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Time series data

Solar energy prediction
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Time series prediction with uncertainty quantification

𝑥! , … , 𝑥" 𝑓" ⋅ 𝑦"

Quantify uncertainty of a chosen prediction algorithm ft for any data?

For applications (wind, solar, supply chain, medical) crucial to not only point
predictor, but also given “confidence interval” as input to subsequent decision

3 / 29



Prediction interval time series?

Traditional time-series models (e.g. ARMA) has analytical prediction interval

Peter’s stats stuff - R

Black-box machine learning models (e.g., RNN, LSTM), better performance for
complex real data, but harder to come up with prediction interval with guarantees

Peter’s stats stuff - R
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Conformal prediction for time series?

Challenges for developing conformal prediction for time-series data

Consider non-stationary time series
Data are not exchangeable
Complex temporal correlation in data
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Problem setup

Constructing prediction intervals that attain valid coverage in finite samples,
without making parametric distributional assumptions.

Time series conformal prediction

Yt = ft(Xt) + ϵt, t = 1, 2, . . .

Yt ∈ R, Xt ∈ Rd, ϵt ∼ F (unknown)

Also known as non-linear time series model in statistics (Fan and Yao 2003)

Features Xt can be either exogenous time-series and/or the history of Yt, e.g.,

Xt = (Yt−1, . . . Yt−p, Zt)
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Goal

Given a prediction algorithm f̂t trained using data {xt, yt}, t = 1, . . . , T , that
generates predictions for t = T + 1, T + 2, . . .

Goal: Quantify the uncertainty of time series prediction algorithm f̂t(Xt), t > T

Construct prediction intervals Ĉα
t , t > T , with pre-specified significance level α > 0

marginal coverage guarantee:

P (Yt ∈ Ĉα
t ) ≥ 1− α.

conditional coverage guarantee

P (Yt ∈ Ĉα
t |Xt) ≥ 1− α.
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Sequential conformal inference for time-series

𝑥! , … , 𝑥" 𝑓" ⋅

𝜖"

𝑦"

(𝑦" = *𝑓" ⋅
+𝐶"#

̂𝜖" = 𝑦" − (𝑦"

Data not exchangeable

Feedback available:
Algorithm predicts Ŷt → True Yt reveals → Feedback ϵ̂t

Nature can generate temporally correlated ϵt with unknown pdf
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Sequential conformal inference

Prediction algorithm f̂t trained using past data

Prediction residual
ϵ̂t = Yt − f̂t(Xt)

Set of past prediction residuals Et−1 := {ϵ̂i}i=t−1,...,t−w

̂𝜖!

̂𝜖"

̂𝜖#

𝑡

̂𝜖$%#̂𝜖$

Conformal prediction for time-series. Xu, X. ICML 2021. (Long Talk)
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Traditional vs. sequential conformal inference
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What do residuals ϵ̂t look like?

Solar power radiation prediction for downtown Atlanta, Georgia

Random forest for one-step-ahead prediction
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Histogram of { t}T
t = 1
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Asymmetric residual distribution

Residuals have temporal correlation
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What’s in prediction residuals ϵ̂t?

ϵ̂t = Yt − Ŷt = ft(Xt)− f̂t(Xt)︸ ︷︷ ︸
prediction error

+ ϵt︸︷︷︸
“nature”
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t = 1

0 20 40
0.0

0.5

1.0
PACF

ϵ̂t may be temporally correlated:

Prediction error, e.g., model is biased

“nature” generates correlated noise ϵt
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Sequential conformal inference

Vanilla version: EnbPI
Based on empirical distribution of residuals

Based on empirical distribution of {ϵ̂i}, i = 1, . . . , t− 1
Guarantee for i.i.d., weak dependence, α-mixing

Sequential Predictive Conformal Inference (SPCI):
Exploiting temporal dependence of residuals

Quantile regression to get P{ϵ̂t > x|ϵ̂t−1, . . . , ϵ̂t−w}
Guarantee for stationary residuals – allowing strong dependence
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Solar power prediction
Coverage: SPCI ≈ EnbPI

Interval width: SPCI < EnbPI
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(a) EnbPI conditional coverage and width at each hour
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Non-sequential conformal inference
Requires data exchangeability

Training holdout /$%!
0/2 training /& , 3& → +$ ⋅
Residuals on 0/2 holdout: 5& = 3& − +$ /&
+,$ /$%! = +$ /$%! ± quantile of 5& &'!$

• Split conformal (Vovk et al. 2005)

• Full conformal – avoid splitting
(Vovk et al. 2005), Lasso (Lei 2019)

• Jackknife+ (Barber et al. 2021)
Avoid splitting by consider leave-one-out

Training /$%!, '

