

Recurrent Neural Networks (RNN) and Long-Short-Term-Memory (LSTM)

HKUST

Summary

- We have shown:
 - CNN Architectures: LeNet5, Alexnet, VGG, GoogleNet, Resnet
- Today:
 - Recurrent Neural Networks
 - LSTM/GRU
- Reference:
 - Feifei Li, Stanford cs231n
 - Chris Manning, Stanford cs224n

Recurrent Neural Networks

Recurrent Neural Networks: Process Sequences

classification/annotation

Sequential Processing of Non-Sequence Data

3

Ь

5

C

A.

60

Ó

З

-4

5

Classify images by taking a series of "glimpses"

Ba, Mnih, and Kavukcuoglu, "Multiple Object Recognition with Visual Attention", ICLR 2015.	4	1
Gregor et al, "DRAW: A Recurrent Neural Network For Image Generation", ICML 2015		
Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. R	eproduced	d with
nermission		

Recurrent Neural Network

Recurrent Neural Network

We can process a sequence of vectors **x** by applying a **recurrence formula** at every time step:

$$h_t = f_W(h_{t-1}, x_t)$$

new state / old state input vector at some time step some function with parameters W

We can process a sequence of vectors **x** by applying a **recurrence formula** at every time step:

$$h_t = f_W(h_{t-1}, x_t)$$

Notice: the same function and the same set of parameters are used at every time step.

Vanilla Recurrent Neural Networks

State Space equations in feedback dynamical systems

Or,

The state consists of a single *"hidden"* vector **h**:

$$egin{aligned} h_t &= f_W(h_{t-1}, x_t) \ & \downarrow \ h_t &= anh(W_{hh}h_{t-1} + W_{xh}x_t) \ y_t &= W_{hy}h_t \ y_t &= ext{softmax}(W_{hy}h_t) \end{aligned}$$

Linear Dynamical Systems (1940s-)

- The hidden state has linear dynamics with Gaussian noise and produces the observations using a linear model with Gaussian noise.
- Kalman Filter: A linearly transformed Gaussian is a Gaussian. So the distribution over the hidden state given the data so far is Gaussian. It can be computed using "Kalman filtering".

To predict the next output (so that we can shoot down the missile) we need to infer the hidden state.

$$h_t = W_{hh}h_{t-1} + W_{hx}x_t + \epsilon_t^h$$

$$y_t = W_{yh}h_t + W_{yx}x_t + \epsilon_t^y$$

Hidden Markov Models (1970s-)

- Hidden Markov Models have a discrete one-of-N hidden state. Transitions between states are stochastic and controlled by a transition matrix.
 The outputs produced by a state are stochastic.
 - We cannot be sure which state produced a given output. So the state is "hidden".
 - It is easy to represent a probability distribution across N states with N numbers.
- To predict the next output we need to infer the probability distribution over hidden states.
 - HMMs have efficient algorithms (Baum-Welch or EM Algorithm) for inference and learning.
 - Jim Simons hires Lenny Baum as the founding member of Renaissance Technologies in 1979

Lenny Baum became a devoted Go player despite his deteriorating eyesigh

Recurrent Neural Networks

The issue of a hidden Markov model (HMM):

- At each time step it must select one of its hidden states. So with N hidden states it can only remember log(N) bits about what it generated so far.
- RNNs are very powerful, because they combine two properties:
 - Distributed hidden state that allows them to store a lot of information about the past efficiently.
 - Non-linear dynamics that allows them to update their hidden state in complicated ways.
- With enough neurons and time, RNNs can compute anything that can be computed by your computer.

RNN: Computational Graph

Time invariant systems

RNN: Computational Graph

Re-use the same weight matrix at every time-step

RNN: Computational Graph: Many to Many

RNN: Computational Graph: Many to One

RNN: Computational Graph: One to Many

Sequence to Sequence: Many-to-one + one-to-many

Many to one: Encode input sequence in a single vector

One to many: Produce output sequence from single input vector

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

$$h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$$

Vocabulary: [h,e,l,o]

Example training sequence: **"hello"**

Vocabulary: [h,e,l,o]

Vocabulary: [h,e,l,o]

Vocabulary: [h,e,l,o]

Vocabulary: [h,e,l,o]

Truncated Backpropagation through time

Run forward and backward through chunks of the sequence instead of whole sequence

