
Unsupervised Learning:
PCA, Clustering, AutoEncoder, and
Generative Adversarial Networks

Yuan YAO

HKUST

1

Supervised Learning

´ Data: (x, y)
x is input, y is output/response (label)

´ Goal: Learn a function to map x -> y

´ Examples:
´ Classification,

´ regression,

´ object detection,

´ semantic segmentation,

´ image captioning, etc. Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

So far… Supervised Learning

5

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Cat

Classification

This image is CC0 public domain

Cat

Reinforcement Learning

´ Problems involving an agent
´ interacting with an environment,
´ which provides numeric reward signals

´ Goal:
´ Learn how to take actions in order to maximize reward

in dynamic scenariosReinforcement learning

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Agent and environment interact at discrete time steps: t = 0,1, 2,K
 Agent observes state at step t: St ∈
 produces action at step t : At ∈ (St)
 gets resulting reward: Rt+1 ∈

 and resulting next state: St+1 ∈

At
Rt+1St At+1

Rt+2St+1 At+2

Rt+3St+2 At+3
St+3.

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

R

! = s0, a0, s1, a1, . . .

The other random variables are a function of this sequence. The transitional
target rt+1 is a function of st, at, and st+1. The termination condition �t,
terminal target zt, and prediction yt, are functions of st alone.

R(n)
t = rt+1 + �t+1zt+1 + (1� �t+1)R

(n�1)
t+1

R(0)
t = yt

R�
t = (1� �)

1X

n=1

�n�1R(n)
t

⇢t =
⇡(st, at)

b(st, at)

�wo↵(!) = �won(!)
1Y

i=1

⇢i

�wt = ↵t(CtR
�
t � yt)rwyt

�wt = ↵t(R̄
�
t � yt)rwyt

1

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R, and
finds itself in a new state, St+1.3 Figure 3.1 diagrams the agent–environment
interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R ⇢
R, where R is the set of possible rewards, and finds itself in a new state, St+1.3

Figure 3.1 diagrams the agent–environment interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R ⇢
R, where R is the set of possible rewards, and finds itself in a new state, St+1.3

Figure 3.1 diagrams the agent–environment interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.

Today: Unsupervised Learning

´ Data: x
Just input data, no output labels!

´ Goal: Learn some underlying hidden structure of the data

´ Examples:
´ Clustering,

´ dimensionality reduction (manifold learning),

´ Density (probability) estimation,

´ Generative models:

´ Autoencoder

´ GANs, etc.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Generative Models

16

Training data ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

Given training data, generate new samples from same distribution

PCA: Principal Component Analysis
4 1. GEOMETRY OF PCA AND MDS

Figure 1. Principal Component Analysis as the best a�ne sub-
space approximation of data.

Plug in the expression of µ̂n and �i

I =
nX

i=1

kxi � µ̂n � UUT (xi � µ̂n)k2(2)

=
nX

i=1

kxi � µ̂n � Pk(xi � µ̂n)k2(3)

=
nX

i=1

kyi � Pk(yi)k
2, yi := xi � µ̂n(4)

(5)

where Pk = UUT is a projection operator satisfying the idempotent property P 2
k =

Pk.
Denote Y = [y1|y2| · · · |yn] 2 Rp⇥n, whence the original problem turns into

min
U

nX

i=1

kyi � Pk(yi)k
2 = min trace[(Y � PkY)T (Y � PkY)]

= min trace[Y T (I � Pk)(I � Pk)Y]

= min trace[Y Y T (I � Pk)
2]

= min trace[Y Y T (I � Pk)]

= min[trace(Y Y T) � trace(Y Y TUUT)]

= min[trace(Y Y T) � trace(UTY Y TU)].

Above we use cyclic property of trace and idempotent property of projection.
Since Y does not depend on U , the problem above is equivalent to

(6) max
UUT=Ik

Var(UTY) = max
UUT=Ik

1

n
trace(UTY Y TU) = max

UUT=Ik
trace(UT ⌃̂nU)

I Data: xi = (xi1, ..., xip), i = 1, ..., n.

I Compute sample covariance matrix, e.g.
S = 1

n

Pn
i=1(xi � µ̂)T (xi � µ̂).

I Decompose into eigenvalue-eigenvector pairs:

S = ê⇤̂êT = (ê1
......

...êp)⇤̂

0

B@
ê1
...
êp

1

CA

where ⇤̂ = diag(�̂1, ..., �̂p).

I (�̂k , êk) are eigen-value-eigenvector pairs, �̂1 � ... � �̂p.

10.1 Principal component analysis. 7

Can you find a low dimensional affine representation?

PCA
I The k-th sample PC.s:

Zk =

0

B@
z1k
...

znk

1

CA = Xêk

I Component-wise, zik = xi1e1k + xi2e2k + ...+ xipepk are the
principle component scores of the i-th observation.

I �̂k measures the importance of the k-th PC.

I �̂k/(�̂1 + ...+ �̂p) = �̂k/trace(S) is interpreted as percentage
of the total variation explained by Yk .

I Usually retain the first few PCs.

I PCs are uncorrelated with each other.

10.1 Principal component analysis. 8

Example: USArrests Data
Example: USArrests data

For each of the 50 states in the United States, the data set
contains the number of arrests per 100, 000 residents for each of
three crimes: Assault, Murder, and Rape.
We also record UrbanPop (the percent of the population in each
state living in urban areas).
The principal component score vectors Zk have length n = 50, and
the principal component loading vectors (êk) have length p = 4.
PCA was performed after standardizing each variable to have mean
zero and standard deviation one.

10.1 Principal component analysis. 9

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

First Principal Component

S
e
co

n
d
 P

ri
n
ci

p
a
l C

o
m

p
o
n
e
n
t

Alabama Alaska

Arizona

Arkansas

California

Colorado
Connecticut

Delaware

Florida

Georgia

Hawaii

Idaho

Illinois

IndianaIowa
Kansas

Kentucky Louisiana

Maine Maryland

Massachusetts

Michigan

Minnesota

Mississippi

Missouri

Montana

Nebraska

Nevada

New Hampshire

New Jersey

New Mexico

New York

North Carolina

North Dakota

Ohio

Oklahoma

OregonPennsylvania

Rhode Island

South Carolina

South Dakota Tennessee

Texas

Utah

Vermont

Virginia

Washington

West Virginia

Wisconsin

Wyoming

−0.5 0.0 0.5

−
0
.5

0
.0

0
.5

Murder

Assault

UrbanPop

Rape

Figure: 10.1. Next page

10.1 Principal component analysis. 11

Example: USArrests data

PC1 PC2
Murder 0.5358995 0.4181809
Assault 0.5831836 0.1879856
UrbanPop 0.2781909 0.8728062
Rape 0.5434321 0.1673186

Table 10.1. The principal component loading vectors, ê1 and ê2,
for the USArrests data. These are also displayed in Figure 10.1.

10.1 Principal component analysis. 10

K-Means ClusteringK-Means cluster algorithm

Algorithm 10.1 K-Means Clustering

I 1. Randomly assign a number, from 1 to K, to each of the
observations. These serve as initial cluster assignments for the
observations.

I 2. Iterate until the cluster assignments stop changing:
1. For each of the K clusters, compute the cluster centroid. The

kth cluster centroid is the vector of the p feature means for the
observations in the kth cluster.

2. Assign each observation to the cluster whose centroid is closest
(where closest is defined using Euclidean distance).

10.2. Clustering methods 31

Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final Results

Figure: 10.6

10.2. Clustering methods 33

FIGURE 10.6. The progress of the K-means algorithm on the
example of Figure 10.5 with K = 3. Top left: the observations are
shown. Top center: in Step 1 of the algorithm, each observation is
randomly assigned to a cluster. Top right: in Step 2(a), the cluster
centroids are computed. These are shown as large colored disks.
Initially the centroids are almost completely overlapping because
the initial cluster assignments were chosen at random. Bottom
left: in Step 2(b), each observation is assigned to the nearest
centroid. Bottom center: Step 2(a) is once again performed,
leading to new cluster centroids. Bottom right: the results
obtained after ten iterations.

10.2. Clustering methods 34

Hierarchical Clustering Algorithms
(Agglomerative)Hierarchical clustering algorithm

I 1. Begin with n observations and a measure (such as
Euclidean distance) of all the

�n
2

�
= n(n � 1)/2 pairwise

dissimilarities. Treat each observation as its own cluster.
I 2. For i = n, n � 1, ...2:

1. Examine all pairwise inter-cluster dissimilarities among the i
clusters and identify the pair of clusters that are least
dissimilar (that is, most similar). Fuse these two clusters. The
dissimilarity between these two clusters indicates the height in
the dendrogram at which the fusion should be placed.

2. Compute the new pairwise inter-cluster dissimilarities among
the i � 1 remaining clusters.

10.2. Clustering methods 44

Linkage: the dissimilarity measure between two clusters

Linkage Description
Complete Maximal intercluster dissimilarity. Compute all pairwise

dissimilarities between the observations in cluster A and the
observations in cluster B, and record the largest of these dissimilarities.

Single Minimal intercluster dissimilarity. Compute all pairwise
dissimilarities between the observations in cluster A and the observations
in cluster B, and record the smallest of these dissimilarities. Single
linkage can result in extended, trailing clusters in which single
observations are fused one-at-a-time.

