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Time series data

Solar energy prediction Supply chain demand forecasting

Atlanta Solar Radiation
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ICU sequential data prediction
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Time series prediction with uncertainty quantification

xl, ...,xt — ft(') > yt

@ Quantify uncertainty of a chosen prediction algorithm f; for any data?

@ For applications (wind, solar, supply chain, medical) crucial to not only point
predictor, but also given “confidence interval” as input to subsequent decision

nature > npjdigital medicine > articles > article

Article \ Open Access \ Published: 09 September 2021
Artificial intelligence sepsis prediction algorithm
learns to say “l don't know"

Supreeth P. Shashikumar &, Gabriel Wardi, Atul Malhotra & Shamim Nemati

npj Digital Medicine 4, Article number: 134 (2021) | Cite this article
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Prediction interval time series?

@ Traditional time-series models (e.g. ARMA) has analytical prediction interval

Forecasts from hybrid of ETS(M,N,M) and ARIMA(0,1,1)(0,1,1)[12]
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@ Black-box machine learning models (e.g., RNN, LSTM), better performance for
complex real data, but harder to come up with prediction interval with guarantees
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Conformal prediction for time series?

@ Challenges for developing conformal prediction for time-series data

e Consider non-stationary time series
o Data are not exchangeable
o Complex temporal correlation in data

Atlanta Solar Radiation

Palo"Alto Solar Radiation

Austin Wihd Energy
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Problem setup
@ Constructing prediction intervals that attain valid coverage in finite samples,
without making parametric distributional assumptions.

@ Time series conformal prediction

Y%th(Xt)—i-et, t=1,2,...
V;eR, X,eR? ¢~F (unknown)

@ Also known as non-linear time series model in statistics (Fan and Yao 2003)

@ Features X; can be either exogenous time-series and/or the history of Y, e.g.,

Xt = (}/;‘/—17 s }/t—p> Zt)
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Goal
@ Given a prediction algorithm f; trained using data {2, 4, },t =1,...,T, that
generates predictions fort =T + 1,7+ 2,...
@ Goal: Quantify the uncertainty of time series prediction algorithm ft(Xt), t>T

@ Construct prediction intervals CA*f“,t > T, with pre-specified significance level a > 0
e marginal coverage guarantee:

PY,eCM>1-a.
e conditional coverage guarantee

P(Y, € CYXy) > 1—a.
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Sequential conformal inference for time-series

€t

xl) "-)xt ft(‘) "\ —> yt

Ve = f;(‘) y
Cf

I

@ Data not exchangeable

@ Feedback available:
Algorithm predicts Y; — True Y; reveals — Feedback ¢€;

@ Nature can generate temporally correlated € with unknown pdf
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Sequential conformal inference

@ Prediction algorithm ft trained using past data

@ Prediction residual .
& =Y, — fi(Xy)

@ Set of past prediction residuals &_1 := {€ }imt—1,. . t—w

€t+1

v

Conformal prediction for time-series. Xu, X. ICML 2021. (Long Talk)
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Traditional vs. sequential conformal inference

(€1,€2,...,€) €2 2R
3 ; ¢
(60(1)760(2)7"' 7€o(t)) €1 éé .
Traditional CP Sequential CP
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What do residuals ¢; look like?

@ Solar power radiation prediction for downtown Atlanta, Georgia

@ Random forest for one-step-ahead prediction

Histogram of {&:}]_; PACF
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@ Asymmetric residual distribution

@ Residuals have temporal correlation
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What's in prediction residuals ¢;?

€& =Y — f/t = fi(Xy) — ft(Xt) + &
—_— ~~

prediction error “nature”
Histogram of {&:}]_; PACF
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€; may be temporally correlated:
@ Prediction error, e.g., model is biased

@ “nature” generates correlated noise ¢;

12/29



Sequential conformal inference

@ Vanilla version: EnbPI
Based on empirical distribution of residuals

o Based on empirical distribution of {¢;},i=1,...,t —1
o Guarantee for i.i.d., weak dependence, a-mixing

@ Sequential Predictive Conformal Inference (SPCI):
Exploiting temporal dependence of residuals

o Quantile regression to get P{¢; > z|é;—1,...,€t—w}
o Guarantee for stationary residuals — allowing strong dependence
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Solar power prediction
@ Coverage: SPCI ~ EnbPI
@ Interval width: SPCI < EnbPI

At 8:00 At 9:00 At 16:00 At 17:00
Coverage: 0.9 & Width: 182.6 Coverage: 0.89 & Width: 182.6 Coverage: 0.91 & Width: 182.6 Coverage: 0.89 & Width: 182.6
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(a) EnbPI conditional coverage and width at each hour
At 8:00 At 9:00 At 16:00 At 17:00
Coverage: 0.92 & Width: 170.85 Coverage: 0.88 & Width: 170.85 Coverage: 0.92 & Width: 170.85 Coverage: 0.9 & Width: 170.85
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(b) SPCI conditional coverage and width at each hour
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Non-sequential conformal inference
Requires data exchangeability