/!, 3! … /$, 3$ , /$%!, ' → *$( ⋅

+$)& fitted leaving out /& , 3&
Using empirical distribution LOO residuals  

⋱

• Conformalized quantile regression 
(Romano et al. 2019)
• Based on empirical distribution of residuals
• Conditional quantile regression (others are 

conditional mean regression)
• Handle heteroscedasticcity

/$%!
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Beyond exchangeability

(Potentially) applicable to sequential and time-series data

(Tibshirani et. al, 2019) Weighted exchangeability

Handle covariance shift
Requires full knowledge of change in distribution

(Podkopaev, Ramdas 2021)

reweighting can also deal with label shift

(Barber et al., 2022)

Weights are fixed (rather than data-dependent)
for unknown violation of exchangeability

(Gibbs, Candes 2021) (Zaffran et al. 2022)

Adjust αt using SGD, by comparing empirical coverage with target level (1− α)
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EnbPI

(Xu and X., 2021)

Prediction interval at level (1− α)

Ĉα
t = [f̂t(Xt) +Qβ∗(Et−1), f̂t(Xt) +Q1−α+β∗(Et−1)],

β∗ := argmin
β∈[0,α]

(Q1−α+β(Et−1)−Qβ(Et−1)) .

Qα computes empirical α quantile of Et−1 := {ϵ̂i}i=t−1,...,t−w

Prediction intervals enjoy marginal coverage asymptotically

Theoretical guarantees hold without exchangability assumption
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Practical implementation

Ensemble Batch Prediction Interval (EnbPI) Algorithm

Inspired by J+aB: Jackknife+-after-bootstrap (Kim, Xu, Barber 2020)

In ensemble learning (e.g., bootstrap aggregation), multiple bootstrap models f̂ b

are aggregated via ϕ (e.g., mean, median, weighted average) to improve prediction
accuracy.

Efficiently compute each f̂−t using ensemble predictor

̂f1

⋮
⋮

̂fB

Bootstrap Estimators

⋮

Selective Aggregation via ϕ

if i ∈ S1

if i ∉ SB

̂f ϕ
−i

“LOO” Ensemble 
Predictor

(Xi, Yi)
“LOO” Prediction 

Error

̂ϵϕ
i
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Example: Solar power prediction
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Further improving EnbPI?

Dependence of residuals means that {ϵ̂t−1, . . . , ϵ̂1} contain information about ϵ̂t

ϵ̂t|{ϵ̂t−1, . . . , ϵ̂t−w}
d
̸= ϵ̂t

EnbPI is based on empirical distribution of {ϵ̂t}
What’s typical characteristic to time-series (of residuals)?

(Stationarity): (ϵ̂t−w, . . . , ϵ̂t)
d
= (ϵ̂t−w+d, . . . , ϵ̂t+d),∀w, d

We can build a predictive model for conditional tail probability using quantile
regression

P{ϵ̂t > x|ϵ̂t−1, . . . , ϵ̂t−w}, for given x
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Further exploiting temporal dependence: SPCI

Sequential Predictive Conformal Inference (SPCI)

Idea: Estimate Ĉα
t by predicting residual quantile from past observed residuals:

P{ϵ̂t > x|ϵ̂t−1, . . . , ϵ̂t−w}

Use quantile regression (e.g., random forest (Meinshausen 2006), nearest-neighbor
based (Biau & Patra 2011)) on residuals (conformity scores)

65 0 126

Histogram of { t}T
t = 1

0 20 40
0.0

0.5

1.0
PACF
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Quantile regression
Quantile regression estimates conditional quantile functions from data

Q̂α(x) = f(x, θ̂), θ̂ = argmin
θ

1

n

n∑
i=1

ρα(yi, f(xi, θ)) +R(θ)

f(x, θ): Quantile regression function
ρα: Check function or pinball loss
R(θ): A potential regularizer

!
1 − !

$% &

&
Figure 1: Visualization of the pinball loss function in (6), where z = y � ŷ.

By construction, this interval satisfies
P{Y 2 C(X)|X = x} � 1� ↵. (3)

Notice that the length of the interval C(X) can vary greatly depending on the value of X . The
uncertainty in the prediction of Y is naturally reflected in the length of the interval. In practice we
cannot know this ideal prediction interval, but we can try to estimate it from the data.

Estimating quantiles from data

Classical regression analysis estimates the conditional mean of the test response Yn+1 given the
features Xn+1=x by minimizing the sum of squared residuals on the n training points:

µ̂(x) = µ(x; ✓̂), ✓̂ = argmin
✓

1

n

nX

i=1

(Yi � µ(Xi; ✓))
2 +R(✓). (4)

Here ✓ are the parameters of the regression model, µ(x; ✓) is the regression function, and R is a
potential regularizer.