Average Mean intercluster dissimilarity. Compute all pairwise dissimilarities
between the observations in cluster A and the observations in cluster B,
and record the average of these dissimilarities.

Centroid Dissimilarity between the centroid for cluster A (a mean vector
of length p) and the centroid for cluster B. Centroid linkage can
result in undesirable inversions.

TABLE 10.2. A summary of the four most commonly-used types of linkage

10.2. Clustering methods 45
Average Linkage Complete Linkage Single Linkage

Figure: 10.12. Average, complete, and single linkage applied to an example data set.
Average and complete linkage tend to yield more balanced clusters.

10.2. Clustering methods 47

Manifold Learning: Nonlinear
Dimensionality Reduction
´ MDS
´ ISOMAP
´ LLE: Locally linear Embedding
´ Laplacian Eigenmap
´ Hessian Eigenmap
´ Diffusion Map
´ LTSA: Local Tangent Space Alignment
´ *MDS-SDP (Sensor-Network-Localization)
´ t-SNE
´ https://scikit-learn.org/stable/modules/manifold.html

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Generative Models

16

Training data ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

Given training data, generate new samples from same distribution

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Generative Models

17

Training data ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

Given training data, generate new samples from same distribution

Addresses density estimation, a core problem in unsupervised learning
Several flavors:

- Explicit density estimation: explicitly define and solve for pmodel(x)
- Implicit density estimation: learn model that can sample from pmodel(x) w/o explicitly defining it

´ We are going to focus on:
´ Variational AutoEncoder (VAE)

´ Generative Adversarial Network (GAN)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Taxonomy of Generative Models

19

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN

Change of variables models
(nonlinear ICA)

Variational Autoencoder Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Variational Autoencoders (VAE)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Some background first: Autoencoders

37

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

e.g. PCA, Manifold
Learning, Dictionary
Learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Some background first: Autoencoders

42

Encoder

Input data

Features

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Decoder

Reconstructed
input data

e.g. PCA, Manifold Learning,
Dictionary Learning, Matrix
Factorization: D = E’

Deep Autoencoder

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Some background first: Autoencoders

40

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Originally: Linear +
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality
reduction?

A: Want features to
capture meaningful
factors of variation in
data

Deep Learning for decoders

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Some background first: Autoencoders

43

Encoder

Input data

Features

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Decoder

Reconstructed
input data

Originally: Linear +
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN (upconv)

L2 Loss functions

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Some background first: Autoencoders

46

Encoder

Input data

Features

Decoder

Reconstructed
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

L2 Loss function:
Train such that features
can be used to
reconstruct original data

Doesn’t use labels!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Some background first: Autoencoders

47

Encoder

Input data

Features

Decoder

Reconstructed
input data

After training,
throw away decoder

Autoencoders for Transfer Learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Some background first: Autoencoders

48

Encoder

Input data

Features

Classifier

Predicted Label

Fine-tune
encoder
jointly with
classifier

Loss function
(Softmax, etc)

Encoder can be
used to initialize a
supervised model

plane
dog deer

bird
truck

Train for final task
(sometimes with

small data)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Some background first: Autoencoders

49

Encoder

Input data

Features

Decoder

Reconstructed
input data

Autoencoders can reconstruct
data, and can learn features to
initialize a supervised model

Features capture factors of
variation in training data. Can we
generate new images from an
autoencoder?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201752

Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Assume training data is generated from underlying unobserved (latent)
representation z

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Sample from
true conditional

Intuition (remember from autoencoders!):
x is an image, z is latent factors used to
generate x: attributes, orientation, etc.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201755

Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from
true conditional

We want to estimate the true parameters
of this generative model.

How should we represent this model?

Choose prior p(z) to be simple, e.g.
Gaussian. Reasonable for latent attributes,
e.g. pose, how much smile.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201756

Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from
true conditional

We want to estimate the true parameters
of this generative model.

How should we represent this model?

Choose prior p(z) to be simple, e.g.
Gaussian.

Conditional p(x|z) is complex (generates
image) => represent with neural network

Decoder
network

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201759

Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from
true conditional

We want to estimate the true parameters
of this generative model.

How to train the model?

Remember strategy for training generative
models from FVBNs. Learn model parameters
to maximize likelihood of training data

Now with latent z

Decoder
network

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201761

Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from
true conditional

We want to estimate the true parameters
of this generative model.

How to train the model?

Remember strategy for training generative
models from FVBNs. Learn model parameters
to maximize likelihood of training data

Q: What is the problem with this?

Intractable!

Decoder
network

Variational Autoencoders: Intractability

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201765

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Intractible to compute
p(x|z) for every z!

ʰ ✔ ✔

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201767

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:
ʰ

✔

✔

Posterior density also intractable:
ʰ✔

✔

Intractable data likelihood

Variational Lower Bounds

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201768

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:
ʰ

✔

✔

Posterior density also intractable:
ʰ✔

✔

Solution: In addition to decoder network modeling pθ(x|z), define additional
encoder network qɸ(z|x) that approximates pθ(z|x)

Will see that this allows us to derive a lower bound on the data likelihood that is
tractable, which we can optimize

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Variational Autoencoders

71

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Encoder network

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Decoder network

(parameters ɸ) (parameters θ)

Sample z from Sample x|z from

Encoder and decoder networks also called
“recognition”/“inference” and “generation” networks

Project 2 7

http://dx.doi.org/10.1016/j.acha.2015.11.005

In project 1, some explorations can be found here for your reference:

1) Jianhui ZHANG, Hongming ZHANG,Weizhi ZHU, and Min FAN: https://deeplearning-math.
github.io/slides/Project1_ZhangZhangZhuFan.pdf,

2) Wei HU, Yuqi ZHAO, Rougang YE, and Ruijian HAN: https://deeplearning-math.

github.io/slides/Project1_HuZhaoYeHan.pdf.

Moreover, the following report by Shun ZHANG from Fudan University presents a comparison
with Neural Style features:

3) https://www.dropbox.com/s/ccver43xxvo14is/ZHANG.Shun_essay.pdf?dl=0.

Appendix

`(w) = �
X

i2Mw

yi hw,xii , Mw = {i : yi hxi, wi < 0, yi 2 {�1, 1}}.

wt+1 = wt � ⌘tri`(w)

=

⇢
wt � ⌘tyixi, if yiwT

t xi < 0,
wt, otherwise.

ti = yi

Max-Margin:

min kwk2

s.t. yix
T
i w � 1, 8i

f(x) = W2�(W1x)

where �(u) = max(0, u) is ReLU, W1 2 Rd⇥q, and W2 2 Rq⇥1

Margin

� := min
i

yif(xi)

Normalized Margin

�n :=
�

Q2
i=1 kWik

Assume that ⌃x|z and ⌃z|x are both diagonal, i.e. conditional independence.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201779

Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

This KL term (between
Gaussians for encoder and z
prior) has nice closed-form
solution!

pθ(z|x) intractable (saw
earlier), can’t compute this KL
term :(But we know KL
divergence always >= 0.

Decoder network gives pθ(x|z), can
compute estimate of this term through
sampling. (Sampling differentiable
through reparam. trick, see paper.)Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201777

Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201780

Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

Tractable lower bound which we can take
gradient of and optimize! (pθ(x|z) differentiable,
KL term differentiable)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201782

Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

Variational lower bound (“ELBO”) Training: Maximize lower bound

Reconstruct
the input data

Make approximate
posterior distribution
close to prior

Stage I: Encoder

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201786

Encoder network

Input Data

Variational Autoencoders
Putting it all together: maximizing the
likelihood lower bound

Make approximate
posterior distribution
close to prior

Stage II: Decoder.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201790

Encoder network

Decoder network

Sample z from

Sample x|z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the
likelihood lower bound

Make approximate
posterior distribution
close to prior

Maximize
likelihood of
original input
being
reconstructed

For every minibatch of input
data: compute this forward
pass, and then backprop!

VAE: generating data

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201793

Decoder network

Sample z from

Sample x|z from

Variational Autoencoders: Generating Data!
Use decoder network. Now sample z from prior! Data manifold for 2-d z

Vary z1

Vary z2Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

VAE: generating data

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201795

Variational Autoencoders: Generating Data!

Vary z1

Vary z2

Degree of smile

Head pose

Diagonal prior on z
=> independent
latent variables

Different
dimensions of z
encode
interpretable factors
of variation

Also good feature representation that
can be computed using qɸ(z|x)!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

VAE: Generating Data

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201796

Variational Autoencoders: Generating Data!

32x32 CIFAR-10
Labeled Faces in the Wild

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission.

Variational Autoencoders

´ Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

´ Pros:
´ Principled approach to generative models
´ Allows inference of q(z|x), can be useful feature representation for other tasks

´ Cons:
´ Maximizes lower bound of likelihood
´ Samples blurrier and lower quality compared to state-of-the-art (GANs)

´ Active areas of research:
´ More flexible approximations, e.g. richer approximate posterior instead of diagonal

Gaussian
´ Incorporating structure in latent variables

Generative Adversarial Networks
(GAN)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

So far...
PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent z:

Cannot optimize directly, derive and optimize lower bound on likelihood instead

10
1

What if we give up on explicitly modeling density, and just want ability to sample?

