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Summary

» We have shown:

» CNN Architectures: LeNet5, Alexnet, VGG, GoogleNet, Resnet
» Today:

» Recurrent Neural Networks

» [STM/GRU

» Reference:

» Feifei Li, Stanford ¢s231n

» Chris Manning, Stanford cs224n




Recurrent Neural Networks
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Sequential Processing of Non-Sequence Data

Classify images by taking a
series of “glimpses”

Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.
Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015

Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with
nearmisginn




Recurrent Neural Network




Recurrent Neural Network

usually want to
predict a vector at
some time steps

-




We can process a sequence of vectors x by
applying a recurrence formula at every time step:

hi|=fw (‘ht—la $t)

new state / old state input vector at
some time step

some function
with parameters W




We can process a sequence of vectors x by
applying a recurrence formula at every time step:

hy = fW(ht—la "Ift)

Notice: the same function and the same set
of parameters are used at every time step.




Vanilla Recurrent Neural Networks

State Space equations in feedback dynamical systems

The state consists of a single “hidden” vector h:

hy = fW(ht—la "I?t)

|

h; = tanh(Wyphy 1 + W)

!
!

Y = Whyht

or, Yt = softmax(Whp,h¢)



Linear Dynamical Systems (1940s-)

®» The hidden state has linear dynamics with
Gaussian noise and produces the observations
using a linear model with Gaussian noise.

» Kalman Filter: A linearly transformed Gaussian is a
Gaussian. So the distribution over the hidden
stafe given the data so far is Gaussian. It can be
computed using “Kalman filtering”.

o predict the next output (so that we can shoot
down the missile) we need to infer the hidden
state.
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Hidden Markov Models (1970s-)

» Hidden Markov Models have a discrete one-of-N
hidden state. Transitions between states are
stochastic and controlled by a transition matrix.
The outputs produced by a state are stochastic.

» \We cannot be sure which state produced a
given output. So the state is “hidden”.

" |t is easy to represent a probability distribution

» To predict the next output we need to infer the
probability distribution over hidden states.

» HMMs have efficient algorithms (Baum-Welch
or EM Algorithm) for inference and learning.

V" » Jim Simons hires Lenny Baum as the founding
member of Renaissance Technologies in 1979

across N states with N numbers. —

OO @ O} —[mans

® OO O [nam

time -2

OO O @ —[man




Recurrent Neural Networks

» The issue of a hidden Markov model (HMM):

» At each time step it must select one of its hidden states. So with N hidden states it
can only remember log(N) bits about what it generated so far.

= RNNSs are very powerful, because they combine two properties:

» Distributed hidden state that allows them to store a lot of information about the
past efficiently.

= Non-linear dynamics that allows them to update their hidden state in
complicated ways.

» With enough neurons and time, RNNs can compute anything that can be
computed by your computer.



RNN: Computational Graph




Time invariant systems

RNN: Computational Graph

Re-use the same weight matrix at every time-step
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Outputs added

RNN: Computational Graph: Many to Many
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Loss modules

RNN: Computational Graph: Many to I\/Ianv//vJ - ‘
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RNN: Computational Graph: Many to One




RNN: Computational Graph: One to Many
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Sequence to Sequence: Many-to-one +
one-to-many

One to many: Produce output

sequence from single input vector
Many to one: Encode input

sequence in a single vector
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Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

input layer

input chars:

1
0
0
0
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Example:
Character-level

Language Model

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

hi = tanh(Whrhi—1 + Wenai)

0.3
hidden layer | -0.1

0.9

input layer

1
0
0
0
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input chars:
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Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

target chars:

output layer

hidden layer

input layer

input chars:

He!!
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Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a time,
feed back to model

Sample

Softmax

output layer

hidden layer

input layer

input chars:

“e”
t

.03
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.00
.84
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Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a time,
feed back to model

Sample

Softmax

output layer

hidden layer

input layer

input chars:

.03
A3
.00
.84

1.0
2.2
-3.0
4.1

0.3
-0.1
0.9
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Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a time,
feed back to model

Sample

Softmax

output layer

hidden layer

input layer

input chars:

