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Summary

´ We have shown: 
´ CNN Architectures: LeNet5, Alexnet, VGG, GoogleNet, Resnet

´ Today:
´ Recurrent Neural Networks

´ LSTM/GRU

´ Reference: 
´ Feifei Li, Stanford cs231n

´ Chris Manning, Stanford cs224n



Recurrent Neural Networks



Recurrent Neural Networks: Process Sequences

Machine Translation,
Dialogue

Video frame-based
classification/annotation

Sentiment
Classification
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Recurrent Neural Networks: Process Sequences

e.g. Image Captioning
image -> sequence of wordsImage

Captioning
Vanilla 
Neural 
Network
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Sequential Processing of Non-Sequence Data

Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.
Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015
Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with 
permission.

Classify images by taking a 
series of “glimpses”
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Recurrent Neural Network

x

RNN
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Recurrent Neural Network

x

RNN

y
usually want to 
predict a vector at 
some time steps
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Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

new state old state input vector at 
some time step

some function
with parameters W
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Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

Notice: the same function and the same set 
of parameters are used at every time step.



Vanilla Recurrent Neural Networks
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(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

State Space equations in feedback dynamical systems

The basics of decision trees.

Regression trees

• Trees can be applied to both regression and classifcation.

• CART refers to classification and regression trees.

• We first consider regression trees through an example of predicting
Baseball players’ salaries.

yt = softmax(Whyht)
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Or,



Linear Dynamical Systems (1940s-)

´The hidden state has linear dynamics with 
Gaussian noise and produces the observations 
using a linear model with Gaussian noise.

´Kalman Filter: A linearly transformed Gaussian is a 
Gaussian. So the distribution over the hidden 
state given the data so far is Gaussian. It can be 
computed using “Kalman filtering”. 

´To predict the next output (so that we can shoot 
down the missile) we need to infer the hidden 
state. 

driving 
input

hidden

hidden

hidden

output

output

output
time à

driving 
input

driving 
input

Linear Dynamical System

I Hidden State Space:

ht = Whhht�1 +Whxxt + ✏
h
t

I Output:
yt = Wyhht +Wyxxt + ✏

y
t

Graph Realization: MDS with Uncertainty 62
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Hidden Markov Models (1970s-)
´ Hidden Markov Models have a discrete one-of-N 

hidden state. Transitions between states are 
stochastic and controlled by a transition matrix. 
The outputs produced by a state are stochastic. 
´ We cannot be sure which state produced a 

given output. So the state is “hidden”.
´ It is easy to represent a probability distribution 

across N states with N numbers.
´ To predict the next output we need to infer the 

probability distribution over hidden states.
´ HMMs have efficient algorithms (Baum-Welch 

or EM Algorithm) for inference and learning.
´ Jim Simons hires Lenny Baum as the founding 

member of Renaissance Technologies in 1979 

output

output

output

time à

Lenny Baum became a devoted Go player despite his deteriorating eyesight.

Simons with his favorite lemur at a Stony Brook event.



Recurrent Neural Networks

´ The issue of a hidden Markov model (HMM):
´ At each time step it must select one of its hidden states. So with N hidden states it 

can only remember log(N) bits about what it generated so far.

´ RNNs are very powerful, because they combine two properties:
´ Distributed hidden state that allows them to store a lot of information about the 

past efficiently.

´ Non-linear dynamics that allows them to update their hidden state in 
complicated ways.