GANs: don’t work with any explicit density function!
Instead, take game-theoretic approach: learn to generate from training distribution
through 2-player game

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to
training distribution.

Generative Adversarial Networks

10
3

zInput: Random noise

Generator
Network

Output: Sample from
training distribution

Q: What can we use to
represent this complex
transformation?

A: A neural network!

Ian Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Training GANs: Two-player game

10
5

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

zRandom noise

Generator Network

Discriminator Network

Fake Images
(from generator)

Real Images
(from training set)

Real or Fake

Ian Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Training GANs: Minimax Game

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Training GANs: Two-player game

10
6

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function:

Ian Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Training GANs: Minimax Game

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Training GANs: Two-player game

10
8

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function:

Discriminator output
for real data x

Discriminator output for
generated fake data G(z)

Discriminator outputs likelihood in (0,1) of real image

- Discriminator (θd) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z)) is close to 0 (fake)

- Generator (θg) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)

Ian Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Training GANs

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Training GANs: Two-player game

10
9

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2. Gradient descent on generator

Ian Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

The Issue in Training GANs

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Training GANs: Two-player game

11
0

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2. Gradient descent on generator

In practice, optimizing this generator objective
does not work well!

Ian Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

When sample is likely
fake, want to learn
from it to improve
generator. But
gradient in this region
is relatively flat!

Gradient signal
dominated by region
where sample is
already good

The Log D trick

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Training GANs: Two-player game

11
1

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2. Instead: Gradient ascent on generator, different
objective

Instead of minimizing likelihood of discriminator being correct, now
maximize likelihood of discriminator being wrong.
Same objective of fooling discriminator, but now higher gradient
signal for bad samples => works much better! Standard in practice.

Ian Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

High gradient signal

Low gradient signal

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Training GANs: Two-player game

11
3

Putting it together: GAN training algorithm

Ian Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Other Losses (Wasserstein Distance, KL-divergence) are better in stability!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Training GANs: Two-player game

11
5

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

zRandom noise

Generator Network

Discriminator Network

Fake Images
(from generator)

Real Images
(from training set)

Real or Fake

After training, use generator network to
generate new images

Ian Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Generative Adversarial Nets

11
6

Nearest neighbor from training set

Generated samples

Ian Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Figures copyright Ian Goodfellow et al., 2014. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Generative Adversarial Nets

11
7

Nearest neighbor from training set

Generated samples (CIFAR-10)

Ian Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Figures copyright Ian Goodfellow et al., 2014. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Generative Adversarial Nets: Convolutional Architectures

11
8

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201711
9

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Generator

Generative Adversarial Nets: Convolutional Architectures

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201712
0

Radford et al,
 ICLR 2016

Samples
from the
model look
amazing!

Generative Adversarial Nets: Convolutional Architectures

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201712
1

Radford et al,
 ICLR 2016

Interpolating
between
random
points in latent
space

Generative Adversarial Nets: Convolutional Architectures

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201712
4

Smiling woman Neutral woman Neutral man

Smiling ManSamples
from the
model

Average Z
vectors, do
arithmetic

Radford et al, ICLR 2016

Generative Adversarial Nets: Interpretable Vector Math

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201712
6

Glasses man No glasses man No glasses woman

Woman with glasses

Radford et al,
ICLR 2016

Generative Adversarial Nets: Interpretable Vector Math

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201712
7

CycleGAN. Zhu et al. 2017.

2017: Year of the GAN
Better training and generation

LSGAN. Mao et al. 2017.

BEGAN. Bertholet et al. 2017.

Source->Target domain transfer

Many GAN applications

Pix2pix. Isola 2017. Many examples at
https://phillipi.github.io/pix2pix/

Reed et al. 2017.

Text -> Image Synthesis

Reference of GANs

´ The GAN zoo: https://github.com/hindupuravinash/the-gan-zoo

´ See also: https://github.com/soumith/ganhacks for tips and tricks for
trainings GANs

GANs

´ Don’t work with an explicit density function
Take game-theoretic approach: learn to generate from training distribution
through 2-player minimax zero-sum game

´ Pros:
´ Beautiful, state-of-the-art samples!

´ Cons:
´ Trickier / more unstable to train
´ Can’t solve inference queries such as p(x), p(z|x)

´ Active areas of research:
´ Better loss functions, more stable training (Wasserstein GAN, LSGAN, etc.)
´ Conditional GANs, GANs for all kinds of applications

Application: Credit card fraud
detection via GAN
Hung Ba, Improving Detection of Credit Card Fraudulent Transactions
using Generative Adversarial Networks, arXiv: 1907.03355.

Replicated by Ruoxue Liu
(HKUST)

Brief introduction

´ Problem: Imbalanced dataset

Non-fraud(0): 284315; fraud(1): 492; 0.17% imbalanced

classification algorithms have difficulties identifying the minority classes

´ Method: Augment the minority class (fraud) using synthetic data produced via GAN, then
conduct classification, e.g. Decision Tree.

´ Results: Improved the test classification AUC from 0.93 to 0.97, improved accuracy rate from
0.97 to 0.99.

Dataset

´ Credit Card Fraud Detection (Dal Pozzolo et al. (2017)): This data set contains

transactions made by credit cards in September 2013 by European cardholders. It

presents transactions that occurred in two days, where there are 492 frauds out of

284,315 transactions. The data set is highly imbalanced, the positive class (frauds)

account for only 0.172% of all transactions.

Experimental method:

´ Normalization the features between 0 and 1.

´ Separated the training set based on the target class (non-frauds and frauds).

´ Trained the GAN using only the minority class data.

´ Used the GAN to add new entries to the training data set until it becomes balanced or just

mitigate imbalanced.

´ Used the newly more balanced training data set to train the classifier.

´ The classifier was tested on the original test set.

GAN

Value function: min
$
max
'

𝑉 𝐷, 𝐺 = 𝐸.~01232 𝑙𝑜𝑔𝐷 𝑥 + 𝐸9~09(;) log	(1 − 𝐷 𝐺 𝑧)

Cost function: 𝐽'= - E
FG

∑ 𝑙𝑜𝑔𝐷 𝑥𝑖 + ∑ log	(1 − 𝐷 𝐺(𝑧𝑖G
JKE)G

JKE)

𝐽$= - E
G
∑ 𝑙𝑜𝑔𝐷(𝐺(𝑧𝑖))G
JKE

Tips and parameters to make GANs work
´ Normalize data between 0 and 1
´ Tanh as the last layer of the generator output; Use dropout; Avoid ReLU, use LeakyReLU
´ Optimize G with min (log 1-D) or max log D (log D trick)
´ Label Smoothing. E.g. Real=1 and Fake=0, then replace the label with a random number between

0.7 and 1.2 for real, if it is a fake sample, replace it with 0.0 and 0.3
´ Train discriminator more/ generator more according to loss
´ Gradient clipping
´ Learning rate decay

Parameters:
´ G hidden layers [128, 256]; D hidden layers [256,128]
´ Input noise dimension 64
´ batch size = 5
´ Learning rate decay
´ Adam as the optimizer Lr decay

Generator
network

Discriminator
network

Results

DT performance on original data DT performance on synthetic data

Result: generated feature distributions

Compare real and fake fraud feature distribution

Robust Estimation and GANs
Chao GAO, Jiyi LIU, Y.Y., and Weizhi ZHU

Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model Summary

Acknowledgements

Chao Gao (Chicago) Jiyu Liu (Yale) Weizhi Zhu (HKUST)

Yuan Yao Breiman-Huber

Deep Learning is
Notoriously Not Robust!

• Imperceivable adversarial examples are ubiquitous
to fail neural networks

• How can one achieve robustness?

Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model Summary

Adversarial and Huber’s Agnostic Contamination Model

Deep Neural Networks are Notoriously not Robust

• Imperceivable adversarial examples are ubiquitous to fail neural networks.

• How can one achieve robustness against adversarial?

Yuan Yao Breiman-Huber

Robust Optimization
Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model Summary

Adversarial and Huber’s Agnostic Contamination Model

Robust Optimization

• Traditional training:

min
✓

Jn(✓, z = (xi , yi)
n
i=1)

• e.g. square or cross-entropy loss as negative log-likelihood of logit

models

• Robust optimization:

min
✓

max
k✏ik�

Jn(✓, z = (xi + ✏i , yi)
n
i=1)

• robust to any distributions, yet perhaps too conservative

• Distributional Robust Optimization:

min
✓

max
✏

Ez⇠P✏2D[Jn(✓, z)]

• D is a set of ambiguous distributions, e.g. Wasserstein ambiguity set

• intermediate approach with statistically contaminated distributions

• sometimes, contamination might be unstructured...

Yuan Yao Breiman-Huber

Figure 7: The choice of attack method - FGSM (red) vs. PGD (blue) matters.

Figure 8: Values of the local maxima given by the cross-entropy loss for five examples from the MNIST
and CIFAR10 evaluation datasets. For each example, PGD is started uniformly at random around the
example and iterated until the loss plateaus.The blue histogram corresponds to the loss on a naturally
trained network, while the red histogram corresponds to the adversarially trained counterpart. The
loss is significantly smaller for the adversarially trained networks, and the final loss values are very
concentrated without any outliers.