A

f ¢
.03 .25
A3 .20
.00 .05
.84 .50

f f
1.0 0.5
2.2 0.3
-3.0 -1.0
4.1 1.2
0.3 1.0
-0.1 0.3
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Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a time,
feed back to model

Sample

Softmax

output layer

hidden layer

input layer

input chars:

ue “p “ uon
f ? f f
.03 .25 A1 A1
A3 .20 A7 .02
.00 .05 .68 .08
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1 1 t t
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Backpropagation through

Forward through entire sequence to
tl me compute loss, then backward through
entire sequence to compute gradient

g

TS




Truncated Backpropagation through time

Loss

/? [ T X \\ Run forward and backward
through chunks of the

sequence instead of whole
sequence




Truncated Backpropagation through time

Loss

RN

/ | [ |

Carry hidden states
forward in time forever,
but only backpropagate
for some smaller
number of steps



Truncated Backpropagation through time

Loss




Example: Text->RNN
THE SONNETS

by William Shakespeare y

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament, _>
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held: X
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer "This fair child of mine
Shall sum my count, and make my old excuse,'
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.

https://qist.github.com/karpathy/d4dee566867f8291f086
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Image Captioning

START "Straw" Hhatﬂ

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick



Recurrent Neural Network
“straw” “hat” END

Convolutional Neural Network
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Image Captlonlng Example Results

A cat sitting on a S sitti A dog is running in the A white teddy bear sitting in
Suitcase on the floor branch grass with a frisbee the grass

Two people walking on A tennis player in action Two giraffes standing in a A man riding a dirt bike on
the beach with surfboards on the court grassy field a dirt track

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - 75 May 4, 2017




Captions generated using neuraltalk2
All images are_CCQ Public domain: fur

Image Captioning: Failure Cases o it e

A bird is perched on
a tree branch

Ay

A woman is holding a
cat in her hand

A manin a
baseball uniform
throwing a ball

A woman standing on a
beach holding a surfboard

"

A person holding a
computer mouse on a desk

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - 76 May 4, 2017




Image Captioning with Attention

RNN focuses its attention at a different spatial location
when generating each word

1. Input
Image

b

14x14 Feature Map

2. Convolutional 3. RNN with attention 4. Word by
Feature Extraction over the image word
generation

_J

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.



Image Captioning with Attention

Distribution over

L locations
al
CNN = | h0
Features:
Image: LxD

HxWx3

Xu et al, “Show, Attend and Tell: Neural
Image Caption Generation with Visual
Attention”, ICML 2015




Image Captioning with Attention

Distribution over

L locations
al
CNN —» | ho

Features:

L
Image: L x
HxWx3 Weighted — ..
features: D 21 & = p?, U?,
Weighted
Xu et al, “Show, Attend and Tell: Neural com bination ?: L 1

Image Caption Generation with Visual

Attention”, ICML 2015 of features




Image Captioning with Attention

Distribution over

L locations
al
,. CNN —3P» | h0 —» h1
Features: /\
Image: L x
HxWx3 Weighted : 1
features: D | * y
Weighted
Xu et al, “Show, Attend and Tell: Neural com bination First Word

Image Caption Generation with Visual

Attention”, ICML 2015 of features




Image Captioning with Attention

CNN

Image:
HxWx3

Xu et al, “Show, Attend and Tell: Neural
Image Caption Generation with Visual
Attention”, ICML 2015

Features:
L x

Weighted
combination
of features

== | hO

Distribution over  Dijstribution

L locations

al

!

over vocab

a2 d1

Weighted

features: D

z1 y1

First word



Image Captioning with Attention

Distribution over  Distribution

ocation over vocab
al a2 d1 a3 d2
CNN —P | ho h1 o o
Featlyes
Image: L x
Hx W x 3 Weighted

eatures: D 21 1 22 y2

Weighted

Xu et al, “Show, Attend and Tell: Neural combination

Image Caption Generation with Visual

Attention”, ICML 2015 of features




Image Captioning with Attention

e . E u U .

bird flying over body

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.




Image Captioning with Attention

: s 4 ;
o= hr e 1k .

A woman is throwing a frisbee in a park. A stop sign is on a road with a
mountain in the background.

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.




