

Home Credit Default Risk Assessment Based on LightGBM

Hongen Tang, Zilong Pan, Xinyu Xu

—5440 Artificial Intelligence in Fintech

INTRODUCTION

MOTIVATION

Construct a home credit risk prediction model aiming to accurately assess clients' repayment capacity.

DATASET

11 datasets introducing clients' personal information and credit record.

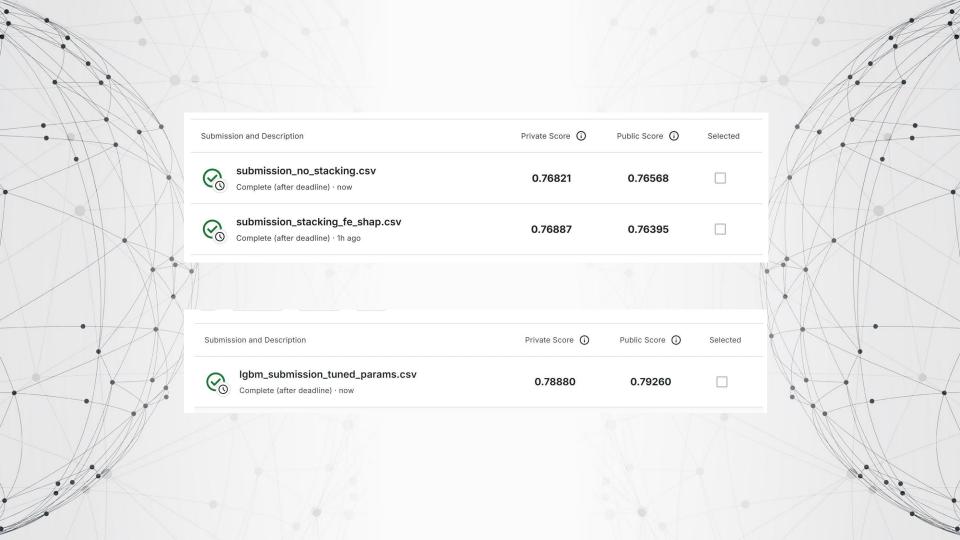
CORE PROBLEM

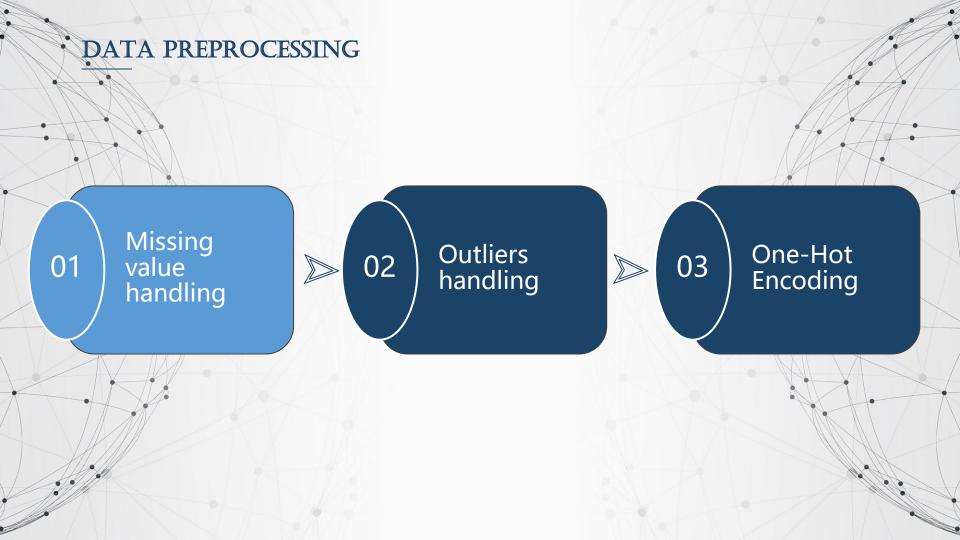
Improve data utilization
——feature engineering
Enhance model performance
——model training