* Split conformal (Vovk et al. 2005)

» Jackknife+ (Barber et al. 2021)
Avoid splitting by consider leave-one-out

holdout | X |

| Training |

N

n/2 training (X;,Y;)) = () |

A

Residuals on n/2 holdout: R; = |Yi — f(XL-)|

Ca(Xp41) = f(Xp41) + quantile of {Ri}i=, |

N

¢ Full conformal — avoid splitting
(Vovk et al. 2005), Lasso (Lei 2019)

| (Xn+1:}’)|

| Training

(Xlr Yl) (Xn' Yn)r (Xn+1r }’) - f;()

f_; fitted leaving out (X;, Y;)
Using empirical distribution LOO residuals

* Conformalized quantile regression
(Romano et al. 2019)

Based on empirical distribution of residuals
Conditional quantile regression (others are
conditional mean regression)

Handle heteroscedasticcity
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Beyond exchangeability

(Potentially) applicable to sequential and time-series data
o (Tibshirani et. al, 2019) Weighted exchangeability

e Handle covariance shift
o Requires full knowledge of change in distribution

o (Podkopaev, Ramdas 2021)
o reweighting can also deal with label shift
o (Barber et al., 2022)

o Weights are fixed (rather than data-dependent)
o for unknown violation of exchangeability

@ (Gibbs, Candes 2021) (Zaffran et al. 2022)

o Adjust ay using SGD, by comparing empirical coverage with target level (1 — )
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EnbPI

(Xu and X., 2021)

Prediction interval at level (1 — «)

6{’ = [fi(Xs) + Qp+(E-1), fe(X0) + Q1-a+p+(E-1)],
B = argmin (Q1-a+s(&-1) — Qp(&-1)).

Be [0, O’]

Qo computes empirical o quantile of &_1 := {&}imt—1,.. t—w

@ Prediction intervals enjoy marginal coverage asymptotically

@ Theoretical guarantees hold without exchangability assumption
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Practical implementation
Ensemble Batch Prediction Interval (EnbPI) Algorithm
@ Inspired by J+aB: Jackknife+-after-bootstrap (Kim, Xu, Barber 2020)

@ In ensemble learning (e.g., bootstrap aggregation), multiple bootstrap models f*
are aggregated via ¢ (e.g., mean, median, weighted average) to improve prediction

accuracy.

o Efficiently compute each f‘,t using ensemble predictor

Bootstrap Estimators Selective Aggregation via ¢ “LOO” Ensemble “LOO” Prediction
Predictor Error
21 X ifies
f ' K¥)  ag

2 B et 2
S —i €
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Example: Solar power prediction

Table 3: Solar power prediction in Atlanta, comparison of EnbPI with AdaptCI, ARIMA,
Exponential Smoothing, and Dynamic Factor Models. We vary « € [0.05,0.10,0.15, 0.20]
and use the first 20% data as training data.

@ 0.05 0.10 0.15 0.20

EnbPI AdaptCIARIMA Exp Dynamic
Smoothing  Factor

Method EnbPI AdaptCIARIMA Exp Dynamic| EnbPI AdaptCTARIMA Exp Dynamic | EnbPI AdaptCIARIMA Exp Dynamic
Smoothing  Factor Smoothing  Factor Smoothing  Factor

0.798 0.776  0.711  0.840 0.832
147.297 154.322 107.652 269.379 187.840

Coverage0.950 0.863  0.839  0.900 0.917 0.896 0.831 0.784  0.868 0.887 0846 0.806 0.743  0.852 0.855
Width 288.581 215.258 158.581 351.181 262.006 | 216.989 187.504 135.404 313.185 229.151 | 178.140 173.079 119.870 288.428 206.448

i Coverage Width
809 o
. )
= =
2 g
=08 =
3 [
= P
0.7
0.8 0.9 0.8 0.9
l-a l-a
—e— ARIMA —e— ExpSmoothing DynamicFactor
EnbPI RNN EnbPI RF —e— EnbPI Ridge
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Further improving EnbP1?

@ Dependence of residuals means that {¢,_1,...,é;} contain information about ¢

d
ét|{ét717 ceey ét*w} # ét
@ EnbPl is based on empirical distribution of {é}
@ What's typical characteristic to time-series (of residuals)?

