
 Google Colab

i

 Google Colab

i

About the Tutorial

Colab is a free notebook environment that runs entirely in the cloud. It lets you and your

team members edit documents, the way you work with Google Docs. Colab supports many

popular machine learning libraries which can be easily loaded in your notebook.

This tutorial gives an exhaustive coverage of all the features of Colab and makes you

comfortable working on it with confidence.

Audience

This tutorial has been prepared for the beginners to help them understand the basic to

advanced concepts related to Google Colab.

Prerequisites

Before you start practicing various types of examples given in this tutorial, we assume

that you are already aware about Jupyter, GitHub, basics of Python and other computer

programming languages.

If you are new to any of these, we suggest you pick up related tutorials before you embark

on your learning with Colab.

Copyright & Disclaimer

@Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Google Colab

 ii

Table of Contents

About the Tutorial .. i

Audience ... i

Prerequisites ... i

Copyright & Disclaimer ... i

Table of Contents ... ii

1. GOOGLE COLAB – INTRODUCTION ... 1

2. GOOGLE COLAB – WHAT IS GOOGLE COLAB? ... 2

What Colab Offers You? ... 2

3. GOOGLE COLAB – YOUR FIRST COLAB NOTEBOOK ... 3

Setting Notebook Name .. 4

Entering Code .. 4

Executing Code .. 4

Adding Code Cells .. 5

Run All ... 6

Changing Cell Order ... 6

Deleting Cell .. 7

4. GOOGLE COLAB – DOCUMENTING YOUR CODE ... 8

Markdown Examples ... 8

Mathematical Equations .. 9

Code for Sample Equations .. 9

5. GOOGLE COLAB – SAVING YOUR WORK ... 11

Saving to Google Drive ... 11

Saving to GitHub .. 12

Google Colab

 iii

6. GOOGLE COLAB – SHARING NOTEBOOK ... 14

7. GOOGLE COLAB – INVOKING SYSTEM COMMANDS.. 15

Simple Commands ... 15

Getting Remote Data ... 15

Cloning Git Repository ... 16

System Aliases ... 17

8. GOOGLE COLAB – EXECUTING EXTERNAL PYTHON FILES .. 19

Mounting Drive .. 19

Listing Drive Contents .. 21

Running Python Code .. 22

9. GOOGLE COLAB – GRAPHICAL OUTPUTS .. 23

10. GOOGLE COLAB – CODE EDITING HELP .. 25

Function List .. 25

Function Documentation ... 26

11. GOOGLE COLAB – MAGICS ... 27

Line Magics .. 27

Cell Magics ... 27

Magics List ... 28

12. GOOGLE COLAB – ADDING FORMS ... 30

Adding Form .. 30

Adding Form Fields .. 32

Testing Form .. 33

Inputting Text .. 34

Dropdown List ... 34

Google Colab

 iv

Date Input.. 35

13. GOOGLE COLAB – INSTALLING ML LIBRARIES ... 36

Keras .. 36

PyTorch .. 36

MxNet.. 36

OpenCV.. 36

XGBoost ... 37

GraphViz .. 37

14. GOOGLE COLAB – USING FREE GPU ... 38

Enabling GPU ... 38

Testing for GPU .. 39

Listing Devices ... 39

Checking RAM .. 40

15. GOOGLE COLAB – CONCLUSION ... 42

Kaku Sou

Google Colab

 1

Google is quite aggressive in AI research. Over many years, Google developed AI

framework called TensorFlow and a development tool called Colaboratory. Today

TensorFlow is open-sourced and since 2017, Google made Colaboratory free for public use.

Colaboratory is now known as Google Colab or simply Colab.

Another attractive feature that Google offers to the developers is the use of GPU. Colab

supports GPU and it is totally free. The reasons for making it free for public could be to

make its software a standard in the academics for teaching machine learning and data

science. It may also have a long term perspective of building a customer base for Google

Cloud APIs which are sold per-use basis.

Irrespective of the reasons, the introduction of Colab has eased the learning and

development of machine learning applications.

So, let us get started with Colab.

1. Google Colab – Introduction

Google Colab

 2

If you have used Jupyter notebook previously, you would quickly learn to use Google

Colab. To be precise, Colab is a free Jupyter notebook environment that runs entirely in

the cloud. Most importantly, it does not require a setup and the notebooks that you create

can be simultaneously edited by your team members - just the way you edit documents

in Google Docs. Colab supports many popular machine learning libraries which can be

easily loaded in your notebook.