Figure 9: Natural classification (left) vs. adversarial boundaries (right) corresponding to `1 ball around
training points.

alone increases accuracy. When adversaries like PGD are added, for small capacity networks PGD fails
to learn a meaningful decision boundary and performance is sacrificed for robustness. On the other
hand, for large capacity networks a robust and accurate solution can be achieved with PGD adversary.

The PGD adversary was trained for both MNIST and CIFAR10 and it has been shown that there
is a steady decrease in the training loss of adversarial examples (Figure 11) showing an indication that
the original adversarial training optimization problem is indeed being solved during training.

7

Distributional Robust Optimization (DRO)

Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model

Adversarial and Huber’s Agnostic Contamination Model

Distributionally Robust Optimization

• Distributional Robust Optimization:

min
✓

max
✏

Ez⇠P✏2D[Jn(✓, z)]

• D is a set of ambiguous distributions, e.g. Wasserstein ambiguity set

D = {P✏ : W2(P✏, uniform distribution) ✏}

where DRO may be reduced to regularized maximum likelihood estimates

(Shafieezadeh-Abadeh, Esfahani, Kuhn, NIPS’2015) that are convex

optimizations and tractable

• intermediate approach with statistically contaminated distributions

• sometimes, contamination might be unstructured...

D = {P✏ : TV (P✏, uniform distribution) ✏}?

Yuan Yao Breiman-Huber

Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model

Adversarial and Huber’s Agnostic Contamination Model

Distributionally Robust Optimization

• Distributional Robust Optimization:

min
✓

max
✏

Ez⇠P✏2D[Jn(✓, z)]

• D is a set of ambiguous distributions, e.g. Wasserstein ambiguity set

D = {P✏ : W2(P✏, uniform distribution) ✏}

where DRO may be reduced to regularized maximum likelihood estimates

(Shafieezadeh-Abadeh, Esfahani, Kuhn, NIPS’2015) that are convex

optimizations and tractable

• intermediate approach with statistically contaminated distributions

• sometimes, contamination might be unstructured...

D = {P✏ : TV (P✏, uniform distribution) ✏}?

Yuan Yao Breiman-Huber

TV-ambiguity set

´ Now how about the TV-uncertainty set?

´ an example from robust statistics …

Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model

Adversarial and Huber’s Agnostic Contamination Model

Distributionally Robust Optimization

• Distributional Robust Optimization:

min
✓

max
✏

Ez⇠P✏2D[Jn(✓, z)]

• D is a set of ambiguous distributions, e.g. Wasserstein ambiguity set

D = {P✏ : W2(P✏, uniform distribution) ✏}

where DRO may be reduced to regularized maximum likelihood estimates

(Shafieezadeh-Abadeh, Esfahani, Kuhn, NIPS’2015) that are convex

optimizations and tractable

• intermediate approach with statistically contaminated distributions

• sometimes, contamination might be unstructured...

D = {P✏ : TV (P✏, uniform distribution) ✏}?

Yuan Yao Breiman-Huber

Huber’s Model

contamination proportion

parameter of interest

arbitrary contamination

[Huber 1964]

Chao Gao, Department of Statistics, Yale University c� July 28, 2016 1

X1, ..., Xn ⇠ (1� ✏)P✓ + ✏Q

M(✏) = inf
✓̂
sup
✓2⇥

sup
Q

E(✓,✏,Q)L(✓̂, ✓)

M(✏) ⇣ M(0) _ !(✏,⇥)

dmin = ⌦(1)

n(p� q)4

k9p3d2max
! 1

p

q

exp(�I)

I ! 1

I > log n

When di = 1, exp(�I) = exp
⇣
�n

k
(
p
p �p

q)2
⌘

1 Introduction
⇣
P

(n)
f , f 2 E↵(Q)

⌘

X
n|f ⇠ P

(n)
f

f ⇠ ⇧

Example: Financial Fraud
• P represent normal transactions

• Q represent fraudulent transactions, e.g. money laundering, which
is sparse and arbitrarily close to P

• Finding P and its dual problem in finding Q?

 X

An Example
Chao Gao, Department of Statistics, Yale University c� September 17, 2015 1

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏Q.

How to estimate ✓?

how to estimate ?

Robust Maxmum-Likelihood
Does not work!Chao Gao, Department of Statistics, Yale University c� September 17, 2015 1

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏Q.

How to estimate ✓?

Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model Summary

Adversarial and Huber’s Agnostic Contamination Model

`(✓,Q) = negative log-likelihood =
nX

i=1

(✓ � Xi)
2

⇠ (1� ✏)EN (✓)(✓ � X)2 + ✏EQ(✓ � X)2

the sample mean

✓̂mean =
1
n

nX

i=1

Xi = argmin
✓

`(✓,Q)

min
✓

max
Q

`(✓,Q) � max
Q

min
✓

`(✓,Q) = max
Q

`(✓̂mean,Q) = 1

Yuan Yao Breiman-Huber

Medians
Chao Gao, Department of Statistics, Yale University c� September 17, 2015 1

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏Q.

How to estimate ✓?

Estimator 1:

✓̂ = (✓̂j), where ✓̂j = Median({Xij}ni=1);

Estimator 2:

✓̂ = argmax
⌘2Rp

min
||u||=1

1

n

nX

i=1

I{uTXi > uT ⌘}.

1. Coordinatewise median
Chao Gao, Department of Statistics, Yale University c� September 17, 2015 1

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏Q.

How to estimate ✓?

Estimator 1:

✓̂ = (✓̂j), where ✓̂j = Median({Xij}ni=1);

Estimator 2:

✓̂ = argmax
⌘2Rp

min
||u||=1

1

n

nX

i=1

I{uTXi > uT ⌘}.

2. Tukey’s median

Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model Summary

Adversarial and Huber’s Agnostic Contamination Model

Statistical Accuracy

Coordinatewise Median Tukey’s Median

breakdown point 1/2 1/3

statistical precision
p

n

p

n

(no contamination)

statistical precision
p

n
+ p✏2

p

n
+ ✏2: minimax

(with contamination) [Chen-Gao-Ren’15]

computational complexity Polynomial NP-hard

[Amenta et al. ’00]

Yuan Yao Breiman-Huber

Comparisons

Note: R-package for Tukey median can not deal with more
than 10 dimensions!

[https://github.com/ChenMengjie/DepthDescent]

Computational Challenges

´ Lai, Rao, Vempala

´ Diakonikolas, Kamath, Kane, Li, Moitra, Stewart,

´ Balakrishnan, Du, Singh

Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model Summary

Adversarial and Huber’s Agnostic Contamination Model

Computational Complexity

• Polynomial algorithms are proposed [Diakonikolas et al.’16, Lai et al. 16]

of minimax optimal statistical precision

• needs information on second or higher order of moments

• some priori knowledge about ✏

• Tukey’s median has a wider adaptivity,

• does not need to know ✏

• does not need to know second (or higher) order of moments

• optimal for any elliptical distribution even when moments are not defined

• find saddle points of mini-max optimization

• any computational facility for it?

Generative Adversarial Networks (GANs)!

Yuan Yao Breiman-Huber

`2 loss is
p p

n _ ✏ (Theorem 3.2). Since the main difficulty of the problem is to achieve a linear dependence on
✏, our numerical experiments consider settings with p = 100 and very large n so that

�p p
n _ ✏

�
= ✏. Figure

7 indeed shows a roughly linear dependence on ✏ with various values of contamination factors. According
to [21], the worst-case contamination distribution is not a distribution far away from N(✓, Ip), but instead
very close to N(✓, Ip). This is confirmed in Figure 7 that the green line (CF= 1.2) gives the largest error. The
results also inlcude the behavior of error against dimension. When ✏ is the dominating term between

p p
n

and ✏, we expect to see error curves that do not grow with the dimension, which is indeed the case.

Figure 8: Network structures
(with ReLU nonlinearity) that
are compatible with variational
robust estimation.

2. The Neural Network Architecture Matters. It turns out the structure of
T directly determines whether the procedure works or fails. A prelimi-
nary conclusion is summarized in Figure 8 after extensive numerical ex-
periments. Interestingly, for location estimation, variational optimization
with a network structure without hidden layers (equivalent to logistic re-
gression) converges to the empirical mean, which is not robust. Networks
with one or two hidden layers work very well in our experiments under
Huber’s contamination model. On the other hand, for covariance ma-
trix estimation, a two-hidden-layer structure seems to be necessary. An
important theoretical question in this project is that given a robust estima-
tion task, how to specify an appropriate neural network architecture that
leads to rate-optimal robust procedures under Huber’s ✏-contamination
model? How to characterize the class of network structures that lead to
good approximations of the depth-based estimators?

Figure 9: Computational time
against p using four GTX 1080 Ti
GPUs.