Analogously, quantile regression estimates a conditional quantile function q↵ of Yn+1 given Xn+1=x.
This can be cast as the optimization problem

q̂↵(x) = f(x; ✓̂), ✓̂ = argmin
✓

1

n

nX

i=1

⇢↵(Yi, f(Xi; ✓)) +R(✓), (5)

where f(x; ✓) is the quantile regression function and the loss function ⇢↵ is the “check function” or
“pinball loss” [18, 24], defined by

⇢↵(y, ŷ) :=

⇢
↵(y � ŷ) if y � ŷ > 0,
(1� ↵)(ŷ � y) otherwise

(6)

and illustrated in Figure 1. The simplicity and generality of this formulation makes quantile regression
widely applicable. As in classical regression, one can leverage the great variety of machine learning
methods to design and learn q̂↵ [19–21, 23, 30].

All this suggests an obvious strategy to construct a prediction band with nominal miscover-
age rate ↵: estimate q̂↵lo(x) and q̂↵hi(x) using quantile regression, then output Ĉ(Xn+1) =
[q̂↵lo(Xn+1), q̂↵hi(Xn+1)] as an estimate of the ideal interval C(Xn+1) from equation (2). This
approach is widely applicable and often works well in practice, yielding intervals that are adaptive to
heteroscedasticity. However, it is not guaranteed to satisfy the coverage statement (3) when C(X)
is replaced by the estimated interval Ĉ(Xn+1). Indeed, the absence of any finite sample guarantee
can sometimes be disastrous. This worry is corroborated by our experiments, which show that the
intervals constructed by neural networks can substantially undercover.

Under certain regularity conditions and for specific models, estimates of conditional quantile functions
via the pinball loss are known to be asymptotically consistent [23, 24]. Related methods that do not
minimize the pinball loss, such as quantile random forests [22], are also asymptotically consistent.
But to get valid coverage in finite samples, we must draw on a different set of ideas, from conformal
prediction.

3 Conformal Prediction

We now describe how conformal prediction [1, 3] constructs prediction intervals that satisfy the finite-
sample coverage guarantee (1). To be carried out exactly, the original, or full, conformal procedure

3
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Comparison with other time-series methods

The ELEC2 data set4 [Harries, 1999] tracks electricity usage and pricing in the states of New South Wales and Victoria in Australia, every 30 minutes

over a 2.5 year period in 1996–1999.
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Comparison with other time-series conformal prediction
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Theoretical guarantee: EnbPI

ϵ̂t = Yt − Ŷt = ft(Xt)− f̂t(Xt)︸ ︷︷ ︸
prediction error

+ ϵt︸︷︷︸
“nature”

Consider ft(Xt) = f(Xt):

Analyze t = T + 1; can extend to t > T + 1

Assumption 1 (Data regularity): Error process ϵ1, ϵ2, . . .

stationary and strongly mixing
sum of mixing coefficients bounded by M
true CDF F is Lipschitz with constant L > 0

Assumption 2 (Estimation quality)

T∑
t=1

(f̂t(Xt)− f(Xt))
2/T ≤ δ2T ,
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Theoretical guarantee (cont.)

Given a training size T and α ∈ (0, 1),

|P(YT+1 /∈ Ĉα
T+1)− α| ≤ C((log T/T )1/3 + δ

2/3
T )

Implications

Factor (log T/T )1/3 comes from assuming α-mixing errors, different error
assumptions (e.g., independent, stationary, etc.) yield different rates

Coverage gap dependent on T and accuracy of algorithm
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Assumption 1 can be extended

Independent {ϵt}t≥1

Rate = (log(16T )/T )1/2.

Stationary linear processes ϵt =
∑∞

j=1 δjzt−j .

Rate = log T/
√
T

Faster than strongly mixing errors, slower than independent errors.

Joint density of {ϵt}T+1
t=1 satisfies a logarithmic Sobolev inequality

Rate = (log(cT )/T )1/3
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Assumption 2: “Good” predictive algorithm

Assumption 2 holds true for many classes of algorithms

No-free-lunch theorem:
assumption on f is necessary in order for us to approximate it well.

Examples

if f is sufficiently smooth,
δT = o(T−1/4)

for neural networks sieve estimators (Chen and White, 1999).

If f is a sparse high-dimensional linear model,

δT = o(T−1/2)

for Lasso and Dantzig selector (Bickel et al. 2009).
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Summary

Sequential conformal prediction for time series (non-exchangeable, temporally
dependent, and non-stationary)

Two algorithms EnbPI and SPCI

EnbPI based on empirical residuals
SPCI exploiting temporal dependence of residuals

Handling non-stationarity and heteroskedasticity

Our algorithms are incorporated in Scikit-learn/MAPIE; AWS Fortuna Time
Series Package; Meta to incorporate into Kats.

Can be generalized to sequential conformal prediction set, anomaly detection

Conformal prediction for time-series. Xu and X. ICML 2021 (Long Talk). IEEE TPAMI 2023.
Sequential Predictive Conformal Inference for Time Series. Xu and X. ICML 2023.
Conformal prediction set for time-series, Xu, X. June 2022. https://arxiv.org/abs/2206.07851
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