What Colab Offers You?

As a programmer, you can perform the following using Google Colab.

 Write and execute code in Python

 Document your code that supports mathematical equations

 Create/Upload/Share notebooks

 Import/Save notebooks from/to Google Drive

 Import/Publish notebooks from GitHub

 Import external datasets e.g. from Kaggle

 Integrate PyTorch, TensorFlow, Keras, OpenCV

 Free Cloud service with free GPU

2. Google Colab – What is Google Colab?

Google Colab

 3

In this chapter, you will create and execute your first trivial notebook. Follow the steps

that have been given wherever needed.

Note: As Colab implicitly uses Google Drive for storing your notebooks, ensure that you

are logged in to your Google Drive account before proceeding further.

Step 1: Open the following URL in your browser: https://colab.research.google.com

Your browser would display the following screen (assuming that you are logged into your

Google Drive):

Step 2: Click on the NEW PYTHON 3 NOTEBOOK link at the bottom of the screen. A

new notebook would open up as shown in the screen below.

As you might have noticed, the notebook interface is quite similar to the one provided in

Jupyter. There is a code window in which you would enter your Python code.

3. Google Colab – Your First Colab Notebook

https://colab.research.google.com/

Google Colab

 4

Setting Notebook Name

By default, the notebook uses the naming convention UntitledXX.ipynb. To rename the

notebook, click on this name and type in the desired name in the edit box as shown here:

We will call this notebook as MyFirstColabNotebook. So type in this name in the edit

box and hit ENTER. The notebook will acquire the name that you have given now.

Entering Code

You will now enter a trivial Python code in the code window and execute it.

Enter the following two Python statements in the code window:

import time

print(time.ctime())

Executing Code

To execute the code, click on the arrow on the left side of the code window.

After a while, you will see the output underneath the code window, as shown here:

Mon Jun 17 05:58:40 2019

Google Colab

 5

You can clear the output anytime by clicking the icon on the left side of the output display.

Adding Code Cells

To add more code to your notebook, select the following menu options:

Insert / Code Cell

Alternatively, just hover the mouse at the bottom center of the Code cell. When the CODE

and TEXT buttons appear, click on the CODE to add a new cell. This is shown in the

screenshot below:

A new code cell will be added underneath the current cell. Add the following two statements

in the newly created code window:

time.sleep(5)

print (time.ctime())

Now, if you run this cell, you will see the following output:

Mon Jun 17 04:50:27 2019

Certainly, the time difference between the two time strings is not 5 seconds. This is obvious

as you did take some time to insert the new code. Colab allows you to run all code inside

your notebook without an interruption.

Google Colab

 6

Run All

To run the entire code in your notebook without an interruption, execute the following

menu options:

Runtime / Reset and run all…

It will give you the output as shown below:

Note that the time difference between the two outputs is now exactly 5 seconds.

The above action can also be initiated by executing the following two menu options:

Runtime / Restart runtime…

or

Runtime / Restart all runtimes…

Followed by

Runtime / Run all

Study the different menu options under the Runtime menu to get yourself acquainted

with the various options available to you for executing the notebook.

Changing Cell Order

When your notebook contains a large number of code cells, you may come across

situations where you would like to change the order of execution of these cells. You can

do so by selecting the cell that you want to move and clicking the UP CELL or DOWN

CELL buttons shown in the following screenshot:

Google Colab

 7

You may click the buttons multiple times to move the cell for more than a single position.

Deleting Cell

During the development of your project, you may have introduced a few now-unwanted

cells in your notebook. You can remove such cells from your project easily with a single

click. Click on the vertical-dotted icon at the top right corner of your code cell.

Click on the Delete cell option and the current cell will be deleted.

Now, as you have learned how to run a trivial notebook, let us explore the other capabilities

of Colab.

Google Colab

 8

As the code cell supports full Python syntax, you may use Python comments in the code

window to describe your code. However, many a time you need more than a simple text

based comments to illustrate the ML algorithms. ML heavily uses mathematics and to

explain those terms and equations to your readers you need an editor that supports LaTex

- a language for mathematical representations. Colab provides Text Cells for this purpose.