Truncated Backpropagation through time

Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps

Truncated Backpropagation through time

Example: Text->RNN

THE SONNETS

by William Shakespeare

From fairest creatures we desire increase, That thereby beauty's rose might never die, But as the riper should by time decease, His tender heir might bear his memory: But thou, contracted to thine own bright eyes, Feed'st thy light's flame with self-substantial fuel, Making a famine where abundance lies, Thyself thy foe, to thy sweet self too cruel: Thou that art now the world's fresh ornament, And only herald to the gaudy spring, Within thine own bud buriest thy content, And tender churl mak'st waste in niggarding: Pity the world, or else this glutton be, To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow, And dig deep trenches in thy beauty's field, Thy youth's proud livery so gazed on now, Will be a tatter'd weed of small worth held: Then being asked, where all thy beauty lies, Where all the treasure of thy lusty days; To say, within thine own deep sunken eyes, Were an all-eating shame, and thriftless praise. How much more praise deserv'd thy beauty's use, If thou couldst answer 'This fair child of mine Shall sum my count, and make my old excuse,' Proving his beauty by succession thine! This were to be new made when thou art old,

And see thy blood warm when thou feel'st it cold.

Y **RNN** Х

https://gist.github.com/karpathy/d4dee566867f8291f086

at first:

tyntd-iafhatawiaoihrdemot lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

train more

"Tmont thithey" fomesscerliund

Keushey. Thom here

sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort how, and Gogition is so overelical and ofter.

train more

"Why do what that day," replied Natasha, and wishing to himself the fact the princess, Princess Mary was easier, fed in had oftened him. Pierre aking his soul came to the packs and drove up his father-in-law women.

Image Captioning

Figure from Karpathy et a, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015; figure copyright IEEE, 2015. Reproduced for educational purposes.

Explain Images with Multimodal Recurrent Neural Networks, Mao et al. Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei Show and Tell: A Neural Image Caption Generator, Vinyals et al. Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al. Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Recurrent Neural Network

Convolutional Neural Network

image conv-64 conv-64 maxpool conv-128 conv-128 maxpool conv-256 conv-256 maxpool conv-512 conv-512 maxpool conv-512 conv-512 maxpool FC-4096 FC-4096 FC-1000 softmax

test image

test image

test image

before:

h = tanh(Wxh * x + Whh * h)

now:

h = tanh(Wxh * x + Whh * h + Wih * v)

Image Captioning: Example Results

A cat sitting on a suitcase on the floor

A cat is sitting on a tree branch

A dog is running in the grass with a frisbee

Captions generated using neuraltalk2 All images are CC0 Public domain cat suitcase, cat tree, dog, bear,

A white teddy bear sitting in the grass

Two people walking on the beach with surfboards

A tennis player in action on the court

Two giraffes standing in a grassy field

A man riding a dirt bike on a dirt track

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 10 - 75 May 4, 2017

Image Captioning: Failure Cases

Captions generated using <u>neuraltalk2</u> All images are <u>CC0 Public domain</u>: <u>fur</u> <u>coat</u>, <u>handstand</u>, <u>spider web</u>, <u>baseball</u>

A woman is holding a cat in her hand

A person holding a computer mouse on a desk

A woman standing on a beach holding a surfboard

A bird is perched on a tree branch

A man in a baseball uniform throwing a ball

Lecture 10 - 76 May 4, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung

RNN focuses its attention at a different spatial location when generating each word

Xu et al, "Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015 Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

Xu et al, "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015

Xu et al, "Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015 Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Xu et al, "Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015 Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

The Fundamental Deep Learning Problem: Vanishing / Exploding Gradients

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$
$$= \tanh\left(\left(W_{hh} \quad W_{hx}\right) \begin{pmatrix}h_{t-1}\\x_{t}\end{pmatrix}\right)$$
$$= \tanh\left(W\begin{pmatrix}h_{t-1}\\x_{t}\end{pmatrix}\right)$$

Backpropagation from h_t to h_{t-1} multiplies by W (actually W_{hh}^{T})

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$
$$= \tanh\left(\left(W_{hh} \quad W_{hx}\right) \begin{pmatrix}h_{t-1}\\x_{t}\end{pmatrix}\right)$$
$$= \tanh\left(W\begin{pmatrix}h_{t-1}\\x_{t}\end{pmatrix}\right)$$

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

Computing gradient of h₀ involves many factors of W (and repeated tanh)

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

Computing gradient of h₀ involves many factors of W (and repeated tanh) Largest singular value > 1: **Exploding gradients**

Largest singular value < 1: **Vanishing gradients**

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

Computing gradient of h₀ involves many factors of W (and repeated tanh) Largest singular value > 1: Exploding gradients