3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various

depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q) ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ) �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : DJS(PkQ) (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations

11

Generative Adversarial Networks
[Goodfellow et al. 2014]

Note: R-package for Tukey median can not deal with more
than 10 dimensions [https://github.com/ChenMengjie/

DepthDescent]

Robust Learning of Gaussian Distributions

Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model Summary

Experimental Results

Experiments: Comparisons

Q n p ✏ TV-GAN JS-GAN Dimension Halving Iterative Filtering

N(0.5 ⇤ 1p, Ip) 50,000 100 .2 0.0953 (0.0064) 0.1144 (0.0154) 0.3247 (0.0058) 0.1472 (0.0071)

N(0.5 ⇤ 1p, Ip) 5,000 100 .2 0.1941 (0.0173) 0.2182 (0.0527) 0.3568 (0.0197) 0.2285 (0.0103)

N(0.5 ⇤ 1p, Ip) 50,000 200 .2 0.1108 (0.0093) 0.1573 (0.0815) 0.3251 (0.0078) 0.1525 (0.0045)

N(0.5 ⇤ 1p, Ip) 50,000 100 .05 0.0913 (0.0527) 0.1390 (0.0050) 0.0814 (0.0056) 0.0530 (0.0052)

N(5 ⇤ 1p, Ip) 50,000 100 .2 2.7721 (0.1285) 0.0534 (0.0041) 0.3229 (0.0087) 0.1471 (0.0059)

N(0.5 ⇤ 1p,⌃) 50,000 100 .2 0.1189 (0.0195) 0.1148 (0.0234) 0.3241 (0.0088) 0.1426 (0.0113)

Cauchy(0.5 ⇤ 1p) 50,000 100 .2 0.0738 (0.0053) 0.0525 (0.0029) 0.1045 (0.0071) 0.0633 (0.0042)

Table: Comparison of various robust mean estimation methods. The smallest error of

each case is highlighted in bold.

• Dimension Halving: [Lai et al.’16]

https://github.com/kal2000/AgnosticMeanAndCovarianceCode.

• Iterative Filtering: [Diakonikolas et al.’17]

https://github.com/hoonose/robust-filter.

Yuan Yao Breiman-Huber

Robust Learning of Cauchy Distributions
whose moments do not exist!

Published as a conference paper at ICLR 2019

5.5 ADAPTATION TO UNKNOWN COVARIANCE

The robust mean estimator constructed through JS-GAN can be easily made adaptive to unknown covariance
structure, which is a special case of (16). We define

(b✓, b⌃) = argmin
⌘2Rp,�2Ep

max
D2D

"
1

n

nX

i=1

logD(Xi) + EN(⌘,�) log(1�D(Xi))

#
+ log 4,

The estimator b✓, as a result, is rate-optimal even when the true covariance matrix is not necessarily identity and
is unknown (see Theorem 4.1). Below, we demonstrate some numerical evidence of the optimality of b✓ as well
as the error of b⌃ in Table 3.

Data generating process Network structure kb✓ � 0pk kb⌃� ⌃1kop

0.8N(0p,⌃1) + 0.2N(0.5 ⇤ 1p,⌃2) 100-20-1 0.1680 (0.1540) 1.9716 (0.7405)
0.8N(0p,⌃1) + 0.2N(0.5 ⇤ 1p,⌃2) 100-20-20-1 0.1824 (0.3034) 1.4495 (0.6028)

0.8N(0p,⌃1) + 0.2N(1p,⌃2) 100-20-1 0.0817 (0.0213) 1.2753 (0.4523)
0.8N(0p,⌃1) + 0.2N(6 ⇤ 1p,⌃2) 100-20-1 0.1069 (0.0357) 1.1668 (0.1839)

0.8N(0p,⌃1) + 0.2Cauchy(0.5 ⇤ 1p) 100-20-1 0.0797 (0.0257) 4.0653 (0.1569)

Table 3: Numerical experiments for robust mean estimation with unknown covariance trained with 50, 000
samples. The covariance matrices ⌃1 and ⌃2 are generated by the same way described in Appendix B.2.

5.6 ADAPTATION TO ELLIPTICAL DISTRIBUTIONS

We consider the estimation of the location parameter ✓ in elliptical distribution EC(✓,⌃, h) by the JS-GAN
defined in (16). In particular, we study the case with i.i.d. observations X1, ..., Xn ⇠ (1�✏)Cauchy(✓, Ip)+✏Q.
The density function of Cauchy(✓,⌃) is given by p(x; ✓,⌃) / |⌃|�1/2

�
1 + (x� ✓)T⌃�1(x� ✓)

��(1+p)/2.

Compared with Algorithm (1), the difference lies in the choice of the generator. We consider the generator
G1(⇠, U) = g!(⇠)U + ✓, where g!(⇠) is a non-negative neural network parametrized by ! and some random
variable ⇠. The random vector U is sampled from the uniform distribution on {u 2 Rp : kuk = 1}. If the
scatter matrix is unknown, we will use the generator G2(⇠, U) = g!(⇠)AU+✓, with AAT modeling the scatter
matrix.

Table 4 shows the comparison with other methods. Our method still works well under Cauchy distribution,
while the performance of other methods that rely on moment conditions deteriorates in this setting.

Table 4: Comparison of various methods of robust location estimation under Cauchy distributions. Samples
are drawn from (1 � ✏)Cauchy(0p, Ip) + ✏Q with ✏ = 0.2, p = 50 and various choices of Q. Sample size:
50,000. Discriminator net structure: 50-50-25-1. Generator g!(⇠) structure: 48-48-32-24-12-1 with absolute
value activation function in the output layer.

Contamination Q JS-GAN (G1) JS-GAN (G2) Dimension Halving Iterative Filtering
Cauchy(1.5 ⇤ 1p, Ip) 0.0664 (0.0065) 0.0743 (0.0103) 0.3529 (0.0543) 0.1244 (0.0114)
Cauchy(5.0 ⇤ 1p, Ip) 0.0480 (0.0058) 0.0540 (0.0064) 0.4855 (0.0616) 0.1687 (0.0310)

Cauchy(1.5 ⇤ 1p, 5 ⇤ Ip) 0.0754 (0.0135) 0.0742 (0.0111) 0.3726 (0.0530) 0.1220 (0.0112)
Normal(1.5 ⇤ 1p, 5 ⇤ Ip) 0.0702 (0.0064) 0.0713 (0.0088) 0.3915 (0.0232) 0.1048 (0.0288))

ACKNOWLEDGEMENT

The research of Chao Gao was supported in part by NSF grant DMS-1712957 and NSF Career Award DMS-
1847590. The research of Yuan Yao was supported in part by Hong Kong Research Grant Council (HKRGC)
grant 16303817, National Basic Research Program of China (No. 2015CB85600), National Natural Science
Foundation of China (No. 61370004, 11421110001), as well as awards from Tencent AI Lab, Si Family
Foundation, Baidu Big Data Institute, and Microsoft Research-Asia.

10

Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model Summary

Experimental Results

Experiments: Comparisons

Q n p ✏ TV-GAN JS-GAN Dimension Halving Iterative Filtering

N(0.5 ⇤ 1p, Ip) 50,000 100 .2 0.0953 (0.0064) 0.1144 (0.0154) 0.3247 (0.0058) 0.1472 (0.0071)

N(0.5 ⇤ 1p, Ip) 5,000 100 .2 0.1941 (0.0173) 0.2182 (0.0527) 0.3568 (0.0197) 0.2285 (0.0103)

N(0.5 ⇤ 1p, Ip) 50,000 200 .2 0.1108 (0.0093) 0.1573 (0.0815) 0.3251 (0.0078) 0.1525 (0.0045)

N(0.5 ⇤ 1p, Ip) 50,000 100 .05 0.0913 (0.0527) 0.1390 (0.0050) 0.0814 (0.0056) 0.0530 (0.0052)

N(5 ⇤ 1p, Ip) 50,000 100 .2 2.7721 (0.1285) 0.0534 (0.0041) 0.3229 (0.0087) 0.1471 (0.0059)

N(0.5 ⇤ 1p,⌃) 50,000 100 .2 0.1189 (0.0195) 0.1148 (0.0234) 0.3241 (0.0088) 0.1426 (0.0113)

Cauchy(0.5 ⇤ 1p) 50,000 100 .2 0.0738 (0.0053) 0.0525 (0.0029) 0.1045 (0.0071) 0.0633 (0.0042)

Table: Comparison of various robust mean estimation methods. The smallest error of

each case is highlighted in bold.

• Dimension Halving: [Lai et al.’16]

https://github.com/kal2000/AgnosticMeanAndCovarianceCode.

• Iterative Filtering: [Diakonikolas et al.’17]

https://github.com/hoonose/robust-filter.

Yuan Yao Breiman-Huber

JS-GAN

numerical
experiment

Chao Gao, Department of Statistics, Yale University c� August 12, 2018 1

b✓ = argmin

✓2Rp
max
T2T

"
1

n

nX

i=1

log T (Xi) + E⌘ log(1� T (X))

#
+ log 4

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏N(e✓, Ip)

N(⌘, Ip)

✓ 2 Rp, Q

kb✓ � ✓k2 C
⇣ p

n
_ ✏2

⌘

D(�, {Xi}ni=1) = min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT�u}, 1
n

nX

i=1

I{|uTXi|2 < uT�u}
)

max
⌃

min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT⌃u}, 1
n

nX

i=1

I{|uTXi|2 < uT⌃u}
)

(✏,�)

⌃

✏

n� 2�
2�+1 _ ✏

2�
�+1

✓
n

log n

◆� 2�
2�+1

_ ✏
2�
�+1

Hölder(�)

�2

2
r(p+m)

n
_ �2

2
✏2

`2 loss is
p p

n _ ✏ (Theorem 3.2). Since the main difficulty of the problem is to achieve a linear dependence on
✏, our numerical experiments consider settings with p = 100 and very large n so that

�p p
n _ ✏

�
= ✏. Figure

7 indeed shows a roughly linear dependence on ✏ with various values of contamination factors. According
to [21], the worst-case contamination distribution is not a distribution far away from N(✓, Ip), but instead
very close to N(✓, Ip). This is confirmed in Figure 7 that the green line (CF= 1.2) gives the largest error. The
results also inlcude the behavior of error against dimension. When ✏ is the dominating term between

p p
n

and ✏, we expect to see error curves that do not grow with the dimension, which is indeed the case.