A text cell containing few mathematical equations typically used in ML is shown in the

screenshot below:

As we move ahead in this chapter, we will see the code for generating the above output.

Text Cells are formatted using markdown - a simple markup language. Let us now see

you how to add text cells to your notebook and add to it some text containing mathematical

equations.

Markdown Examples

Let us look into few examples of markup language syntax to demonstrate its capabilities.

Type in the following text in the Text cell.

This is **bold**.

This is *italic*.

This is ~strikethrough~.

The output of the above commands is rendered on the right hand side of the Cell as shown

here.

4. Google Colab – Documenting Your Code

Google Colab

 9

Mathematical Equations

Add a Text Cell to your notebook and enter the following markdown syntax in the text

window:

$\sqrt{3x-1}+(1+x)^2$

You will see the immediate rendering of the markdown code in the right hand side panel

of the text cell. This is shown in the screenshot below:

Hit Enter and the markdown code disappears from the text cell and only the rendered

output is shown.

Let us try another more complicated equation as shown here:

$e^x=\sum_{i=0}^\infty \frac{1}{i!}x^i$

The rendered output is shown here for your quick reference.

Code for Sample Equations

Here is the code for the sample equations shown in an earlier screenshot:

Constraints are

 - $3x_1 + 6x_2 + x_3 =< 28$

 - $7x_1 + 3x_2 + 2x_3 =< 37$

 - $4x_1 + 5x_2 + 2x_3 =< 19$

 - $x_1,x_2,x_3 >=0 $

The trial vector is calculated as follows:

- $u_i(t) = x_i(t) + \beta(\hat{x}(t) − x_i(t)) + \beta \sum_{k = 1}^{n

 v}(x{i1,k}(t) − x_{i2,k}(t))$

Google Colab

 10

$f(x_1, x_2) = 20 + e - 20exp(-0.2 \sqrt {\frac {1}{n} (x_1^2 + x_2^2)}) - exp

(\frac {1}{n}(cos(2\pi x_1) + cos(2\pi x_2))$

$x ∈ [-5, 5]$

>$A_{m,n} =

 \begin{pmatrix}

 a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\

 a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\

 \vdots & \vdots & \ddots & \vdots \\

 a_{m,1} & a_{m,2} & \cdots & a_{m,n}

 \end{pmatrix}$

Describing full markup syntax is beyond the scope of this tutorial. In the next chapter, we

will see how to save your work.

Google Colab

 11

Colab allows you to save your work to Google Drive or even directly to your GitHub

repository.

Saving to Google Drive

Colab allows you to save your work to your Google Drive. To save your notebook, select

the following menu options:

File / Save a copy in Drive…

You will see the following screen:

5. Google Colab – Saving Your Work

Google Colab

 12

The action will create a copy of your notebook and save it to your drive. Later on you may

rename the copy to your choice of name.

Saving to GitHub

You may also save your work to your GitHub repository by selecting the following menu

options:

File / Save a copy in GitHub...

The menu selection is shown in the following screenshot for your quick reference:

Google Colab

 13

You will have to wait until you see the login screen to GitHub.

Now, enter your credentials. If you do not have a repository, create a new one and save

your project as shown in the screenshot below:

 In the next chapter, we will learn how to share your work with others.

Google Colab

 14

To share the notebook that you have created with other co-developers, you may share the

copy that you have made in your Google Drive.

To publish the notebook to general audience, you may share it from your GitHub

repository.

There is one more way to share your work and that is by clicking on the SHARE link at

the top right hand corner of your Colab notebook. This will open the share box as shown

here:

You may enter the email IDs of people with whom you would like to share the current

document. You can set the kind of access by selecting from the three options shown in the

above screen.

Click on the Get shareable link option to get the URL of your notebook. You will find

options for whom to share as follows:

 Specified group of people

 Colleagues in your organization

 Anyone with the link

 All public on the web

Now. you know how to create/execute/save/share a notebook. In the Code cell, we used

Python so far. The code cell can also be used for invoking system commands. This is

explained next.

6. Google Colab – Sharing Notebook

Google Colab

 15

Jupyter includes shortcuts for many common system operations. Colab Code cell supports

this feature.