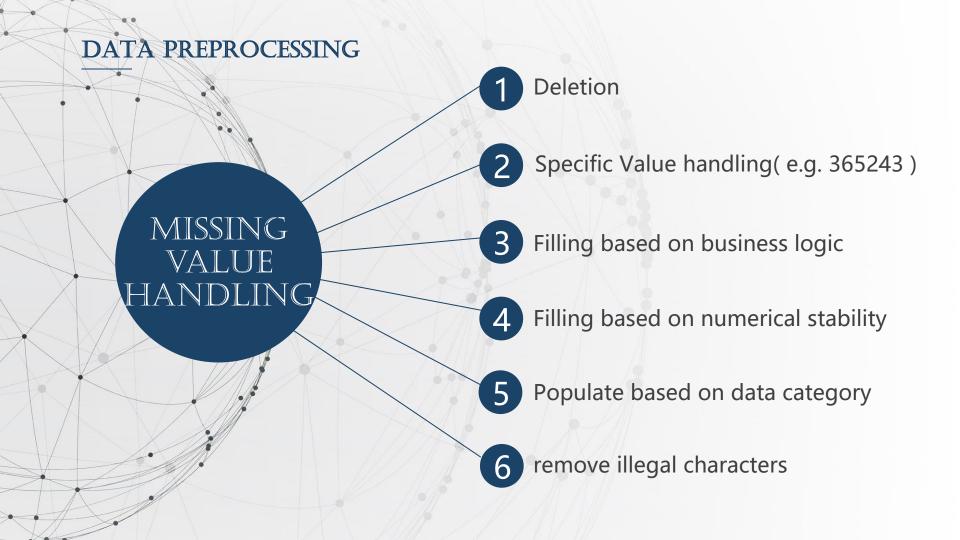
FURTURE ANALYSIS

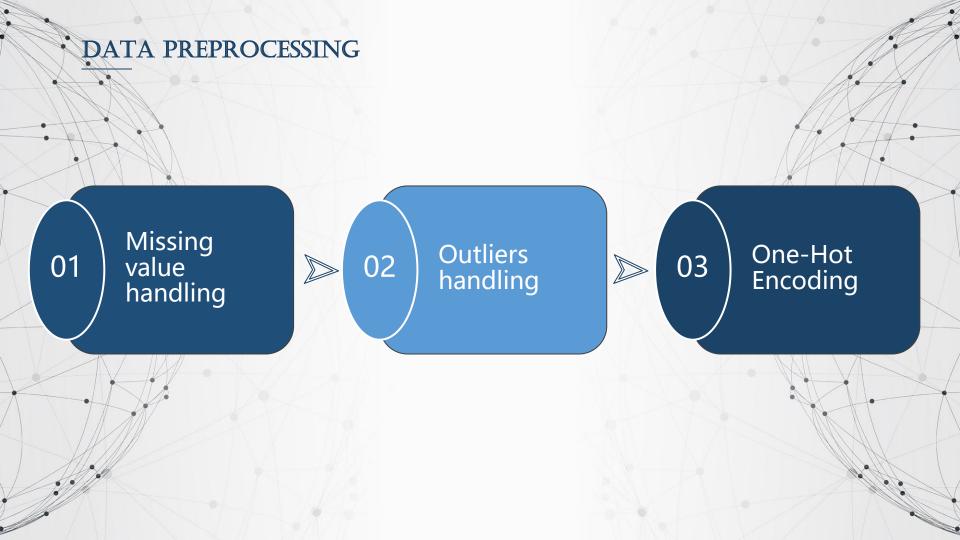
Application scenario Performance requirements