´ With enough neurons and time, RNNs can compute anything that can be 
computed by your computer. 
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h0 fW h1 fW h2 fW h3

x3

… 

x2x1

RNN: Computational Graph

hT



Time invariant systems

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201726

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W

RNN: Computational Graph

Re-use the same weight matrix at every time-step

hT



Outputs added
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h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1



Loss modules
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h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1
L2 L3 LT

L
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h0 fW h1 fW h2 fW h3

x3

y

… 

x2x1W

RNN: Computational Graph: Many to One

hT
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h0 fW h1 fW h2 fW h3

yT

… 

x
W

RNN: Computational Graph: One to Many

hT

y3y3y3
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Sequence to Sequence: Many-to-one + 
one-to-many

h
0

fW
h
1

fW
h
2

fW
h
3

x
3

… 

x
2

x
1

W
1

h
T

y
1

y
2

… 

Many to one: Encode input 
sequence in a single vector

One to many: Produce output 
sequence from single input vector

fW
h
1

fW
h
2

fW

W
2
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Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”
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Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”
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Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”
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Example: 
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample 
characters one at a time, 
feed back to model

.03
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.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
Sample
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Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample 
characters one at a time, 
feed back to model
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Backpropagation through time
Loss

Forward through entire sequence to 
compute loss, then backward through 
entire sequence to compute gradient
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Truncated Backpropagation through time
Loss

Run forward and backward 
through chunks of the 
sequence instead of whole 
sequence
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Truncated Backpropagation through time
Loss

Carry hidden states 
forward in time forever, 
but only backpropagate 
for some smaller 
number of steps



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201744

Truncated Backpropagation through time
Loss



Example: Text->RNN
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x

RNN

y

https://gist.github.com/karpathy/d4dee566867f8291f086
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train more

train more

train more

at first:
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Explain Images with Multimodal Recurrent Neural Networks, Mao et al.
Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei
Show and Tell: A Neural Image Caption Generator, Vinyals et al.
Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Image Captioning

Figure from Karpathy et a, “Deep 
Visual-Semantic Alignments for Generating 
Image Descriptions”, CVPR 2015; figure 
copyright IEEE, 2015.
Reproduced for educational purposes.
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Convolutional Neural Network

Recurrent Neural Network



test image



test image

X



h0

x0
<STA
RT>

y0

<START>

test image

before:
h = tanh(Wxh * x + Whh * h)

now:
h = tanh(Wxh * x + Whh * h + Wih * v)

v

Wih



h0

x0
<STA
RT>

y0

<START>

test image

straw

sample!



h0

x0
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RT>

y0

<START>
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straw

h1

y1

hat

sample!



h0

x0
<STA
RT>

y0

<START>

test image

straw

h1

y1

hat

h2

y2

sample
<END> token
=> finish.



Popular Architectures
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A cat sitting on a 
suitcase on the floor

A cat is sitting on a tree 
branch

A dog is running in the 
grass with a frisbee

A white teddy bear sitting in 
the grass

Two people walking on 
the beach with surfboards

Two giraffes standing in a 
grassy field

A man riding a dirt bike on 
a dirt track

Image Captioning: Example Results

A tennis player in action 
on the court

Captions generated using neuraltalk2
All images are CC0 Public domain: 
cat suitcase, cat tree, dog, bear, 
surfers, tennis, giraffe, motorcycle
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Image Captioning: Failure Cases

A woman is holding a 
cat in her hand

A woman standing on a 
beach holding a surfboard

A person holding a 
computer mouse on a desk

A bird is perched on 
a tree branch

A man in a 
baseball uniform 
throwing a ball

Captions generated using neuraltalk2
All images are CC0 Public domain: fur 
coat, handstand, spider web, baseball
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Image Captioning with Attention

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

RNN focuses its attention at a different spatial location 
when generating each word

RNN
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CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

Distribution over 
L locations

Xu et al, “Show, Attend and Tell: Neural 
Image Caption Generation with Visual 
Attention”, ICML 2015

Image Captioning with Attention
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CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

Weighted 
combination 
of features

Distribution over 
L locations

z1
Weighted 

features: D

Xu et al, “Show, Attend and Tell: Neural 
Image Caption Generation with Visual 
Attention”, ICML 2015

Image Captioning with Attention
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CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

z1

Weighted 
combination 
of features

h1

Distribution over 
L locations

Weighted 
features: D y1

First wordXu et al, “Show, Attend and Tell: Neural 
Image Caption Generation with Visual 
Attention”, ICML 2015