Largest singular value < 1: **Vanishing gradients**

- Change RNN architecture

Some Historical Remarks

- [VAN1] S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, TUM, 1991 (advisor <u>J. Schmidhuber</u>). Link: <u>http://www.idsia.ch/~juergen/SeppHochreiter1991ThesisAdvisorSchmidhuber.pdf</u>
- [VAN2] Y. Bengio, P. Simard, P. Frasconi. Learning long-term dependencies with gradient descent is difficult. IEEE TNN 5(2), p 157-166, 1994
- [VAN3] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber. Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In S. C. Kremer and J. F. Kolen, eds., A Field Guide to Dynamical Recurrent Neural Networks. IEEE press, 2001
- [VAN4] Y. Bengio. Neural net language models. Scholarpedia, 3(1):3881, 2008. Link: http://www.scholarpedia.org/article/Neural_net_language_models?CachedSimilar13
- J. SchmidHuber (<u>https://people.idsia.ch/~juergen/deep-learning-miraculous-year-1990-1991.html#Sec.%203</u>):
 - "As a part of his thesis, Sepp implemented the Neural History Compressor above (see <u>Sec. 1</u>) and other RNN-based systems (see <u>Sec. 11</u>). However, he did much more: His work formally showed that deep NNs suffer from the now famous problem of vanishing or exploding gradients: in typical deep or recurrent networks, back-propagated error signals either shrink rapidly, or grow out of bounds. In both cases, learning fails. This analysis led to basic principles of what's now called LSTM (see <u>Sec. 4</u>)."
 - "Interestingly, in 1994, others published results^[VAN2] essentially identical to the 1991 vanishing gradient results of Sepp.^[VAN1] Even after a <u>common publication^[VAN3]</u> the first author of reference^[VAN2] published papers^[VAN4] that cited only their own 1994 paper but not Sepp's original work."

Long Short Term Memory (LSTM)

Long-Short-Term-Memory (LSTM)

- A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution to the vanishing gradients problem.
 - "Long short-term memory", Hochreiter and Schmidhuber, Neural Computation, 9(8):1735-1780, 1997. Link: <u>https://www.bioinf.jku.at/publications/older/2604.pdf</u>
- On time step t, there is a hidden state h and a cell state c
 - Both are vectors length n
 - The cell stores long-term information
 - The LSTM can erase, write and read information from the cell
- The selection of which information is erased/written/read is controlled by three corresponding gates
 - The gates are also vectors length n
 - On each time step, each element of the gates can be open (1), closed (0),
 - or somewhere in-between.
 - The gates are dynamic: their value is computed based on the current context

Long-Short-Term-Memory (LSTM)

We have a sequence of inputs $m{x}^{(t)}$, and we will compute a sequence of hidden states $m{h}^{(t)}$ and cell states $c^{(t)}$. On timestep *t*:

Sigmoid function: all gate Forget gate: controls what is kept vs values are between 0 and 1 forgotten, from previous cell state $egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$ **Input gate:** controls what parts of the new cell content are written to cell Output gate: controls what parts of cell are output to hidden state New cell content: this is the new content to be written to the cell Cell state: erase ("forget") some $ilde{oldsymbol{c}} ilde{oldsymbol{c}}^{(t)} = anh \left(oldsymbol{W}_c oldsymbol{h}^{(t-1)} + oldsymbol{U}_c oldsymbol{x}^{(t)} + oldsymbol{b}_c
ight),$ content from last cell state, and write ("input") some new cell content $oldsymbol{c}^{(t)} = oldsymbol{f}^{(t)} \circ oldsymbol{c}^{(t-1)} + oldsymbol{i}^{(t)} \circ ilde{oldsymbol{c}}^{(t)}$ $\rightarrow \boldsymbol{h}^{(t)} = \boldsymbol{o}^{(t)} \circ \tanh \boldsymbol{c}^{(t)}$ Hidden state: read ("output") some content from the cell Gates are applied using element-wise product

LSTM Flowchart

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory (LSTM): Gradient Flow [Hochreiter et al., 1997]

Backpropagation from c_t to c_{t-1} only elementwise multiplication by f, no matrix multiply by W

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \tau \\ tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$
$$c_t = f \odot c_{t-1} + i \odot g$$
$$h_t = o \odot \tanh(c_t)$$

Long Short Term Memory (LSTM): Gradient Flow [Hochreiter et al., 1997]

Uninterrupted gradient flow!

Gated Recurrent Unit: tanh RNN

(tanh) RNN is expensive in exploiting the whole register

Gated Recurrent Unit (GRU)

GRU is much more economic for computation!