The Fundamental Deep Learning Problem:
Vanishing / Exploding Gradients

de(f -
A=y

ﬁWF '(Net(t-m))ll
de(t) phe

<(IlWllmax,, {Il F'(Net)II})’




- . Bengio et al, “Learning long-term dependencies with gradient descent
Va n I I I a R N N ra d I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

hy = tanh(Wpphi—1 + Wanaxy)

_ hi_1
) o L_» 1 — tanh ((Whh Wha) ( T4 ))

t-1 T t n
- | g = tanh (W ( H))
X .




Bengio et al, “Learning long-term dependencies with gradient descent

n | |
Va n I I I a R N N G ra d I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

Backpropagation from h,
to h,_, multiplies by W
(actually W, ")

e N\
hy = tanh(Wpyphi—1 + Wienay)

AL, (e ()
- ! J = tanh (W (h;;l))

ht-1 -




- - Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013
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Computing gradient
of h, involves many
factors of W

(and repeated tanh)




Vanilla RNN Gradient Flow

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”’, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Computing gradient
of h, involves many
factors of W

(and repeated tanh)

Al
N
Ml

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients



- - Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013
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Largest singular value > 1: | Gradient clipping: Scale

Computing gradient | Exploding gradients gradient if its norm is too big
of h0 involves many

_ grad_norm = np.sum(grad * grad)
factors of W Largest smgular value < 1: if grad_norm > threshold:

(and repeated tanh) Vanishing gradients grad *= (threshold / grad_norm)




Vanilla RNN Gradient Flow

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Computing gradient
of h, involves many
factors of W

(and repeated tanh)

Al
Al

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:

Vanishing gradients — Change RNN architecture




Some Historical Remarks

» [VANTI1] S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, TUM, 1991
adyvisor J. Schmidhuber). Link:
http://www.idsia.ch/~juergen/SeppHochreiter1 29 1ThesisAdvisorSchmidhuber.pdf

» [VAN2] Y. Bengio, P. Simard, P. Frasconi. Learning long-term dependencies with gradient descent is
difficult. IEEE TNN 5(2), p 157-166, 1994

» [VAN3] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber. Gradient flow in recurrent nets: the difficulty
N S ANALYSIS O TH of learning long-term dependencies. In S. C. Kremer and J. F. Kolen, eds., A Field Guide to Dynamical
FUNDAMENTASEP LEARKING PROBLEM Recurrent Neural Networks. IEEE press, 2001

IIMHI)||=Illi[WF'(Nmz-m))n » [VAN4] Y. Bengio. Neural net language models. Scholarpedia, 3(1):3881, 2008. Link:
http://www.scholarpedia.org/article/Neural net language modelseCachedSimilarl3

de(t)

m=1

B = . SchmidHuber (hitps://people.idsia.ch/~juergen/deep-learning-miraculous-year-1990-
— 1991.html#Sec.%203):

» “Asa part of his thesis, Sepp implemented the Neural History Compressor above (see Sec. 1) and other RNN-based
systems (see Sec. 11). However, he did much more: His work formally showed that deep NNs suffer from the now famous
problem of vanishing or exploding gradients: in typical deep or recurrent networks, back-propagated error signals
either shrink rapidly, or grow out of bounds. In both cases, learning fails. This analysis led to basic principles of what's
now called LSTM (see Sec. 4).”

» ‘“Interestingly, in 1994, others published resultsVAN2 essentially identical to the 1991 vanishing gradient results of
Sepp.MANITEven after a common publication!VAN3 the first author of referencelYANZ pyblished papersAN4 that cited
only their own 1994 paper but not Sepp's original work.”




Long Short Term Memory (LSTM)




Long-Short-Term-Memory (LSTM)

» A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution to the
vanishing gradients problem.

» “|ong short-term memory”, Hochreiter and Schmidhuber, Neural Computation, 9(8):1735-
1780, 1997. Link: https://www.bioinf.jku.at/publications/older/2604.pdf

» On fime step 1, there is a hidden state h and a cell state ¢

» Both are vectors length n
» The cell stores long-term information
» The LSTM can erase, write and read information from the cell

» The selection of which information is erased/written/read is controlled by three
corresponding gates

» The gates are also vectors length n
» On each time step, each element of the gates can be open (1), closed (0),
= or somewhere in-between.