Simple Commands

Enter the following code in the Code cell that uses the system command echo.

message = 'A Great Tutorial on Colab by Tutorialspoint!'

greeting = !echo -e '$message\n$message'

greeting

Now, if you run the cell, you will see the following output:

['A Great Tutorial on Colab by Tutorialspoint!',

 'A Great Tutorial on Colab by Tutorialspoint!']

Getting Remote Data

Let us look into another example that loads the dataset from a remote server. Type in the

following command in your Code cell:

!wget http://mlr.cs.umass.edu/ml/machine-learning-databases/adult/adult.data -P

"/content/drive/My Drive/app"

If you run the code, you would see the following output:

--2019-06-20 10:09:53-- http://mlr.cs.umass.edu/ml/machine-learning-

databases/adult/adult.data

Resolving mlr.cs.umass.edu (mlr.cs.umass.edu)... 128.119.246.96

Connecting to mlr.cs.umass.edu (mlr.cs.umass.edu)|128.119.246.96|:80...

connected.

HTTP request sent, awaiting response... 200 OK

Length: 3974305 (3.8M) [text/plain]

Saving to: ‘/content/drive/My Drive/app/adult.data.1’

adult.data.1 100%[===================>] 3.79M 1.74MB/s in 2.2s

2019-06-20 10:09:56 (1.74 MB/s) - ‘/content/drive/My Drive/app/adult.data.1’

saved [3974305/3974305]

7. Google Colab – Invoking System Commands

http://mlr.cs.umass.edu/ml/machine-learning-databases/adult/adult.data
http://mlr.cs.umass.edu/ml/machine-learning-databases/adult/adult.data
http://mlr.cs.umass.edu/ml/machine-learning-databases/adult/adult.data

Google Colab

 16

As the message says, the adult.data.1 file is now added to your drive. You can verify this

by examining the folder contents of your drive. Alternatively, type in the following code in

a new Code cell:

import pandas as pd

data = pd.read_csv("/content/drive/My Drive/app/adult.data.1")

data.head(5)

Run the code now and you will see the following output:

Likewise, most of the system commands can be invoked in your code cell by prepending

the command with an Exclamation Mark (!). Let us look into another example before giving

out the complete list of commands that you can invoke.

Cloning Git Repository

You can clone the entire GitHub repository into Colab using the git command. For example,

to clone the keras tutorial, type the following command in the Code cell:

!git clone https://github.com/wxs/keras-mnist-tutorial.git

After a successful run of the command, you would see the following output:

Cloning into 'keras-mnist-tutorial'...

remote: Enumerating objects: 26, done.

remote: Total 26 (delta 0), reused 0 (delta 0), pack-reused 26

Unpacking objects: 100% (26/26), done.

Once the repo is cloned, locate a Jupyter project (e.g. MINST in keras.ipyab) in it, right-

click on the file name and select Open With / Colaboratory menu option to open the

project in Colab.

https://github.com/wxs/keras-mnist-tutorial.git

Google Colab

 17

System Aliases

To get a list of shortcuts for common operations, execute the following command:

!ls /bin

You will see the list in the output window as shown below:

bash* journalctl* sync*

bunzip2* kill* systemctl*

bzcat* kmod* systemd@

bzcmp@ less* systemd-ask-password*

bzdiff* lessecho* systemd-escape*

bzegrep@ lessfile@ systemd-hwdb*

bzexe* lesskey* systemd-inhibit*

bzfgrep@ lesspipe* systemd-machine-id-setup*

bzgrep* ln* systemd-notify*

bzip2* login* systemd-sysusers*

bzip2recover* loginctl* systemd-tmpfiles*

bzless@ ls* systemd-tty-ask-password-agent*

bzmore* lsblk* tar*

cat* lsmod@ tempfile*

chgrp* mkdir* touch*

chmod* mknod* true*

chown* mktemp* udevadm*

cp* more* ulockmgr_server*

dash* mount* umount*

date* mountpoint* uname*

dd* mv* uncompress*

df* networkctl* vdir*

dir* nisdomainname@ wdctl*

dmesg* pidof@ which*

dnsdomainname@ ps* ypdomainname@

domainname@ pwd* zcat*

echo* rbash@ zcmp*

egrep* readlink* zdiff*

false* rm* zegrep*

fgrep* rmdir* zfgrep*

findmnt* run-parts* zforce*

fusermount* sed* zgrep*

Google Colab

 18

grep* sh@ zless*

gunzip* sh.distrib@ zmore*

gzexe* sleep* znew*

gzip* stty*

hostname* su*

Execute any of these commands as we have done for echo and wget. In the next chapter,

we shall see how to execute your previously created Python code.

