Home Credit Default Risk Prediction

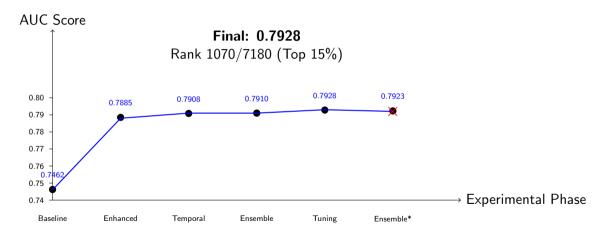
A Journey Through Feature Engineering and Model Optimization

YANG, Kuo

SID: 21020376

November 19, 2025

Project Journey Overview



Key Question: What worked, what didn't, and why?

Starting Point: The Baseline

Configuration:

- Model: LightGBM (default hyperparameters)
- Features: Basic aggregations from auxiliary tables
 - Mean, max, min, sum
 - Simple derived features (age, income ratios)
- Validation: 5-fold stratified CV
- Total features: 129

Result: Private Score = 0.7459

Rank: 5847/7180

Solid foundation with proper validation strategy

Phase 1: Enhanced Aggregation Features

Added 155 new features (129 \rightarrow 284):

1. External Source Interactions

$$\begin{aligned} \mathsf{MEAN} &= \frac{1}{3} \sum_{i=1}^{3} \mathsf{EXT}_i \\ \mathsf{WEIGHTED} &= 0.5 \cdot E_1 + 0.3 \cdot E_2 \\ &+ 0.2 \cdot E_3 \end{aligned}$$

3. Payment Behavior

$$\mathsf{LATE\%} = \frac{\# \ \mathsf{late} \ \mathsf{payments}}{\# \ \mathsf{total} \ \mathsf{payments}}$$

2. Debt Analysis

$$\mathsf{RATIO} = \frac{\sum \mathsf{DEBT}}{\sum \mathsf{CREDIT}}$$

Feature engineering dominated all other improvements

Result: +0.042 AUC 57% of total gains!

Phase 2: Temporal Features

Static vs. Dynamic Behavior

- Problem: Aggregations miss behavioral changes
- Solution: Compare recent vs. historical patterns

Added 76 temporal features (284 \rightarrow 360):

- Bureau Balance Trends: Recent_{6m} $Old_{>12m}$
- Spending Velocity: Recent spending—Old spending
 Old spending
- Payment Delay Evolution: 2nd half delays 1st half delays

Result: +0.002 AUC

Modest but consistent—captures behavioral dynamics

Phase 3: The Ensemble Experiment

Conventional Wisdom: More models = Better predictions

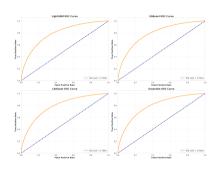
Three Models:

- LightGBM
- XGBoost
- CatBoost

Optimization:

- Grid search over 232 weight combinations
- Optimal:

$$P = 0.75P_{LGB} + 0.15P_{XGB} + 0.10P_{Cat}$$



All models show similar AUC (0.7887-0.7928). Ensemble provides marginal improvement.

Pre-Tuning Result: +0.0002 AUC

The Tuning Paradox

Hyperparameter Optimization: Optuna with Bayesian search (100 trials)

Configuration	Private Score	vs. Pre-Tuning	Rank
Single LightGBM (tuned)	0.7928	+0.0018	1070
Ensemble (tuned)	0.7923	-0.0013	1327

Ensemble got WORSE after tuning!

Model Correlation Matrix (Post-Tuning):

	LightGBM	XGBoost	CatBoost
LightGBM	1.00	0.976	0.968
XGBoost	_	1.00	0.981

Why Ensembles Failed Post-Tuning

Two Key Mechanisms:

1. Reduced Model Diversity

- Hyperparameter optimization pushed all models toward similar optima
- LightGBM & XGBoost both converged: max_depth \approx 9, 1r \approx 0.028
- High correlation $(\rho > 0.97) \rightarrow$ same mistakes

2. Bias-Variance Tradeoff Shift

- ullet Pre-tuning: High bias o averaging reduces variance
- ullet Post-tuning: Near-optimal o averaging adds unnecessary smoothing

Competition Intensity:

- Tuned ensemble only 0.0005 worse than single model
- ullet But cost nearly **300 ranks** (1070 ightarrow 1327)
- Every fraction of a point matters!

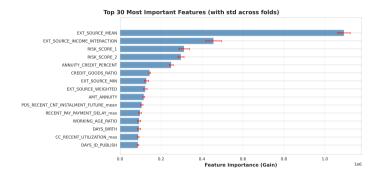
What the Model Actually Learned



Key Observations:

- Well-separated distributions: Clear distinction between defaults (red) and non-defaults (green)
- Conservative predictions: Median = 0.25 (appropriate for financial inclusion)
- **High-risk tail:** Only 10% above 0.65 o focus manual review efficiently <math>3.00 o 3.00

Feature Importance Analysis



- EXT_SOURCE_MEAN dominates: Massive importance gap
- Engineered features win: Income interaction (#2) and risk scores (#3) validate domain design
- **Temporal signals matter:** Recent behavior features appear throughout top-15
- Ethical concern: Bureau scores aren't available for unbanked populations

Alternative behavioral signals can partially compensate

Performance Progression Summary

Phase	Features	Score	∆AUC	Rank
Baseline	129	0.7462	_	5847
Enhanced Aggregation	284	0.7885	+0.042	3030
Temporal Features	360	0.7908	+0.002	2766
Pre-Tuning Ensemble	360	0.7910	+0.0002	2650
Hyperparameter Tuning	360	0.7928	+0.0018	1070
Post-Tuning Ensemble	360	0.7923	-0.0005	1327

Contribution Breakdown:

- Feature engineering: **57%** of total gains
- Hyperparameter tuning: 24% of total gains
- ullet Ensemble learning: pprox 0 % after tuning

Cumulative: +0.047 AUC \rightarrow Rank 5847 to 1070

Key Lessons Learned

1. Feature Quality > Model Complexity

Domain-informed feature engineering outweighed all algorithmic improvements

2. Ensemble Learning Has Diminishing Returns

When individual models are well-tuned, ensembles add complexity without gains

3. Validation Strategy is Critical

Consistent 5-fold stratified CV prevented chasing validation noise

Simpler often beats complex

Limitations & Future Work

Acknowledged Limitations:

- **Temporal validation:** Features may incorporate post-application information
 - Need rigorous temporal cutoffs for production deployment
- Data equity: Heavy reliance on credit bureau scores
 - Perpetuates exclusion of unbanked populations
 - Alternative signals help but more work needed

Future Directions:

- Deeper feature engineering: Learn from Kaggle discussion forum
 - Successful participants share many effective feature calculations
 - Rich source of domain insights
- Complex models (neural networks, deep learning):
 - Could further improve scores and rankings
 - But likely less efficient than discovering better features

Feature engineering remains the highest leverage activity

Conclusion

Core Findings:

- Thoughtful feature engineering beats algorithmic complexity
- Simple, well-tuned models often outperform complex ensembles
- Faster inference + better interpretability + same performance = win

Sometimes, simpler is better.

Thank you!