. . . v d . .
(Stationarity): (€t—w,---,€t) = (Et—wtds - - - €t+d), Yw,d

@ We can build a predictive model for conditional tail probability using quantile
regression
P{é; > x|é—1,...,é—w}, for given z
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Further exploiting temporal dependence: SPCI

Sequential Predictive Conformal Inference (SPCI)
@ ldea: Estimate ég by predicting residual quantile from past observed residuals:
]P’{Q > $|€t_1, ceey ét—w}

o Use quantile regression (e.g., random forest (Meinshausen 2006), nearest-neighbor
based (Biau & Patra 2011)) on residuals (conformity scores)

Histogram of {&:}]_; PACF
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Quantile regression

@ Quantile regression estimates conditional quantile functions from data
1 n
Qa(w) = f(x,0), 0 =argmin — z;paaw, f(@i0)) + R(0)
1=

f(x,0): Quantile regression function
Po: Check function or pinball loss
R(60): A potential regularizer

1+ pa(2)

v
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Comparison with other time-series methods

Table 3: Marginal coverage and width by all methods on three real time series. The target coverage is 0.9, and entries in the
bracket indicate standard deviation over three independent trials. SPCI outperforms competitors with a much narrower
interval width and does not lose coverage.

Wind coverage ~ Wind width Electric coverage  Electric width ~ Solar coverage  Solar width
SPCI 0.95 (1.50e-02) 2.65 (1.60e-02) 0.93 (4.79e-03) 0.22 (1.68e-03)  0.91 (1.12e-02) 47.61 (1.33e+00)
EnbPI 0.93 (6.20e-03)  6.38 (3.01e-02) 0.91 (6.84e-04) 0.32 (9.11e-04)  0.88 (4.25¢-03)  48.95 (3.38e+00)

AdaptiveCI  0.95 (5.37e-03)  9.34 (3.56e-02)  0.95 (1.81e-03) 0.51 (7.25¢-03)  0.96 (1.39e-02)  56.34 (1.15e+00)
NEX-CP 0.96 (8.21e-03)  6.68 (7.73e-02)  0.90 (2.05e-03) 0.45 (2.16e-03)  0.90 (7.73e-03)  102.80 (5.25e+00)

The ELEC2 data set4 [Harries, 1999] tracks electricity usage and pricing in the states of New South Wales and Victoria in Australia, every 30 minutes

over a 2.5 year period in 1996-1999.
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Comparison with other time-series conformal prediction
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Figure 4: Rolling coverage and interval width over three real
time series by different methods. SPCI in black not only
yields valid rolling coverage but also consistently yields the
narrowest prediction intervals. Furthermore, the variance
of SPCI results over trials is also small, as shown by the
shaded regions over coverage and width results.
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Theoretical guarantee: EnbPI

=Y, Y = fi(Xe) — ft(Xt) + &
N AN B

prediction error “nature”

Consider fi(X;) = f(Xy):
@ Analyzet =T+ 1; canextendtot >T +1

@ Assumption 1 (Data regularity): Error process €1, €a, . ..

o stationary and strongly mixing
e sum of mixing coefficients bounded by M
o true CDF Fis Lipschitz with constant L > 0

@ Assumption 2 (Estimation quality)

T

D (filXe) = f(X0)*/T < 67,

t=1
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Theoretical guarantee (cont.)

@ Given a training size T and « € (0, 1),

IP(Yri1 ¢ Cf,y) — al < C((log T/T)V? 4 671%)

Implications

e Factor (logT/T)'/3 comes from assuming a-mixing errors, different error
assumptions (e.g., independent, stationary, etc.) yield different rates

@ Coverage gap dependent on T" and accuracy of algorithm
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Assumption 1 can be extended

@ Independent {€ }1>1

Rate = (log(16T)/T))"/2.

@ Stationary linear processes €; = > oo J:z ..
j=19j%t—j

Rate = log T/V'T

Faster than strongly mixing errors, slower than independent errors.

o Joint density of {¢;}11! satisfies a logarithmic Sobolev inequality

Rate = (log(cT)/T)"/?
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Assumption 2: “Good” predictive algorithm

@ Assumption 2 holds true for many classes of algorithms

@ No-free-lunch theorem:
assumption on f is necessary in order for us to approximate it well.

@ Examples

e if f is sufficiently smooth,
op = o(T~Y%)

for neural networks sieve estimators (Chen and White, 1999).

o If f is a sparse high-dimensional linear model,
op = o(T71/?)

for Lasso and Dantzig selector (Bickel et al. 2009).
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Summary

@ Sequential conformal prediction for time series (non-exchangeable, temporally
dependent, and non-stationary)

@ Two algorithms EnbPI and SPCI

o EnbPI based on empirical residuals
e SPCI exploiting temporal dependence of residuals

@ Handling non-stationarity and heteroskedasticity

@ Our algorithms are incorporated in Scikit-learn/MAPIE; AWS Fortuna Time
Series Package; Meta to incorporate into Kats.

@ Can be generalized to sequential conformal prediction set, anomaly detection

Conformal prediction for time-series. Xu and X. ICML 2021 (Long Talk). IEEE TPAMI 2023.
Sequential Predictive Conformal Inference for Time Series. Xu and X. ICML 2023.
Conformal prediction set for time-series, Xu, X. June 2022. https://arxiv.org/abs/2206.07851
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