Google Colab

 19

Suppose, you already have some Python code developed that is stored in your Google

Drive. Now, you will like to load this code in Colab for further modifications. In this chapter,

we will see how to load and run the code stored in your Google Drive.

Mounting Drive

First, you need to mount your Google Drive in Colab. Select the following menu options:

Tools / Command palette

You will see the list of commands as shown in this screenshot:

Type a few letters like “m” in the search box to locate the mount command. Select Mount

Drive command from the list. The following code would be inserted in your Code cell.

Run this cell to mount your Google Drive.

from google.colab import drive

drive.mount('/content/drive')

8. Google Colab – Executing External Python
Files

Google Colab

 20

If you run this code, you will be asked to enter the authentication code. The corresponding

screen looks as shown below:

Open the above URL in your browser. You will be asked to login to your Google account.

Now, you will see the following screen:

Google Colab

 21

If you grant the permissions, you will receive your code as follows:

Cut-n-paste this code in the Code cell and hit ENTER. After a while, the drive will be

mounted as seen in the screenshot below:

Now, you are ready to use the contents of your drive in Colab.

Listing Drive Contents

You can list the contents of the drive using the ls command as follows:

!ls "/content/drive/My Drive/Colab Notebooks"

This command will list the contents of your Colab Notebooks folder. The sample output of

my drive contents are shown here:

 Greeting.ipynb

 hello.py

 LogisticRegressionCensusData.ipynb

 LogisticRegressionDigitalOcean.ipynb

 MyFirstColabNotebook.ipynb

 SamplePlot.ipynb

Google Colab

 22

Running Python Code

Now, let us say that you want to run a Python file called hello.py stored in your Google

Drive. Type the following command in the Code cell:

!python3 "/content/drive/My Drive/Colab Notebooks/hello.py"

The contents of hello.py are given here for your reference:

print("Welcome to TutorialsPoint!")

You will now see the following output:

Welcome to TutorialsPoint!

Besides the text output, Colab also supports the graphical outputs. We will see this in the

next chapter.

Google Colab

 23

Colab also supports rich outputs such as charts. Type in the following code in the Code

cell.

import numpy as np

from matplotlib import pyplot as plt

y = np.random.randn(100)

x = [x for x in range(len(y))]

plt.plot(x, y, '-')

plt.fill_between(x, y, 200, where=(y > 195), facecolor='g', alpha=0.6)

plt.title("Sample Plot")

plt.show()

Now, if you run the code, you will see the following output:

9. Google Colab – Graphical Outputs

Google Colab

 24

Note that the graphical output is shown in the output section of the Code cell. Likewise,

you will be able to create and display several types of charts throughout your program

code.

Now, as you have got familiar with the basics of Colab, let us move on to the features in

Colab that makes your Python code development easier.

Google Colab

 25

The present day developers rely heavily on context-sensitive help to the language and

library syntaxes. That is why the IDEs are widely used. The Colab notebook editor provides

this facility.

In this chapter, let us see how to ask for context-sensitive help while writing Python code

in Colab. Follow the steps that have been given wherever needed.

Function List

Step 1: Open a new notebook and type in the following code in the Code cell:

import torch

Step 2: Run the code by clicking on the Run icon in the left panel of the Code cell. Add

another Code cell and type in the following code:

Tensor = torch.

At this point, suppose you have forgotten what are the various functions available in torch

module. You can ask for the context-sensitive help on function names by hitting the TAB

key. Note the presence of the DOT after the torch keyword. Without this DOT, you will

not see the context help. Your screen would look like as shown in the screenshot here:

10. Google Colab – Code Editing Help

Google Colab

 26

Now, select the desired function from the list and proceed with your coding.

Function Documentation

Colab gives you the documentation on any function or class as a context-sensitive help.

Type the following code in your code window:

Tensor = torch.cos(

Now, hit TAB and you will see the documentation on cos in the popup window as shown

in the screenshot here. Note that you need to type in open parenthesis before hitting

TAB.

In the next chapter, we will see Magics in Colab that lets us to do more powerful things

than what we did with system aliases.