GRU

"Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation", Cho et al. 2014, https://arxiv.org/pdf/1406.1078v3.pdf

Update gate: controls what parts of hidden state are updated vs preserved

<u>Reset gate</u>: controls what parts of previous hidden state are used to compute new content

New hidden state content: reset gate selects useful parts of prev hidden state. Use this and current input to compute new hidden content.

Hidden state: update gate

simultaneously controls what is kept from previous hidden state, and what is updated to new hidden state content

$$oldsymbol{u}^{(t)} = \sigma \left(oldsymbol{W}_u oldsymbol{h}^{(t-1)} + oldsymbol{U}_u oldsymbol{x}^{(t)} + oldsymbol{b}_u
ight)$$

 $oldsymbol{r}^{(t)} = \sigma \left(oldsymbol{W}_r oldsymbol{h}^{(t-1)} + oldsymbol{U}_r oldsymbol{x}^{(t)} + oldsymbol{b}_r
ight)$

$$egin{aligned} ilde{oldsymbol{h}}^{(t)} &= anh\left(oldsymbol{W}_h(oldsymbol{r}^{(t)}\circoldsymbol{h}^{(t-1)}) + oldsymbol{U}_holdsymbol{x}^{(t)} + oldsymbol{b}_h
ight) \ oldsymbol{h}^{(t)} &= (1-oldsymbol{u}^{(t)})\circoldsymbol{h}^{(t-1)} + oldsymbol{u}^{(t)}\circoldsymbol{ar{h}}^{(t)} \end{aligned}$$

How does this solve vanishing gradient? Like LSTM, GRU makes it easier to retain info long-term (e.g. by setting update gate to 0)

Gated Recurrent Unit (GRU)

GRU [*Learning phrase representations using rnn encoder-decoder for statistical machine translation*, Cho et al. 2014]

$$r_t = \sigma(W_{xr}x_t + W_{hr}h_{t-1} + b_r)$$

$$z_t = \sigma(W_{xz}x_t + W_{hz}h_{t-1} + b_z)$$

$$\tilde{h}_t = \tanh(W_{xh}x_t + W_{hh}(r_t \odot h_{t-1}) + b_h)$$

$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot \tilde{h}_t$$

GRU and LSTM

Gated Recurrent Unit

[Cho et al., EMNLP2014; Chung, Gulcehre, Cho, Bengio, DLUFL2014]

$$h_t = u_t \odot \tilde{h}_t + (1 - u_t) \odot h_{t-1}$$
$$\tilde{h}_t = \tanh(W [x_t] + U(r_t \odot h_{t-1}) + b)$$
$$u_t = \sigma(W_u [x_t] + U_u h_{t-1} + b_u)$$
$$r_t = \sigma(W_r [x_t] + U_r h_{t-1} + b_r)$$

Long Short-Term Memory

[Hochreiter & Schmidhuber, NC1999; Gers, Thesis2001]

$$h_t = o_t \odot \tanh(c_t)$$

$$c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$$

$$\tilde{c}_t = \tanh(W_c [x_t] + U_c h_{t-1} + b_c)$$

$$o_t = \sigma(W_o [x_t] + U_o h_{t-1} + b_o)$$

$$i_t = \sigma(W_i [x_t] + U_i h_{t-1} + b_i)$$

$$f_t = \sigma(W_f [x_t] + U_f h_{t-1} + b_f)$$

LSTM vs. GRU

- Researchers have proposed many gated RNN variants, but LSTM and GRU are the most widely-used
- The biggest difference is that GRU is quicker to compute and has fewer parameters
- There is no conclusive evidence that one consistently performs better than the other
- LSTM is a good default choice (especially if your data has particularly long dependencies, or you have lots of training data)
- Rule of thumb: start with LSTM, but switch to GRU if you want something more efficient

Is vanishing/exploding gradient just a RNN problem?