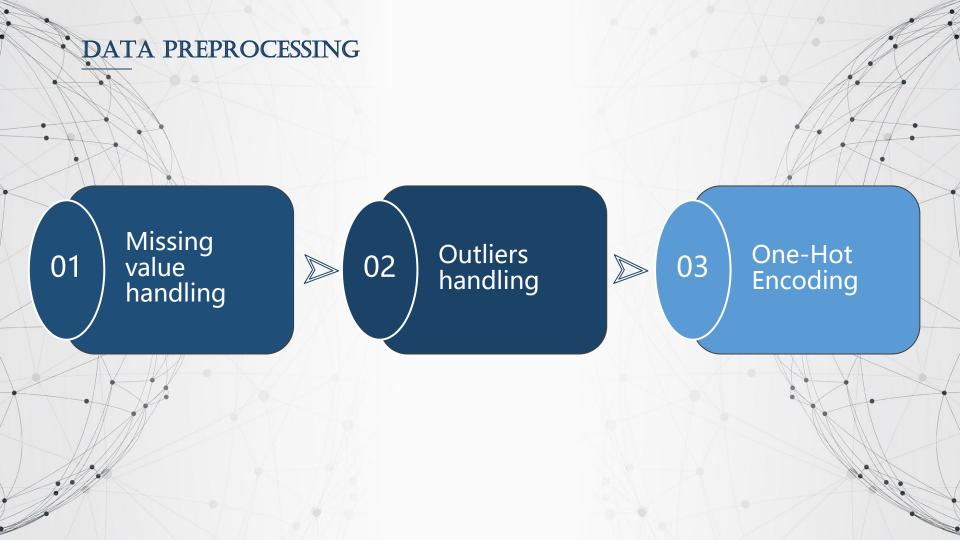
• • • • • •

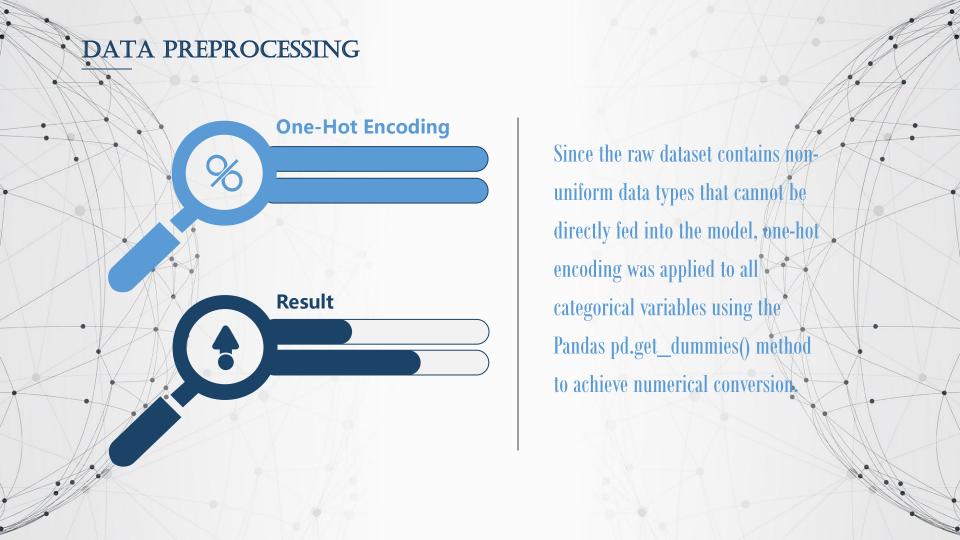


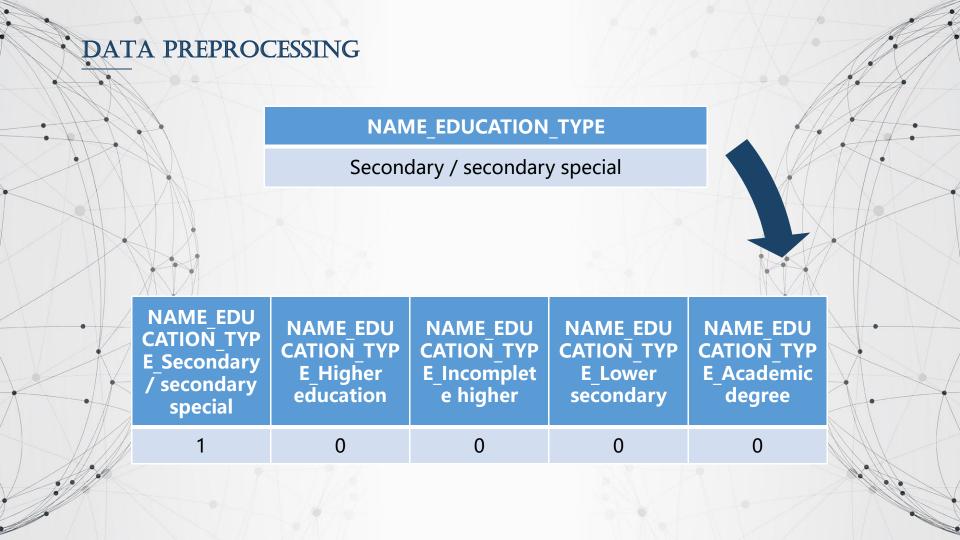


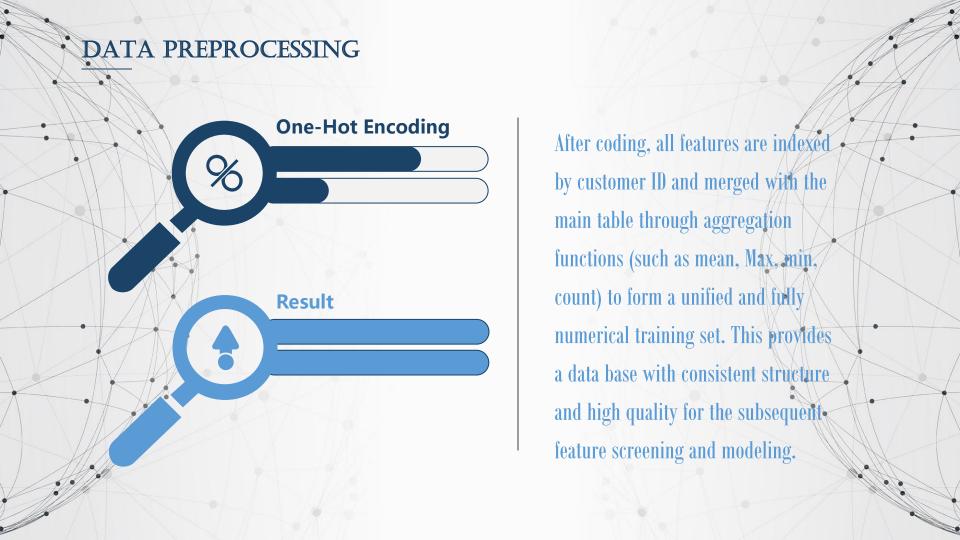


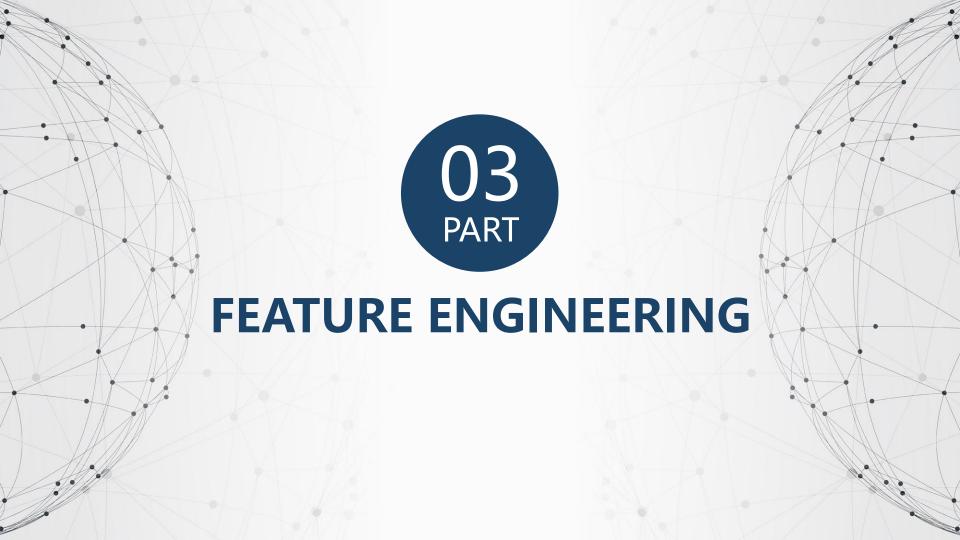












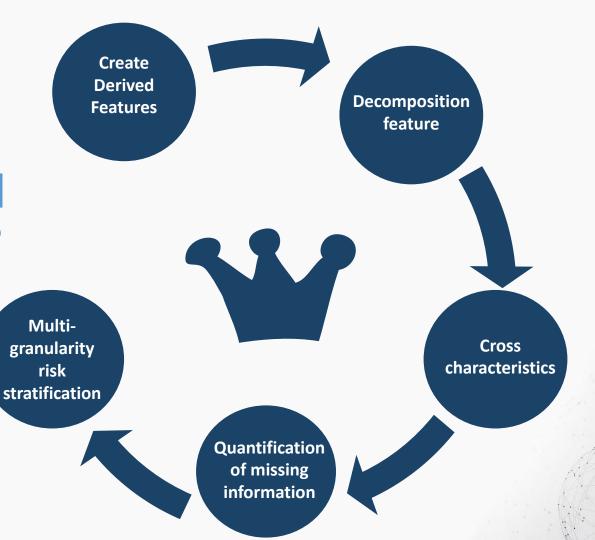
FEATURE ENGINEERING

WHY FEATURE ENGINEERING?

The existing indicators have the problems of low information density, vague meaning, and low matching degree with the research object. In order to further improve the value of the original data and improve the prediction ability of the indicators to the target