Figure 8: Network structures
(with ReLU nonlinearity) that
are compatible with variational
robust estimation.

2. The Neural Network Architecture Matters. It turns out the structure of
T directly determines whether the procedure works or fails. A prelimi-
nary conclusion is summarized in Figure 8 after extensive numerical ex-
periments. Interestingly, for location estimation, variational optimization
with a network structure without hidden layers (equivalent to logistic re-
gression) converges to the empirical mean, which is not robust. Networks
with one or two hidden layers work very well in our experiments under
Huber’s contamination model. On the other hand, for covariance ma-
trix estimation, a two-hidden-layer structure seems to be necessary. An
important theoretical question in this project is that given a robust estima-
tion task, how to specify an appropriate neural network architecture that
leads to rate-optimal robust procedures under Huber’s ✏-contamination
model? How to characterize the class of network structures that lead to
good approximations of the depth-based estimators?

Figure 9: Computational time
against p using four GTX 1080 Ti
GPUs.

3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various

depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q) ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ) �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : DJS(PkQ) (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations

11

`2 loss is
p p

n _ ✏ (Theorem 3.2). Since the main difficulty of the problem is to achieve a linear dependence on
✏, our numerical experiments consider settings with p = 100 and very large n so that

�p p
n _ ✏

�
= ✏. Figure

7 indeed shows a roughly linear dependence on ✏ with various values of contamination factors. According
to [21], the worst-case contamination distribution is not a distribution far away from N(✓, Ip), but instead
very close to N(✓, Ip). This is confirmed in Figure 7 that the green line (CF= 1.2) gives the largest error. The
results also inlcude the behavior of error against dimension. When ✏ is the dominating term between

p p
n

and ✏, we expect to see error curves that do not grow with the dimension, which is indeed the case.

Figure 8: Network structures
(with ReLU nonlinearity) that
are compatible with variational
robust estimation.

2. The Neural Network Architecture Matters. It turns out the structure of
T directly determines whether the procedure works or fails. A prelimi-
nary conclusion is summarized in Figure 8 after extensive numerical ex-
periments. Interestingly, for location estimation, variational optimization
with a network structure without hidden layers (equivalent to logistic re-
gression) converges to the empirical mean, which is not robust. Networks
with one or two hidden layers work very well in our experiments under
Huber’s contamination model. On the other hand, for covariance ma-
trix estimation, a two-hidden-layer structure seems to be necessary. An
important theoretical question in this project is that given a robust estima-
tion task, how to specify an appropriate neural network architecture that
leads to rate-optimal robust procedures under Huber’s ✏-contamination
model? How to characterize the class of network structures that lead to
good approximations of the depth-based estimators?

Figure 9: Computational time
against p using four GTX 1080 Ti
GPUs.

3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various

depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q) ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ) �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : DJS(PkQ) (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations

11

`2 loss is
p p

n _ ✏ (Theorem 3.2). Since the main difficulty of the problem is to achieve a linear dependence on
✏, our numerical experiments consider settings with p = 100 and very large n so that

�p p
n _ ✏

�
= ✏. Figure

7 indeed shows a roughly linear dependence on ✏ with various values of contamination factors. According
to [21], the worst-case contamination distribution is not a distribution far away from N(✓, Ip), but instead
very close to N(✓, Ip). This is confirmed in Figure 7 that the green line (CF= 1.2) gives the largest error. The
results also inlcude the behavior of error against dimension. When ✏ is the dominating term between

p p
n

and ✏, we expect to see error curves that do not grow with the dimension, which is indeed the case.

Figure 8: Network structures
(with ReLU nonlinearity) that
are compatible with variational
robust estimation.

2. The Neural Network Architecture Matters. It turns out the structure of
T directly determines whether the procedure works or fails. A prelimi-
nary conclusion is summarized in Figure 8 after extensive numerical ex-
periments. Interestingly, for location estimation, variational optimization
with a network structure without hidden layers (equivalent to logistic re-
gression) converges to the empirical mean, which is not robust. Networks
with one or two hidden layers work very well in our experiments under
Huber’s contamination model. On the other hand, for covariance ma-
trix estimation, a two-hidden-layer structure seems to be necessary. An
important theoretical question in this project is that given a robust estima-
tion task, how to specify an appropriate neural network architecture that
leads to rate-optimal robust procedures under Huber’s ✏-contamination
model? How to characterize the class of network structures that lead to
good approximations of the depth-based estimators?

Figure 9: Computational time
against p using four GTX 1080 Ti
GPUs.

3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various

depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q) ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ) �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : DJS(PkQ) (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations

11

Chao Gao, Department of Statistics, Yale University c� August 12, 2018 1

b✓ = argmin

✓2Rp
max
T2T

"
1

n

nX

i=1

log T (Xi) + E⌘ log(1� T (X))

#
+ log 4

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏N(e✓, Ip)

b✓ ⇡ (1� ✏)✓ + ✏e✓

N(⌘, Ip)

✓ 2 Rp, Q

kb✓ � ✓k2 C
⇣ p

n
_ ✏2

⌘

D(�, {Xi}ni=1) = min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT�u}, 1
n

nX

i=1

I{|uTXi|2 < uT�u}
)

max
⌃

min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT⌃u}, 1
n

nX

i=1

I{|uTXi|2 < uT⌃u}
)

(✏,�)

⌃

✏

n� 2�
2�+1 _ ✏

2�
�+1

✓
n

log n

◆� 2�
2�+1

_ ✏
2�
�+1

Hölder(�)

Chao Gao, Department of Statistics, Yale University c� August 12, 2018 1

b✓ = argmin

✓2Rp
max
T2T

"
1

n

nX

i=1

log T (Xi) + E⌘ log(1� T (X))

#
+ log 4

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏N(e✓, Ip)

b✓ ⇡ ✓

b✓ ⇡ (1� ✏)✓ + ✏e✓

N(⌘, Ip)

✓ 2 Rp, Q

kb✓ � ✓k2 C
⇣ p

n
_ ✏2

⌘

D(�, {Xi}ni=1) = min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT�u}, 1
n

nX

i=1

I{|uTXi|2 < uT�u}
)

max
⌃

min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT⌃u}, 1
n

nX

i=1

I{|uTXi|2 < uT⌃u}
)

(✏,�)

⌃

✏

n� 2�
2�+1 _ ✏

2�
�+1

✓
n

log n

◆� 2�
2�+1

_ ✏
2�
�+1

Chao Gao, Department of Statistics, Yale University c� August 12, 2018 1

b✓ = argmin

✓2Rp
max
T2T

"
1

n

nX

i=1

log T (Xi) + E⌘ log(1� T (X))

#
+ log 4

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏N(e✓, Ip)

b✓ ⇡ ✓

b✓ ⇡ (1� ✏)✓ + ✏e✓

N(⌘, Ip)

✓ 2 Rp, Q

kb✓ � ✓k2 C
⇣ p

n
_ ✏2

⌘

D(�, {Xi}ni=1) = min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT�u}, 1
n

nX

i=1

I{|uTXi|2 < uT�u}
)

max
⌃

min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT⌃u}, 1
n

nX

i=1

I{|uTXi|2 < uT⌃u}
)

(✏,�)

⌃

✏

n� 2�
2�+1 _ ✏

2�
�+1

✓
n

log n

◆� 2�
2�+1

_ ✏
2�
�+1

Chao Gao, Department of Statistics, Yale University c� August 14, 2018 1

Ar = {B 2 Rp⇥m
: rank(B) r}

JSg(P,Q) = max
w2Rd

P log

1

1 + e�wT g(X)
+Q log

1

1 + ewT g(X)

�
+ log 4.

JSg(P,Q) = 0 () Pg(X) = Qg(X)

kb✓ � ✓k2 .

8
><

>:

p

n
+ ✏2

p

n
+ ✏

Fs(M) =

8
<

:⌦ = ⌦
T 2 Rp⇥p

: M�1 �min(⌦) �max(⌦) M, max
1ip

pX

j=1

I{⌦ij 6= 0} s

9
=

;

b✓ = argmin

⌘2Rp
max
T2T

"
1

n

nX

i=1

log T (Xi) + E⌘ log(1� T (X))

#
+ log 4

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏N(e✓, Ip)

b✓ ⇡ ✓

b✓ ⇡ (1� ✏)✓ + ✏e✓

N(⌘, Ip)

✓ 2 Rp, Q

kb✓ � ✓k2 C
⇣ p

n
_ ✏2

⌘

D(�, {Xi}ni=1) = min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT�u}, 1
n

nX

i=1

I{|uTXi|2 < uT�u}
)

JS-GAN
A classifier with hidden layers leads to robustness. Why?