Image Captioning with Attention
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CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

z1

Weighted 
combination 
of features

y1

h1

First word

Distribution over 
L locations

a2 d1

Weighted 
features: D

Distribution 
over vocab

Xu et al, “Show, Attend and Tell: Neural 
Image Caption Generation with Visual 
Attention”, ICML 2015

Image Captioning with Attention
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CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

z1

Weighted 
combination 
of features

y1

h1

First word

Distribution over 
L locations

a2 d1

h2

a3 d2

z2 y2
Weighted 

features: D

Distribution 
over vocab

Xu et al, “Show, Attend and Tell: Neural 
Image Caption Generation with Visual 
Attention”, ICML 2015

Image Captioning with Attention
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Soft attention

Hard attention

Image Captioning with Attention

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201786

Image Captioning with Attention

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.



The Fundamental Deep Learning Problem: 
Vanishing / Exploding Gradients
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ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201791

ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Backpropagation from ht 
to ht-1 multiplies by W 
(actually Whh

T)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013
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Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013
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Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013
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Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Gradient clipping: Scale 
gradient if its norm is too bigComputing gradient 

of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013
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Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients Change RNN architecture

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013



Some Historical Remarks

´ [VAN1] S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, TUM, 1991 
(advisor J. Schmidhuber). Link: 
http://www.idsia.ch/~juergen/SeppHochreiter1991ThesisAdvisorSchmidhuber.pdf

´ [VAN2] Y. Bengio, P. Simard, P. Frasconi. Learning long-term dependencies with gradient descent is 
difficult. IEEE TNN 5(2), p 157-166, 1994

´ [VAN3] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber. Gradient flow in recurrent nets: the difficulty 
of learning long-term dependencies. In S. C. Kremer and J. F. Kolen, eds., A Field Guide to Dynamical 
Recurrent Neural Networks. IEEE press, 2001

´ [VAN4] Y. Bengio. Neural net language models. Scholarpedia, 3(1):3881, 2008. Link: 
http://www.scholarpedia.org/article/Neural_net_language_models?CachedSimilar13

´ J. SchmidHuber (https://people.idsia.ch/~juergen/deep-learning-miraculous-year-1990-
1991.html#Sec.%203): 
´ “As a part of his thesis, Sepp implemented the Neural History Compressor above (see Sec. 1) and other RNN-based 

systems (see Sec. 11). However, he did much more: His work formally showed that deep NNs suffer from the now famous 
problem of vanishing or exploding gradients: in typical deep or recurrent networks, back-propagated error signals 
either shrink rapidly, or grow out of bounds. In both cases, learning fails. This analysis led to basic principles of what's 
now called LSTM (see Sec. 4).”

´ “Interestingly, in 1994, others published results[VAN2] essentially identical to the 1991 vanishing gradient results of 
Sepp.[VAN1] Even after a common publication[VAN3] the first author of reference[VAN2] published papers[VAN4] that cited 
only their own 1994 paper but not Sepp's original work.”



Long Short Term Memory (LSTM)



Long-Short-Term-Memory (LSTM)
´ A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution to the 

vanishing gradients problem. 
´ “Long short-term memory”, Hochreiter and Schmidhuber, Neural Computation, 9(8):1735-

1780, 1997. Link: https://www.bioinf.jku.at/publications/older/2604.pdf

´ On time step t, there is a hidden state h and a cell state c
´ Both are vectors length n

´ The cell stores long-term information
´ The LSTM can erase, write and read information from the cell

´ The selection of which information is erased/written/read is controlled by three 
corresponding gates
´ The gates are also vectors length n 

´ On each time step, each element of the gates can be open (1), closed (0), 

´ or somewhere in-between. 

