statmt.org/wmt18/pdf/WMT028.pdf

Rapid Progress for NLP Pretraining (GLUE Benchmark)

Over $3 x$ reduction in error in 2 years, "superhuman" performance

More compute, more better?

ALBERT uses 10x more compute than RoBERTa

Protein Folding Structure Prediction

Article
Highly accurate protein structure prediction with AlphaFold

Al for Science

Scientific discovery in the age of artificial intelligence

https://doi.org/10.01038/s41586-023-06221-2
Received: 30 March 2022
Accepted: 16 May 2023
Published online: 2 August 2023
Check for updates

Artificial intelligence (AI) is being increasingly integrated into scientific discovery to augment and accelerate research, helping scientists to generate hypotheses, design experiments, collectandimerpretlarge datases, and gaininsightsthat might not have been possible using traditional scientific methods alone. Here we examine breakthroughs over the past decade that include self-supervised learning, which allows models to be trained on vast amounts of unlabelled data, and geometric deep model accuracy and efficiecy. Generative Alm mod can create designs, such as small-molecule drugs and proteins, by analysing diverse data modalities, including images and sequences. We discuss how these methods can help scientists throughout the scientific process and the central issues that remain despite such advances. Both developers and users of AI toolsneed a better understanding of when such approaches need improvement, and challengesposed by poor data quality andstewardship remain These issues cutacross scientic discipines and dequire developing foundational autonomously, making them critical areas of focus for Al innovation.

g. \mid Science in the age of artificial intelligence. Scientific discovery is a multifaceted process that involves several interconnected stages, including hypothesis formation, experimental design, data collection and analysis. Ali poised to reshape scientific discovery by augmenting and accelerating esearch at each stage of this process. The principles and illustrative studies hown here highlight the contributions to enhance scientific understanding and discovery.

ChatGPT (GPT 3.5-4)

ChatGPT				
Article Talk	Read	View source	View history	Tools \checkmark
From Wikipedia, the free encyclopedia				ใ
ChatGPT, which stands for Chat Generative Pre-trained Transformer, is a large language model-based	ChatGPT			
steer a conversation towards a desired length, format, style, level of detail, and language used. Successive prompts and replies, known as prompt engineering, are considered at each conversation stage as a context. ${ }^{[2]}$				
ChatGPT is built upon GPT-3.5 and GPT-4 -members of OpenAl's proprietary series of generative pretrained transformer (GPT) models, based on the transformer architecture developed by Google ${ }^{[3]}$-and it is				
fine-tuned for conversational applications using a combination of supervised and reinforcement learning techniques. ${ }^{[4]}$ ChatGPT was released as a freely available research preview, but due to its popularity, OpenAI now operates the service on a freemium model. It allows users on its free tier to access the GPT-3.5-based	Devel Initial	$\begin{array}{ll}\text { per(s) } & \text { OpenA } \\ \text { rease } & \text { Noven } \\ \text { ago }\end{array}$	ber 30, 2022; 9	months
version. In contrast, the more advanced GPT-4 based version and priority access to newer features are provided to paid subscribers under the commercial name "ChatGPT Plus".	Stable	release Augu in Pyth	$t 3,2023 ; 31 \text { da }$	$\operatorname{ago}^{[1]}$
By January 2023, it had become what was then the fastest-growing consumer software application in history,	Engine	GPT-3 GPT-4		
	Platform		Cloud computing platforms	
and LLaMA.			Chatbo	
and LLaMA.	Large language model			
concern over the potential of ChatGPT to displace or atrophy human intelligence and its potential to enable plagiarism or fuel misinformation. ${ }^{[4][8]}$	Generative text-to-imagemodel			
	Generative pre-trained transformer			
Training	Licens	Proprietary		
ChatGPT is based on particular GPT foundation models, namely GPT-3.5 and GPT-4, that were fine-tuned to target conversational usage. ${ }^{[9]}$ The fine-tuning process leveraged both supervised learning as well as	Websit	chat.openai.com/chatせ ${ }^{\text {J }}$		

- https://poe.com/

Number of Al papers on arXiv, 2010-2019

Growth of Deep Learning

'Deep Learning' is coined by Hinton et al. in their Restricted Boltzman Machine paper, Science 2006, not yet popular until championing ImageNet competitions.

Some Cold Water: Tesla Autopilot Misclassifies Truck as Billboard

Problem: Why? How can you trust a blackbox?

Deep Learning may be fragile in generalization against noise!

\boldsymbol{x}
"panda" 57.7\% confidence

"black hole" 87.7\% confidence
$+.007 \times$

$\operatorname{sign}\left(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y)\right)$
"nematode" 8.2% confidence
[Goodfellow et al., 2014]
$+.007 \times$

"donut" 99.3\% confidence

CNN learns texture features, not shapes

(a) Texture image
81.4\%
10.3\%
8.2\%

Indian elephant
indri
black swan

(b) Content image
71.1\% tabby cat
17.3\% grey fox
3.3\% Siamese cat

(c) Texture-shape cue conflict 63.9\% Indian elephant 26.4\% indri 9.6\% black swan

Lack of Causality or Interpretability

- ImageNet training learns non-semantic texture features: after random shuffling of patches, shapes information are destroyed which does not affect CNN's performance much.

(a) Original Image

(b) Patch-Shuffle 2

(c) Patch-Shuffle 4

(d) Patch-Shuffle 8

Capture spurious correlations and can'† do causal inference on counterfactuals

Leon Bottou, ICLR 2019
Example: detection of the action "giving a phone call"

(Oquab et al., CVPR 2014)
~70\% correct (SOTA in 2014)

Overfitting causes privacy leakage

- Model inversion attack leaks privacy

Figure: Recovered (Left), Original (Right)
Fredrikson et al. Proc. CCS, 2016

What's wrong with deep learning?

Ali Rahimi NIPS'17: Machine (deep) Learning has become alchemy. https://www.youtube.com/watch?v=ORHFOnaEzPc

Yann LeCun CVPR'15, invited talk: What's wrong with deep learning? One important piece: missing some theory (clarity in understanding)!
http\%/Itechtalks.tv/talks/whats-wrong-with-deep-learning/61639/

Being alchemy is certainly not a shame, not wanting to work on
advancing to chemistry is a shame! -- by Eric Xing

Shall we see soon an emergence from Alchemy to Science in deep leaning?

How can we teach our students in the next generation science rather than alchemy?

Kaggle survey: Top Data Science Methods

https://www.kaggle.com/surveys/2017

Academic

What data science methods are used at work?
Logistic regression is the most commonly reported data science method used at
work for all industries except Military and Security where Neural Networks are used
slightly more frequently.
Company Size \& Acaderic : IobTite :

Industry
What data science methods are used at work?
Logistic regression is the most commonly reported data science method used at work for all industries except Military and Security where Neural Networks are used
slightly more frequently. slightly more frequently.

What type of data is used at work?

https://www.kaggle.com/surveys/2017

Academic

What type of data is used at work?

Relational data is the most commonly reported type of data used at work for all industries except for Academia and the Military and Security industry where text data's used more.

Company Size $\hat{*}$ Academic \Rightarrow Job Title $*$

Industry

What type of data is used at work?

Relational data is the most commonly reported type of data used at work for all industries except for Academia and the Military and Security industry where text data's used more.
Company Size θ Industry \Rightarrow Job Title \Rightarrow

All models are wrong, but some are useful ...

Figure 7: George Box: "Essentially, all models are wrong, but some are useful."

In this class

- Understand its principles: statistics, optimization
- Analyze the real world data with the methods
- Team-work in projects

Thank you!