problem, the indicators are further constructed through feature engineering on the basis of the original data.

FEATURE BUILDING

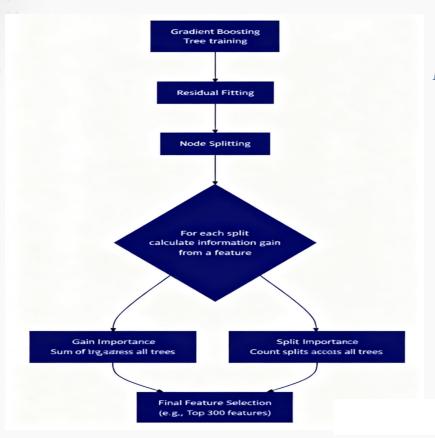
How to build new feature?



KEY DRIVERS OF DEFAULT RISK

Feature	Importance
CREDIT_ANNUITY_RATIO	355.40
CREDIT_GOODS_RATIO	210.60
EXT_SOURCES_MEAN	209.00
NAME_FAMILY_STATUS_Married	197.60
AMT_ANNUITY	185.80
REGION_POPULATION_RELATIVE	175.60
EXT_SOURCES_PRODUCT	171.60
BUREAU_DAYS_CREDIT_MAX	161.40
EXT_INCOME_INTERACTION	158.00
EXT_SOURCE_3	146.40
OBS_30_CNT_SOCIAL_CIRCLE	143.25
OWN_CAR_AGE	143.20
CODE_GENDER_F	142.40
BUREAU_DAYS_CREDIT_ENDDATE_MAX	140.40
INS_PAYMENT_RATIO_STD_MIN	140.00
EXT_SOURCES_MIN	138.40
CODE_GENDER_M	131.40
PREV_REFUSED_COUNT	129.20
BUREAU_DEBT_TO_CREDIT_RATIO	124.60
WORK_START_AGE	120.80

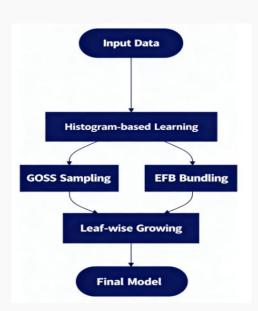
FEATURE SELECTION



Arrange all features in descending order of importance, and draw the cumulative contribution rate curve. The results show that the contribution of the first 300 features has exceeded 95%. Therefore, in this study, the retention threshold was set to the top 300 high-importance features, and the remaining features were excluded.