´ The gates are dynamic: their value is computed based on the current context 



Long-Short-Term-Memory (LSTM)
We have a sequence of inputs        , and we will compute a sequence of hidden states        
and cell states       .  On timestep t:

Long Short-Term Memory (LSTM)

Al
l t

he
se

 a
re

 v
ec

to
rs

 o
f s

am
e 

le
ng

th
 n

Forget gate: controls what is kept vs 
forgotten, from previous cell state

Input gate: controls what parts of the 
new cell content are written to cell

Output gate: controls what parts of 
cell are output to hidden state

New cell content: this is the new 
content to be written to the cell

Cell state: erase (“forget”) some 
content from last cell state, and write 
(“input”) some new cell content

Hidden state: read (“output”) some 
content from the cell

Sigmoid function: all gate 
values are between 0 and 1

23
Gates are applied using 
element-wise product



LSTM Flowchart
´ Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

ct-1

ht-1

ct

ht

ft
it ot

ct

ct
~

Long Short-Term Memory (LSTM)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

You can think of the LSTM equations visually like this:

Compute the 
forget gate

Forget some 
cell content

Compute the 
input gate

Compute the 
new cell content

Compute the 
output gate

Write some new cell content

Output some cell content 
to the hidden state
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ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

stack

Backpropagation from ct to 
ct-1 only elementwise 
multiplication by f, no matrix 
multiply by W
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Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

c0 c1 c2 c3

Uninterrupted gradient flow!

Input

S
oftm

ax

3x3 conv, 64

7x7 conv, 64 / 2

FC
 1000

P
ool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

...

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

P
ool

Similar to ResNet!

In between:
Highway Networks

Srivastava et al, “Highway Networks”, 
ICML DL Workshop 2015



Gated Recurrent Unit: tanh RNN

´ (tanh) RNN is expensive in exploiting the whole register

2020-02-0640

tanh-RNN ….

Execution
Registers

1. Read the whole register

h

2. Update the whole register 

h

h tanh(W [x] + Uh+ b)

Gated Recurrent Unit



Gated Recurrent Unit (GRU)

´ GRU is much more economic for computation!

2020-02-0641

GRU …

Execution
Registers

1. Select a readable subset

h

r
r � h2. Read the subset

3. Select a writable subset u
4. Update the subset

h u� h̃+ (1� ut)� h

Gated recurrent units are much more realistic for computation!

Gated Recurrent Unit



GRU
´ "Learning Phrase Representations using RNN Encoder–Decoder for 

Statistical Machine Translation", Cho et al. 2014, 
https://arxiv.org/pdf/1406.1078v3.pdf 

Gated Recurrent Units (GRU)

• Proposed by Cho et al. in 2014 as a simpler alternative to the LSTM.
• On each timestep t we have input         and hidden state         (no cell state).

28 "Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation", Cho et al. 2014, https://arxiv.org/pdf/1406.1078v3.pdf

Update gate: controls what parts of 
hidden state are updated vs preserved

Reset gate: controls what parts of 
previous hidden state are used to 
compute new content

Hidden state: update gate 
simultaneously controls what is kept 
from previous hidden state, and what 
is updated to new hidden state content 

New hidden state content: reset gate 
selects useful parts of prev hidden 
state. Use this and current input to 
compute new hidden content.

How does this solve vanishing gradient?
Like LSTM, GRU makes it easier to retain info 
long-term (e.g. by setting update gate to 0)



Gated Recurrent Unit (GRU)
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Other RNN Variants

[LSTM: A Search Space Odyssey, 
Greff et al., 2015]

[An Empirical Exploration of 
Recurrent Network Architectures, 
Jozefowicz et al., 2015]

GRU [Learning phrase representations using rnn 
encoder-decoder for statistical machine translation, 
Cho et al. 2014]



GRU and LSTM

Gated Recurrent Unit
[Cho et al., EMNLP2014; 
Chung, Gulcehre, Cho, Bengio, 

DLUFL2014]