Chao Gao, Department of Statistics, Yale University c� August 12, 2018 1

JSg(P,Q) = max
w2Rd

P log

1

1 + e�wT g(X)
+Q log

1

1 + ewT g(X)

�
+ log 4.

b✓ = argmin

✓2Rp
max
T2T

"
1

n

nX

i=1

log T (Xi) + E⌘ log(1� T (X))

#
+ log 4

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏N(e✓, Ip)

b✓ ⇡ ✓

b✓ ⇡ (1� ✏)✓ + ✏e✓

N(⌘, Ip)

✓ 2 Rp, Q

kb✓ � ✓k2 C
⇣ p

n
_ ✏2

⌘

D(�, {Xi}ni=1) = min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT�u}, 1
n

nX

i=1

I{|uTXi|2 < uT�u}
)

max
⌃

min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT⌃u}, 1
n

nX

i=1

I{|uTXi|2 < uT⌃u}
)

(✏,�)

⌃

✏

n� 2�
2�+1 _ ✏

2�
�+1

Proposition.

Chao Gao, Department of Statistics, Yale University c� August 12, 2018 1

JSg(P,Q) = max
w2Rd

P log

1

1 + e�wT g(X)
+Q log

1

1 + ewT g(X)

�
+ log 4.

JSg(P,Q) = 0 () Pg(X) = Qg(X)

b✓ = argmin

✓2Rp
max
T2T

"
1

n

nX

i=1

log T (Xi) + E⌘ log(1� T (X))

#
+ log 4

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏N(e✓, Ip)

b✓ ⇡ ✓

b✓ ⇡ (1� ✏)✓ + ✏e✓

N(⌘, Ip)

✓ 2 Rp, Q

kb✓ � ✓k2 C
⇣ p

n
_ ✏2

⌘

D(�, {Xi}ni=1) = min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT�u}, 1
n

nX

i=1

I{|uTXi|2 < uT�u}
)

max
⌃

min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT⌃u}, 1
n

nX

i=1

I{|uTXi|2 < uT⌃u}
)

(✏,�)

⌃

✏

JS-GAN

Theorem [GLYZ18]. For a neural network
class with at least one hidden layer and
appropriate regularization, we have

with high probability uniformly over .

Chao Gao, Department of Statistics, Yale University c� August 12, 2018 1

JSg(P,Q) = max
w2Rd

P log

1

1 + e�wT g(X)
+Q log

1

1 + ewT g(X)

�
+ log 4.

JSg(P,Q) = 0 () Pg(X) = Qg(X)

kb✓ � ✓k2 .

8
><

>:

p

n
+ ✏2

p

n
+ ✏

b✓ = argmin

✓2Rp
max
T2T

"
1

n

nX

i=1

log T (Xi) + E⌘ log(1� T (X))

#
+ log 4

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏N(e✓, Ip)

b✓ ⇡ ✓

b✓ ⇡ (1� ✏)✓ + ✏e✓

N(⌘, Ip)

✓ 2 Rp, Q

kb✓ � ✓k2 C
⇣ p

n
_ ✏2

⌘

D(�, {Xi}ni=1) = min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT�u}, 1
n

nX

i=1

I{|uTXi|2 < uT�u}
)

max
⌃

min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT⌃u}, 1
n

nX

i=1

I{|uTXi|2 < uT⌃u}
)

(✏,�)

⌃

Chao Gao, Department of Statistics, Yale University c� August 12, 2018 1

N(⌘, Ip)

✓ 2 Rp, Q

kb✓ � ✓k2 C
⇣ p

n
_ ✏2

⌘

D(�, {Xi}ni=1) = min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT�u}, 1
n

nX

i=1

I{|uTXi|2 < uT�u}
)

max
⌃

min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT⌃u}, 1
n

nX

i=1

I{|uTXi|2 < uT⌃u}
)

(✏,�)

⌃

✏

n� 2�
2�+1 _ ✏

2�
�+1

✓
n

log n

◆� 2�
2�+1

_ ✏
2�
�+1

Hölder(�)

�2

2
r(p+m)

n
_ �2

2
✏2

s2 log(ep/s)

n
_ s✏2

s log(ep/s)

n�2
_ ✏2

�2

(indicator/sigmoid/ramp)

 (ReLUs+sigmoid features)

Chao Gao, Department of Statistics, Yale University c� August 14, 2018 1

Ar = {B 2 Rp⇥m
: rank(B) r}

JSg(P,Q) = max
w2Rd

P log

1

1 + e�wT g(X)
+Q log

1

1 + ewT g(X)

�
+ log 4.

JSg(P,Q) = 0 () Pg(X) = Qg(X)

kb✓ � ✓k2 .

8
><

>:

p

n
+ ✏2

p

n
+ ✏

Fs(M) =

8
<

:⌦ = ⌦
T 2 Rp⇥p

: M�1 �min(⌦) �max(⌦) M, max
1ip

pX

j=1

I{⌦ij 6= 0} s

9
=

;

b✓ = argmin

⌘2Rp
max
T2T

"
1

n

nX

i=1

log T (Xi) + E⌘ log(1� T (X))

#
+ log 4

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏N(e✓, Ip)

b✓ ⇡ ✓

b✓ ⇡ (1� ✏)✓ + ✏e✓

N(⌘, Ip)

✓ 2 Rp, Q

kb✓ � ✓k2 C
⇣ p

n
_ ✏2

⌘

D(�, {Xi}ni=1) = min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT�u}, 1
n

nX

i=1

I{|uTXi|2 < uT�u}
)

Chao Gao, Department of Statistics, Yale University c� October 30, 2018 1

max
⌃

min
kuk=1

"
1

n

nX

i=1

I{|uTXi|2 uT⌃u}� P(�2
1 1)

!
^

1

n

nX

i=1

I{|uTXi|2 > uT⌃u}� P(�2
1 > 1)

!#

kb✓ � ✓k2 .

8
><

>:

p

n
+ ✏2

p log p

n
+ ✏2

f(x) = x log x

k⌃̂� ⌃k2op C
⇣ p
n
_ ✏2

⌘

f(x) = x log x

�(x+ 1) log(x+ 1)

min
✓2⇥k

kX � ✓k2

b⌘1 b⌘2 · · · b⌘| bAn|

{b⌘j}|
bAn|

j=1

b✓(2) = argmin
✓2⇥"

2

kX � ✓k2

b✓(k) = argmin
✓2⇥"

k

kX � ✓k2

max
1in

|Zi|2 ⇣ �2 log(en)

max
1mn

�����
1p
m

mX

i=1

Zi

�����

2

⇣ �2 log log(16n)

|X(ba:bb] � µ| |X(a:bb] � µ| _ |X(ba:b] � µ|

JS-GAN
unknown
covariance?

Chao Gao, Department of Statistics, Yale University c� October 30, 2018 1

max
⌃

min
kuk=1

"
1

n

nX

i=1

I{|uTXi|2 uT⌃u}� P(�2
1 1)

!
^

1

n

nX

i=1

I{|uTXi|2 > uT⌃u}� P(�2
1 > 1)

!#

kb✓ � ✓k2 .

8
><

>:

p

n
+ ✏2

p log p

n
+ ✏2

f(x) = x log x

X1, ..., Xn ⇠ (1� ✏)N(✓,⌃) + ✏Q

k⌃̂� ⌃k2op C
⇣ p
n
_ ✏2

⌘

f(x) = x log x

�(x+ 1) log(x+ 1)

min
✓2⇥k

kX � ✓k2

b⌘1 b⌘2 · · · b⌘| bAn|

{b⌘j}|
bAn|

j=1

b✓(2) = argmin
✓2⇥"

2

kX � ✓k2

b✓(k) = argmin
✓2⇥"

k

kX � ✓k2

max
1in

|Zi|2 ⇣ �2 log(en)

max
1mn

�����
1p
m

mX

i=1

Zi

�����

2

⇣ �2 log log(16n)

Chao Gao, Department of Statistics, Yale University c� October 31, 2018 1

max
⌃

min
kuk=1

"
1

n

nX

i=1

I{|uTXi|2 uT⌃u}� P(�2
1 1)

!
^

1

n

nX

i=1

I{|uTXi|2 > uT⌃u}� P(�2
1 > 1)

!#

kb✓ � ✓k2 .