- No! It can be a problem for all neural architectures (including feed-forward and convolutional), especially deep ones.
 - Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small as it backpropagates
 - Thus lower layers are learnt very slowly (hard to train)
 - Solution: lots of new deep feedforward/convolutional architectures that add more direct connections (thus allowing the gradient to flow)
- For example:
 - "HighwayNet" with highway connections:
 - Similar to residual connections, but the identity connection vs the transformation layer is controlled by a
 dynamic gate
 - Inspired by LSTMs, but applied to deep feedforward/convolutional networks
 - ResNet with residual connections, inspired by HighwayNet
 - DenseNet directly connect everything to everything!
Some Historical Remarks on LSTM

- [LSTM0] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. TR FKI-207-95, TUM, August 1995. Link: <u>https://people.idsia.ch/~juergen/FKI-207-95ocr.pdf</u>
- [LSTM1] S. Hochreiter, J. Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):1735-1780, 1997. Based on [LSTM0].
- [LSTM2] F. A. Gers, J. Schmidhuber, F. Cummins. Learning to Forget: Continual Prediction with LSTM. Neural Computation, 12(10):2451-2471, 2000. The "vanilla LSTM architecture" with forget gates that everybody is using today, e.g., in Google's Tensorflow.
- [LSTM3] A. Graves, J. Schmidhuber. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks, 18:5-6, pp. 602-610, 2005.

Schmidhuber: "In 2020 we celebrated the quarter-century anniversary of LSTM's first failure to pass peer review. After the main peer-reviewed publication in 1997^[LSTM1] (now the most cited article in the history of Neural Computation), LSTM and its training procedures were further improved on my Swiss LSTM grants at IDSIA through the work of my later students Felix Gers, Alex Graves, and others. A milestone was the "vanilla LSTM architecture" with forget gate^[LSTM2]—the LSTM variant of 1999-2000 that everybody is using today, e.g., in Google's Tensorflow. 2005 saw the first publication of LSTM with full backpropagation through time and of bi-directional LSTM^[LSTM3] (now widely used)."

Some Historical Remarks on HighwayNet

- [HW1] R. K. Srivastava, K. Greff, J. Schmidhuber. Highway networks. Preprints <u>arXiv:1505.00387</u> (May 2015) and <u>arXiv:1507.06228</u> (July 2015). Also at NIPS 2015. The first working very deep feedforward nets with over 100 layers (previous NNs had at most a few tens of layers). Let g, t, h, denote non-linear differentiable functions. Each non-input layer of a highway net computes g(x)x + t(x)h(x), where x is the data from the previous layer. (Like LSTM with forget gates^[LSTM2] for RNNs.) Resnets^[HW2] are a special case of this where the gates are always open: g(x)=t(x)=const=1. Highway Nets perform roughly as well as ResNets^[HW2] on ImageNet.^[HW3] Highway layers are also often used for natural language processing, where the simpler residual layers do not work as well.^[HW3]
- [HW2] He, K., Zhang, X., Ren, S., Sun, J. Deep residual learning for image recognition. Preprint <u>arXiv:1512.03385</u> (Dec 2015). Residual nets are a special case of Highway Nets^[HW1] where the gates are always open: g(x)=1 (a typical highway net initialization) and t(x)=1.
- [HW3] K. Greff, R. K. Srivastava, J. Schmidhuber. Highway and Residual Networks learn Unrolled Iterative Estimation. Preprint <u>arxiv:1612.07771</u> (2016). Also at ICLR 2017.

Summary

- RNN is flexible in architectures
- Vanilla RNNs are simple but don't work very well
- Common to use LSTM or GRU: their additive interactions improve gradient flow
 - Backward flow of gradients in RNN can explode or vanish.
 - Exploding is controlled with gradient clipping.
 - Vanishing is controlled with additive interactions

Bi-Direction

Motivation of Bidirection

Task: Sentiment Classification

Bidirectional RNN: simplified diagram

Bidirectional RNN: simplified diagram

The two-way arrows indicate bidirectionality and the depicted hidden states are assumed to be the concatenated forwards+backwards states.

Bidirectional RNNs

- Note: bidirectional RNNs are only applicable if you have access to the entire input sequence.
 - They are **not** applicable to Language Modeling, because in LM you only have left context available.
- If you do have entire input sequence (e.g. any kind of encoding), bidirectionality is powerful (you should use it by default).
- For example, BERT (Bidirectional Encoder Representations from Transformers) is a powerful pretrained contextual representation system built on bidirectionality.

History note

- In 2013-2015, LSTMs started achieving state-of-the-art results
 - Successful tasks include: handwriting recognition, speech
 - recognition, machine translation, parsing, image captioning
 - LSTM became the dominant approach
- Now (2019), other approaches (e.g. Transformers) have become more dominant for certain tasks.
 - For example in WMT (a MT conference + competition):
 - In WMT 2016, the summary report contains "RNN" 44 times
 - In WMT 2018, the report contains "RNN" 9 times and "Transformer" 63 times
 - Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016, http://www.statmt.org/wmt16/pdf/W16-2301.pdf
 - Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018, http://www.statmt.org/wmt18/pdf/WMT028.pdf

Thank you!