Long Short-Term Memory 
[Hochreiter & Schmidhuber, NC1999; 
Gers, Thesis2001]
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Gated Recurrent Units: LSTM & GRU

ht = ut � h̃t + (1� ut)� ht�1

h̃ = tanh(W [xt] + U(rt � ht�1) + b)

ut = �(Wu [xt] + Uuht�1 + bu)

rt = �(Wr [xt] + Urht�1 + br)

ht = ot � tanh(ct)

ct = ft � ct�1 + it � c̃t

c̃t = tanh(Wc [xt] + Ucht�1 + bc)

ot = �(Wo [xt] + Uoht�1 + bo)

it = �(Wi [xt] + Uiht�1 + bi)

ft = �(Wf [xt] + Ufht�1 + bf )

Two most widely used gated recurrent units: GRU and LSTM

h̃t = tanh(W [xt] + U(rt � ht�1) + b)



LSTM vs. GRU

´ Researchers have proposed many gated RNN variants, but LSTM and GRU 
are the most widely-used 

´ The biggest difference is that GRU is quicker to compute and has fewer 
parameters 

´ There is no conclusive evidence that one consistently performs better than 
the other 

´ LSTM is a good default choice (especially if your data has particularly long 
dependencies, or you have lots of training data) 

´ Rule of thumb: start with LSTM, but switch to GRU if you want something 
more efficient 



Is vanishing/exploding gradient just a RNN 
problem? 

´ No! It can be a problem for all neural architectures (including feed-forward and 
convolutional), especially deep ones. 
´ Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small as 

it backpropagates

´ Thus lower layers are learnt very slowly (hard to train)

´ Solution: lots of new deep feedforward/convolutional architectures that add more direct 
connections (thus allowing the gradient to flow) 

´ For example: 
´ “HighwayNet” with highway connections:

´ Similar to residual connections, but the identity connection vs the transformation layer is controlled by a 
dynamic gate 

´ Inspired by LSTMs, but applied to deep feedforward/convolutional networks

´ ResNet with residual connections, inspired by HighwayNet
´ DenseNet directly connect everything to everything! 



Some Historical Remarks on LSTM
´ [LSTM0] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. TR FKI-207-

95, TUM, August 1995. Link: https://people.idsia.ch/~juergen/FKI-207-95ocr.pdf
´ [LSTM1] S. Hochreiter, J. Schmidhuber. Long Short-Term Memory. Neural 

Computation, 9(8):1735-1780, 1997. Based on [LSTM0].
´ [LSTM2] F. A. Gers, J. Schmidhuber, F. Cummins. Learning to Forget: Continual 

Prediction with LSTM. Neural Computation, 12(10):2451-2471, 2000. The "vanilla 
LSTM architecture" with forget gates that everybody is using today, e.g., in 
Google's Tensorflow.

´ [LSTM3] A. Graves, J. Schmidhuber. Framewise phoneme classification with 
bidirectional LSTM and other neural network architectures. Neural Networks, 
18:5-6, pp. 602-610, 2005.

Schmidhuber: “In 2020 we celebrated the quarter-century anniversary 
of LSTM's first failure to pass peer review. After the main peer-reviewed 
publication in 1997[LSTM1] (now the most cited article in the history of Neural 
Computation), LSTM and its training procedures were further improved on my 
Swiss LSTM grants at IDSIA through the work of my later students Felix Gers, Alex 
Graves, and others. A milestone was the "vanilla LSTM architecture" with forget 
gate[LSTM2]—the LSTM variant of 1999-2000 that everybody is using today, e.g., in 
Google's Tensorflow. 2005 saw the first publication of LSTM with full 
backpropagation through time and of bi-directional LSTM[LSTM3] (now widely 
used).”