MODEL SELECTION

WHY LightGBM?



Model Performance

LightGBM is good at binary classification problem based on structural data and it performs well on medium-sized data with a scale of 300000.

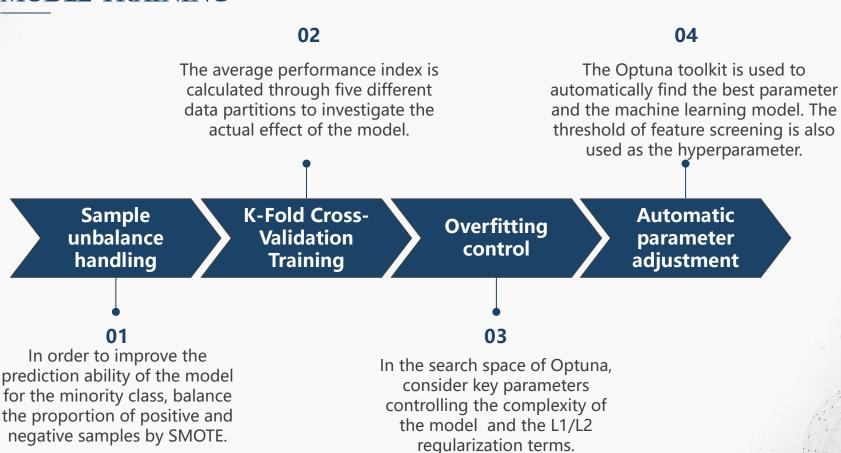
Financial Data Recognition

The tree model can automatically capture the nonlinear relationship and interaction effects between variables and handle different types of feature mixing, so that it can perform well on this data set.

Practical Applications

The wind control system in the financial industry generally uses the gradient lifting tree as the core model. LightGBM has the advantages of fast prediction, small memory footprint and high training efficiency.

MODEL TRAINING



MODEL TRAINING

Parameter	Value
feature_selection_threshold	0
learning_rate	0.0468
num_leaves	33
max_depth	12
min_child_samples	72
subsample	0.7116
colsample_bytree	0.7563
reg_alpha	0.2442
reg_lambda	0.8161

Best parameters of the model

EVALUATION INDEX

WHY AUC as SINGLE Evaluation Index?

Business target matching

In practical application, the bank will set an approval threshold, and X% of the customers after the model score ranking will be rejected or manually reviewed, while AUC can well measure the ranking ability of the model .

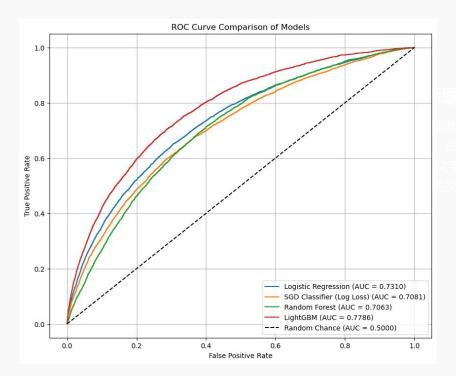
Robust model evaluation

As credit data is a typical highly unbalanced data, the reference value of accuracy is greatly reduced, while precision and recall as a single indicator have their own drawbacks.

Comprehensive decision support

It provides a complete perspective for business decision makers to select the classification threshold through the ROC curve, allowing companies to choose different strategies with their own risk preferences.

CONCLUTIONS



The final running result of the model is AUC = 0.7859, which proves that the model has a good prediction effect.

CONCLUTIONS

Feature	Importance
CREDIT_ANNUITY_RATIO	355.40
CREDIT_GOODS_RATIO	210.60
EXT_SOURCES_MEAN	209.00
NAME_FAMILY_STATUS_Married	197.60
AMT_ANNUITY	185.80
REGION_POPULATION_RELATIVE	175.60
EXT_SOURCES_PRODUCT	171.60
BUREAU_DAYS_CREDIT_MAX	161.40
EXT_INCOME_INTERACTION	158.00
EXT_SOURCE_3	146.40

After K-fold cross-validation, the 20 features with the highest contribution to the model