Google Colab

 27

Magics is a set of system commands that provide a mini extensive command language.

Magics are of two types:

 Line magics

 Cell magics

The line magics as the name indicates that it consists of a single line of command, while

the cell magic covers the entire body of the code cell.

In case of line magics, the command is prepended with a single % character and in the

case of cell magics, it is prepended with two % characters (%%).

Let us look into some examples of both to illustrate these.

Line Magics

Type the following code in your code cell:

%ldir

You will see the contents of your local directory, something like this -

drwxr-xr-x 3 root 4096 Jun 20 10:05 drive/

drwxr-xr-x 1 root 4096 May 31 16:17 sample_data/

Try the following command:

%history

This presents the complete history of commands that you have previously executed.

Cell Magics

Type in the following code in your code cell:

%%html

<marquee style='width: 50%; color: Green;'>Welcome to

Tutorialspoint!</marquee>

Now, if you run the code and you will see the scrolling welcome message on the screen as

shown here:

11. Google Colab – Magics

Google Colab

 28

The following code will add SVG to your document.

%%html

<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 600 400" width="400"

height="400">

 <rect x="10" y="00" width="300" height="100" rx="0" style="fill:orange;

stroke:black; fill-opacity:1.0" />

 <rect x="10" y="100" width="300" height="100" rx="0" style="fill:white;

stroke:black; fill-opacity:1.0;" />

 <rect x="10" y="200" width="300" height="100" rx="0" style="fill:green;

stroke:black; fill-opacity:1.0;" />

</svg>

If you run the code, you would see the following output:

Magics List

To get a complete list of supported magics, execute the following command:

%lsmagic

You will see the following output:

Available line magics:

%alias %alias_magic %autocall %automagic %autosave %bookmark %cat %cd

%clear %colors %config %connect_info %cp %debug %dhist %dirs

%doctest_mode %ed %edit %env %gui %hist %history %killbgscripts %ldir

%less %lf %lk %ll %load %load_ext %loadpy %logoff %logon

http://www.w3.org/2000/svg%22

Google Colab

 29

%logstart %logstate %logstop %ls %lsmagic %lx %macro %magic %man

%matplotlib %mkdir %more %mv %notebook %page %pastebin %pdb %pdef

%pdoc %pfile %pinfo %pinfo2 %pip %popd %pprint %precision %profile

%prun %psearch %psource %pushd %pwd %pycat %pylab %qtconsole %quickref

%recall %rehashx %reload_ext %rep %rerun %reset %reset_selective %rm

%rmdir %run %save %sc %set_env %shell %store %sx %system %tb

%tensorflow_version %time %timeit %unalias %unload_ext %who %who_ls

%whos %xdel %xmode

Available cell magics:

%%! %%HTML %%SVG %%bash %%bigquery %%capture %%debug %%file %%html

%%javascript %%js %%latex %%perl %%prun %%pypy %%python %%python2

%%python3 %%ruby %%script %%sh %%shell %%svg %%sx %%system %%time

%%timeit %%writefile

Automagic is ON, % prefix IS NOT needed for line magics.

Next, you will learn another powerful feature in Colab to set the program variables at

runtime.

Google Colab

 30

Colab provides a very useful utility called Forms that allows you to accept inputs from the

user at runtime. Let us now move on to see how to add forms to your notebook.

Adding Form

In an earlier lesson, you used the following code to create a time delay:

import time

print(time.ctime())

time.sleep(5)

print (time.ctime())

Suppose, you want a user set time delay instead of a fixed delay of 5 seconds. For this,

you can add a Form to the Code cell to accept the sleep time.

Open a new notebook. Click on the Options (vertically-dotted) menu. A popup menu

shows up as seen in the screenshot below:

12. Google Colab – Adding Forms

Google Colab

 31

Now, select Add a form option. It will add the form to your Code cell with a Default title

as seen in the screenshot here:

To change the title of the form, click on the Settings button (pencil icon on the right). It

will pop up a settings screen as shown here:

Change the form title to “Form” and save the form. You may use some other name of

your choice. Notice that it adds the @title to your code cell.

You may explore other options on the above screen at a later time. In the next section,

we will learn how add input fields to the form.