8
><

>:

p

n
+ ✏2

p log p

n
+ ✏2

f(x) = x log x

X1, ..., Xn ⇠ (1� ✏)N(✓,⌃) + ✏Q

k⌃̂� ⌃k2op C
⇣ p
n
_ ✏2

⌘

b⌃ = argmin
�

max
T2T

"
1

n

nX

i=1

log T (Xi) + EX⇠N(0,�) log(1� T (X))

#

(b✓, b⌃) = argmin
⌘,�

max
T2T

"
1

n

nX

i=1

log T (Xi) + EX⇠N(⌘,�) log(1� T (X))

#

f(x) = x log x

�(x+ 1) log(x+ 1)

min
✓2⇥k

kX � ✓k2

b⌘1 b⌘2 · · · b⌘| bAn|

{b⌘j}|
bAn|

j=1

b✓(2) = argmin
✓2⇥"

2

kX � ✓k2

b✓(k) = argmin
✓2⇥"

k

kX � ✓k2

no need to change the discriminator class

• Discriminator helps identify outliers or contaminated samples

• Generator fits uncontaminated portion of true samples

Discriminator identifies
outliers

Table 4 shows the performances of JS-GAN, TV-GAN, dimension halving, and iterative

filtering with i.i.d. observations sampled from (1� ✏)N(0p, Ip) + ✏Q. The network structure,

for both JS-GAN and TV-GAN, has one hidden layer with 20 hidden units when the sample

size is 50,000 and 2 hidden units when sample size is 5,000. With fixed network structure,

the hyper parameters are robust to various sampling distributions. For the network with

20 hidden units, the critical parameters to reproduce the results in the table are �g = 0.02,

�d = 0.2, K = 5, T = 150 (p = 100), T = 250 (p = 200), T0 = 25 for JS-GAN and

�g = 0.0001, �d = 0.3, K = 2, T = 150 (p = 100), T = 250 (p = 200), T0 = 1, � = 0.1

for TV-GAN, where � is the penalty factor of the additional regularization term (21). For

the network with 2 hidden units, the critical parameters to reproduce the results below are

�g = 0.01, �d = 0.2, K = 5, T = 150 (p = 100), T0 = 25 for JS-GAN and �g = 0.01, �d = 0.1,

K = 5, T = 150 (p = 100), T0 = 1 for TV-GAN. We use Xavier initialization [28] for both

JS-GAN and TV-GAN trainings.

To summarize, our method outperforms other algorithms in most cases. TV-GAN is good

at cases when Q and N(0p, Ip) are non-separable but fails when Q is far away from N(0p, Ip)

due to optimization issues discussed in Section 3.1 (Figure 1). On the other hand, JS-GAN

stably achieves the lowest error in separable cases and also shows competitive performances

for non-separable ones.

Q n p ✏ TV-GAN JS-GAN Dimension Halving Iterative Filtering

N(0.5 ⇤ 1p, Ip) 50,000 100 .2 0.0953 (0.0064) 0.1144 (0.0154) 0.3247 (0.0058) 0.1472 (0.0071)

N(0.5 ⇤ 1p, Ip) 5,000 100 .2 0.1941 (0.0173) 0.2182 (0.0527) 0.3568 (0.0197) 0.2285 (0.0103)

N(0.5 ⇤ 1p, Ip) 50,000 200 .2 0.1108 (0.0093) 0.1573 (0.0815) 0.3251 (0.0078) 0.1525 (0.0045)

N(0.5 ⇤ 1p, Ip) 50,000 100 .05 0.0913 (0.0527) 0.1390 (0.0050) 0.0814 (0.0056) 0.0530 (0.0052)

N(5 ⇤ 1p, Ip) 50,000 100 .2 2.7721 (0.1285) 0.0534 (0.0041) 0.3229 (0.0087) 0.1471 (0.0059)

N(0.5 ⇤ 1p,⌃) 50,000 100 .2 0.1189 (0.0195) 0.1148 (0.0234) 0.3241 (0.0088) 0.1426 (0.0113)

Cauchy(0.5 ⇤ 1p) 50,000 100 .2 0.0738 (0.0053) 0.0525 (0.0029) 0.1045 (0.0071) 0.0633 (0.0042)

Table 4: Comparison of various robust mean estimation methods. The smallest error of each

case is highlighted in bold.

6.4 Network Structures

In this section, we study the performances of TV-GAN and JS-GAN with various structures

of neural networks. The experiments are conducted with i.i.d. observations drawn from

(1 � ✏)N(0p, Ip) + ✏N(0.5 ⇤ 1p, Ip) with ✏ = 0.2. Table 5 summarizes results for p = 100,

n 2 {5000, 50000} and various network structures. We observe that TV-GAN that uses

neural nets with one hidden layer improves over the performance of that without any hidden

layer. This indicates that the landscape of TV-GAN is improved by a more complicated

network structure. However, adding one more layer does not improve the results. For JS-

GAN, we omit the results without hidden layer because of its lack of robustness (Proposition

3.1). Deeper networks sometimes improve over shallow networks, but this is not always true.

Table 6 illustrates the improvements of network with more than one hidden layers over that

22

Table 4 shows the performances of JS-GAN, TV-GAN, dimension halving, and iterative

filtering with i.i.d. observations sampled from (1� ✏)N(0p, Ip) + ✏Q. The network structure,

for both JS-GAN and TV-GAN, has one hidden layer with 20 hidden units when the sample

size is 50,000 and 2 hidden units when sample size is 5,000. With fixed network structure,

the hyper parameters are robust to various sampling distributions. For the network with

20 hidden units, the critical parameters to reproduce the results in the table are �g = 0.02,

�d = 0.2, K = 5, T = 150 (p = 100), T = 250 (p = 200), T0 = 25 for JS-GAN and

�g = 0.0001, �d = 0.3, K = 2, T = 150 (p = 100), T = 250 (p = 200), T0 = 1, � = 0.1

for TV-GAN, where � is the penalty factor of the additional regularization term (21). For

the network with 2 hidden units, the critical parameters to reproduce the results below are

�g = 0.01, �d = 0.2, K = 5, T = 150 (p = 100), T0 = 25 for JS-GAN and �g = 0.01, �d = 0.1,

K = 5, T = 150 (p = 100), T0 = 1 for TV-GAN. We use Xavier initialization [28] for both

JS-GAN and TV-GAN trainings.

To summarize, our method outperforms other algorithms in most cases. TV-GAN is good

at cases when Q and N(0p, Ip) are non-separable but fails when Q is far away from N(0p, Ip)

due to optimization issues discussed in Section 3.1 (Figure 1). On the other hand, JS-GAN

stably achieves the lowest error in separable cases and also shows competitive performances

for non-separable ones.

Q n p ✏ TV-GAN JS-GAN Dimension Halving Iterative Filtering

N(0.5 ⇤ 1p, Ip) 50,000 100 .2 0.0953 (0.0064) 0.1144 (0.0154) 0.3247 (0.0058) 0.1472 (0.0071)

N(0.5 ⇤ 1p, Ip) 5,000 100 .2 0.1941 (0.0173) 0.2182 (0.0527) 0.3568 (0.0197) 0.2285 (0.0103)

N(0.5 ⇤ 1p, Ip) 50,000 200 .2 0.1108 (0.0093) 0.1573 (0.0815) 0.3251 (0.0078) 0.1525 (0.0045)

N(0.5 ⇤ 1p, Ip) 50,000 100 .05 0.0913 (0.0527) 0.1390 (0.0050) 0.0814 (0.0056) 0.0530 (0.0052)

N(5 ⇤ 1p, Ip) 50,000 100 .2 2.7721 (0.1285) 0.0534 (0.0041) 0.3229 (0.0087) 0.1471 (0.0059)

N(0.5 ⇤ 1p,⌃) 50,000 100 .2 0.1189 (0.0195) 0.1148 (0.0234) 0.3241 (0.0088) 0.1426 (0.0113)

Cauchy(0.5 ⇤ 1p) 50,000 100 .2 0.0738 (0.0053) 0.0525 (0.0029) 0.1045 (0.0071) 0.0633 (0.0042)

Table 4: Comparison of various robust mean estimation methods. The smallest error of each

case is highlighted in bold.

6.4 Network Structures

In this section, we study the performances of TV-GAN and JS-GAN with various structures

of neural networks. The experiments are conducted with i.i.d. observations drawn from

(1 � ✏)N(0p, Ip) + ✏N(0.5 ⇤ 1p, Ip) with ✏ = 0.2. Table 5 summarizes results for p = 100,

n 2 {5000, 50000} and various network structures. We observe that TV-GAN that uses

neural nets with one hidden layer improves over the performance of that without any hidden

layer. This indicates that the landscape of TV-GAN is improved by a more complicated

network structure. However, adding one more layer does not improve the results. For JS-

GAN, we omit the results without hidden layer because of its lack of robustness (Proposition

3.1). Deeper networks sometimes improve over shallow networks, but this is not always true.

Table 6 illustrates the improvements of network with more than one hidden layers over that

22

Application: Price of 50 stocks from 2007/01
to 2018/12 Corps are selected by ranking in
market capitalization

Log-return. y[i] = log(price_{i+1}/price_{i})

Robust PCA by Elliptical-Fitting GAN:

´ Fit data by Elliptical-GAN.
Apply SVD on scatter matrix.
Dimension reduction on R^2.
outlier x and o are selected from Discriminator value distribution.

Outlier Detection

´ Discriminator value distribution from (Elliptical) Generator and real samples.
Outliers are chosen from samples larger/ lower than a chosen percentile of
Generator distribution

Standard (non-robust) PCA:

First two direction are dominated by few financial corps
—> not robust

Robust PCA by Elliptical GAN:

´ Loadings of Elliptical Scatter
Comparing with PCA, it’s more robust in the sense that it does not totally
dominate by Financial company (JPM, GS)

Reference

´ One can robustly estimate mean and covariance (scatter) matrix, for the
general family of Elliptical Distributions (including Cauchy Distributions
whose mean and moments do not exist)

´ Gao, Liu, Yao, Zhu, Robust Estimation and Generative Adversarial Networks,
ICLR 2019, https://arxiv.org/abs/1810.02030

´ Gao, Yao, Zhu, Generative Adversarial Networks for Robust Scatter
Estimation: A Proper Scoring Rule Perspective,
https://arxiv.org/abs/1903.01944

Thank you!