Some Historical Remarks on 
HighwayNet

´ [HW1] R. K. Srivastava, K. Greff, J. Schmidhuber. Highway networks. 
Preprints arXiv:1505.00387 (May 2015) and arXiv:1507.06228 (July 2015). Also at NIPS 
2015. The first working very deep feedforward nets with over 100 layers (previous 
NNs had at most a few tens of layers). Let g, t, h, denote non-linear differentiable 
functions. Each non-input layer of a highway net computes g(x)x + t(x)h(x), where x 
is the data from the previous layer. (Like LSTM with forget gates[LSTM2] for RNNs.) 
Resnets[HW2] are a special case of this where the gates are always open: 
g(x)=t(x)=const=1. Highway Nets perform roughly as well as ResNets[HW2] on 
ImageNet.[HW3] Highway layers are also often used for natural language processing, 
where the simpler residual layers do not work as well.[HW3]

´ [HW2] He, K., Zhang, X., Ren, S., Sun, J. Deep residual learning for image recognition. 
Preprint arXiv:1512.03385 (Dec 2015). Residual nets are a special case of Highway 
Nets[HW1] where the gates are always open: g(x)=1 (a typical highway net 
initialization) and t(x)=1.

´ [HW3] K. Greff, R. K. Srivastava, J. Schmidhuber. Highway and Residual Networks 
learn Unrolled Iterative Estimation. Preprint arxiv:1612.07771 (2016). Also at ICLR 2017.



Summary

´ RNN is flexible in architectures

´ Vanilla RNNs are simple but don’t work very well 

´ Common to use LSTM or GRU: their additive interactions improve gradient 
flow 
´ Backward flow of gradients in RNN can explode or vanish. 

´ Exploding is controlled with gradient clipping. 

´ Vanishing is controlled with additive interactions 



Bi-Direction



Motivation of BidirectionBidirectional RNNs: motivation
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terribly exciting !the movie was

positive

Sentence encoding

We can regard this hidden state as a 
representation of the word “terribly” in the 
context of this sentence. We call this a 
contextual representation.

These contextual 
representations only 
contain information 
about the left context 
(e.g. “the movie 
was”). 

What about right
context?

In this example, 
“exciting” is in the 
right context and this 
modifies the meaning 
of “terribly” (from 
negative to positive)

Task: Sentiment Classification



Bidirectional RNNs

37
terribly exciting !the movie was

Forward RNN

Backward RNN

Concatenated 
hidden states

This contextual representation of “terribly” 
has both left and right context!



Bidirectional RNN: simplified diagramBidirectional RNNs
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Forward RNN

Backward RNN

Concatenated hidden states

This is a general notation to mean “compute 
one forward step of the RNN” – it could be a 
vanilla, LSTM or GRU computation.

We regard this as “the hidden 
state” of a bidirectional RNN. 
This is what we pass on to the 
next parts of the network.

Generally, these 
two RNNs have 
separate weights

On timestep t:



Bidirectional RNN: simplified diagram

´ The two-way arrows indicate bidirectionality and the depicted hidden 
states are assumed to be the concatenated forwards+backwards states. 

Bidirectional RNNs: simplified diagram
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terribly exciting !the movie was

The two-way arrows indicate bidirectionality and 
the depicted hidden states are assumed to be 
the concatenated forwards+backwards states.



Bidirectional RNNs 

´ Note: bidirectional RNNs are only applicable if you have access to the entire input 
sequence. 
´ They are not applicable to Language Modeling, because in LM you only have left context 

available. 

´ If you do have entire input sequence (e.g. any kind of encoding), bidirectionality is 
powerful (you should use it by default). 

´ For example, BERT (Bidirectional Encoder Representations from Transformers) is a 
powerful pretrained contextual representation system built on bidirectionality. 



History note

´ In 2013-2015, LSTMs started achieving state-of-the-art results 
´ Successful tasks include: handwriting recognition, speech 
´ recognition, machine translation, parsing, image captioning 
´ LSTM became the dominant approach 

´ Now (2019), other approaches (e.g. Transformers) have become more dominant for 
certain tasks. 
´ For example in WMT (a MT conference + competition): 
´ In WMT 2016, the summary report contains ”RNN” 44 times 
´ In WMT 2018, the report contains “RNN” 9 times and “Transformer” 63 times 

´ Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016, 
http://www.statmt.org/wmt16/pdf/W16-2301.pdf 

´ Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018, 
http://www.statmt.org/wmt18/pdf/WMT028.pdf 



Thank you!