Google Colab

 32

Adding Form Fields

To add a form field, click the Options menu in the Code cell, click on the Form to reveal

the submenus. The screen will look as shown below:

Select Add a form field menu option. A dialog pops up as seen here:

Google Colab

 33

Leave the Form field type to input. Change the Variable name to sleeptime and set

the Variable type to integer. Save the changes by clicking the Save button.

Your screen will now look like the following with the sleeptime variable added into the

code.

Next, let us see how to test the form by adding some code that uses the sleeptime

variable.

Testing Form

Add a new Code cell underneath the form cell. Use the code given below:

import time

print(time.ctime())

time.sleep(sleeptime)

print (time.ctime())

You have used this code in the earlier lesson. It prints the current time, waits for a certain

amount of time and prints a new timestamp. The amount of time that the program waits

is set in the variable called sleeptime.

Now, go back to the Form Cell and type in a value of 2 for the sleeptime. Select the

following menu:

Runtime / Run all

Google Colab

 34

This runs the entire notebook. You can see an output screen as shown below.

Notice that it has taken your input value of 2 for the sleeptime. Try changing this to a

different value and Run all to see its effect.

Inputting Text

To accept a text input in your form, enter the following code in a new code cell.

name = 'Tutorialspoint' #@param {type:"string"}

print(name)

Now, if you run the Code cell, whatever the name you set in the form would be printed on

the screen. By default, the following output would appear on the screen.

Tutorialspoint

Note that you may use the menu options as shown for the integer input to create a Text

input field.

Dropdown List

To add a dropdown list to your form, use the following code:

color = 'green' #@param ["red", "green", "blue"]

print(color)

This creates a dropdown list with three values - red, green and blue. The default selection

is green.

Google Colab

 35

The dropdown list is shown in the screenshot below:

Date Input

Colab Form allows you to accept dates in your code with validations. Use the following

code to input date in your code.

#@title Date fields

date_input = '2019-06-03' #@param {type:"date"}

print(date_input)

The Form screen looks like the following.

Try inputting a wrong date value and observe the validations.

So far you have learned how to use Colab for creating and executing Jupyter notebooks

with your Python code. In the next chapter, we will see how to install popular ML libraries

in your notebook so that you can use those in your Python code.

Google Colab

 36

Colab supports most of machine learning libraries available in the market. In this chapter,

let us take a quick overview of how to install these libraries in your Colab notebook.

To install a library, you can use either of these options:

!pip install

or

!apt-get install

Keras

Keras, written in Python, runs on top of TensorFlow, CNTK, or Theano. It enables easy and

fast prototyping of neural network applications. It supports both convolutional networks

(CNN) and recurrent networks, and also their combinations. It seamlessly supports GPU.

To install Keras, use the following command:

!pip install -q keras

PyTorch

PyTorch is ideal for developing deep learning applications. It is an optimized tensor library

and is GPU enabled. To install PyTorch, use the following command:

!pip3 install torch torchvision

MxNet

Apache MxNet is another flexible and efficient library for deep learning. To install MxNet

execute the following commands:

!apt install libnvrtc8.0

!pip install mxnet-cu80

OpenCV

OpenCV is an open source computer vision library for developing machine learning

applications. It has more than 2500 optimized algorithms which support several

applications such as recognizing faces, identifying objects, tracking moving objects,

stitching images, and so on. Giants like Google, Yahoo, Microsoft, Intel, IBM, Sony, Honda,

Toyota use this library. This is highly suited for developing real-time vision applications.

13. Google Colab – Installing ML Libraries

Google Colab

 37

To install OpenCV use the following command:

!apt-get -qq install -y libsm6 libxext6 && pip install -q -U opencv-python

XGBoost

XGBoost is a distributed gradient boosting library that runs on major distributed

environments such as Hadoop. It is highly efficient, flexible and portable. It implements

ML algorithms under the Gradient Boosting framework.

To install XGBoost, use the following command:

!pip install -q xgboost==0.4a30

GraphViz

Graphviz is an open source software for graph visualizations. It is used for visualization in

networking, bioinformatics, database design, and for that matter in many domains where

a visual interface of the data is desired.

To install GraphViz, use the following command:

!apt-get -qq install -y graphviz && pip install -q pydot

By this time, you have learned to create Jupyter notebooks containing popular machine

learning libraries. You are now ready to develop your machine learning models. This

requires high processing power. Colab provides free GPU for your notebooks.

In the next chapter, we will learn how to enable GPU for your notebook.

Google Colab

 38

Google provides the use of free GPU for your Colab notebooks.

Enabling GPU

To enable GPU in your notebook, select the following menu options:

Runtime / Change runtime type

You will see the following screen as the output:

Select GPU and your notebook would use the free GPU provided in the cloud during

processing. To get the feel of GPU processing, try running the sample application from

MNIST tutorial that you cloned earlier.

!python3 "/content/drive/My Drive/app/mnist_cnn.py"

Try running the same Python file without the GPU enabled. Did you notice the difference

in speed of execution?

14. Google Colab – Using Free GPU

Google Colab

 39

Testing for GPU

You can easily check if the GPU is enabled by executing the following code:

import tensorflow as tf

tf.test.gpu_device_name()

If the GPU is enabled, it will give the following output:

'/device:GPU:0'

Listing Devices

If you are curious to know the devices used during the execution of your notebook in the

cloud, try the following code:

from tensorflow.python.client import device_lib

device_lib.list_local_devices()

You will see the output as follows:

[name: "/device:CPU:0"

 device_type: "CPU"

 memory_limit: 268435456

 locality {

 }

 incarnation: 1734904979049303143, name: "/device:XLA_CPU:0"

 device_type: "XLA_CPU"

 memory_limit: 17179869184

 locality {

 }

 incarnation: 16069148927281628039

 physical_device_desc: "device: XLA_CPU device", name: "/device:XLA_GPU:0"

 device_type: "XLA_GPU"

 memory_limit: 17179869184

 locality {

 }

 incarnation: 16623465188569787091

 physical_device_desc: "device: XLA_GPU device", name: "/device:GPU:0"

 device_type: "GPU"

 memory_limit: 14062547764

 locality {

Google Colab

 40

 bus_id: 1

 links {

 }

 }

 incarnation: 6674128802944374158

 physical_device_desc: "device: 0, name: Tesla T4, pci bus id: 0000:00:04.0,

compute capability: 7.5"]

Checking RAM

To see the memory resources available for your process, type the following command:

!cat /proc/meminfo

You will see the following output:

MemTotal: 13335276 kB

MemFree: 7322964 kB

MemAvailable: 10519168 kB

Buffers: 95732 kB

Cached: 2787632 kB

SwapCached: 0 kB

Active: 2433984 kB

Inactive: 3060124 kB

Active(anon): 2101704 kB

Inactive(anon): 22880 kB

Active(file): 332280 kB

Inactive(file): 3037244 kB

Unevictable: 0 kB

Mlocked: 0 kB

SwapTotal: 0 kB

SwapFree: 0 kB

Dirty: 412 kB

Writeback: 0 kB

AnonPages: 2610780 kB

Mapped: 838200 kB

Shmem: 23436 kB

Slab: 183240 kB

SReclaimable: 135324 kB

SUnreclaim: 47916 kB

Google Colab

 41

KernelStack: 4992 kB

PageTables: 13600 kB

NFS_Unstable: 0 kB

Bounce: 0 kB

WritebackTmp: 0 kB

CommitLimit: 6667636 kB

Committed_AS: 4801380 kB

VmallocTotal: 34359738367 kB

VmallocUsed: 0 kB

VmallocChunk: 0 kB

AnonHugePages: 0 kB

ShmemHugePages: 0 kB

ShmemPmdMapped: 0 kB

HugePages_Total: 0

HugePages_Free: 0

HugePages_Rsvd: 0

HugePages_Surp: 0

Hugepagesize: 2048 kB

DirectMap4k: 303092 kB

DirectMap2M: 5988352 kB

DirectMap1G: 9437184 kB

You are now all set for the development of machine learning models in Python using Google

Colab.

Google Colab

 42

Google Colab is a powerful platform for learning and quickly developing machine learning

models in Python. It is based on Jupyter notebook and supports collaborative development.

The team members can share and concurrently edit the notebooks, even remotely. The

notebooks can also be published on GitHub and shared with the general public. Colab

supports many popular ML libraries such as PyTorch, TensorFlow, Keras and OpenCV. The

restriction as of today is that it does not support R or Scala yet. There is also a limitation

to sessions and size. Considering the benefits, these are small sacrifices one needs to

make.

15. Google Colab – Conclusion