» The gates are dynamic: their value is computed based on the current context



Long-Short-Term-Memory (LSTM)

We have a sequence of inputs z*), and we will compute a sequence of hidden states h®
and cell states ¢*). On timestep t:

Sigmoid function: all gate
Forget gate: controls what is kept vs values are between 0 and 1

forgotten, from previous cell state \

~

Input gate: controls what parts of the f(t) =0 (th(t_l) + Ufw(t) + bf)
new cell content are written to cell \
i® =lo|(W;RtD + Uz® + bi)

Output gate: controls what parts of

cell are output to hidden state ~ o) =|g (Woh(t_l) + Uow(t) + bo>

New cell content: this is the new N
content to be written to the cell

Cell state: erase (“forget”) some
content from last cell state, and write

&® = tanh (Wch(t‘l) +Uz® + bc)

(“input”) some new cell content \ _ . N
P c(t) — f(t) 0] c(t 1) + Z(t) 0] c(t)
Hidden sftate: r:ad (I’l’output”) some |, B® — 6®) 5 tanh e® I D
content from the ce
\ Gates are applied using

23

element-wise product

All these are vectors of same length n



LSTM Flowchart

» Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Write some new cell content

Forget some
cell content

Output some cell content
to the hidden state

Compute the

forget gate

Compute the Compute the Compute the
input gate new cell content output gate

O—P>—>—<

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy




Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

t-1 <=

t-1

\
= GT) : 1— : Ct -
. l
W_,?,+;}® tanh
N !
» stack
N ~e—h7

Backpropagation from c, to
c,_, only elementwise
multiplication by f, no matrix
multiply by W

) o
f _ g 17,74 (ht—l)
0 o a5

g tanh

Ct :fQCt_l —I—z@g
ht =00® tanh(ct)



Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

C B C [ © (62 h C © C B C
= = —_— 4 — = = —_ + —> —b
1= T -— S rys T - S 3
f f
[ [
t:1nh W— g}, ®© t:1nh W— :LI_: ® t:1nh
— T > stack — > stack

Similar to ResNet!
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In between:

Highway Networks
g="T(x,Wr)
y=9g0H(@z,Wi)+(1-g)Ox

Srivastava et al, “Highway Networks”,
ICML DL Workshop 2015



Gated Recurrent Unit: fanh RNN

» (fanh) RNN is expensive in exploiting the whole register

Registers h

-~

Execution

— 1. Read the whole register h
— 2. Update the whole register

h < tanh(W [z] + Uh + b)




Gated Recurrent Unit (GRU)

» GRU is much more economic for computation!

Registers f

: Execution
4 )

1. Select a readable subset 7
» 2. Read the subset r® h
¥ 3. Select a writable subset U

—_— 4. Update the subset
\_ ) huOh+(1—u)Oh




GRU

» "[earning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation”, Cho et al. 2014,
https://arxiv.org/pdf/1406.1078v3.pdf

Update gate: controls what parts of
hidden state are updated vs preserved

\u(t) . (Wuh(t_l) 4+ Uum(t) 4+ bu)
Reset gate: controls what parts of

previous hidden state are used to —— s ) — & (th(t—l) +U,z® + br)
compute new content

New hidden state content: reset gate () _ (t) (t—1) (t)
selects useful parts of prev hidden /'h’ = tanh (Wh (r' oh )+ Upz'™ + bh)

state. Use this and current input to Bt — (1- 'u,(t)) o =1 1 4 o B®)
compute new hidden content.

Hidden state: update gate
simultaneously controls what is kept
from previous hidden state, and what
is updated to new hidden state content

How does this solve vanishing gradient?
Like LSTM, GRU makes it easier to retain info
long-term (e.g. by setting update gate to 0)




h{t-1]1 >

Gated Recurrent Unit (GRU)

\

GRU [Learning phrase representations using rnn
encoder-decoder for statistical machine translation,
T} ] Cho et al. 2014]

] rlt]

X

z[t]

X +

A

S
X

| hlt]

J

\
>

> o > o |)tanh]
)

J

x[t]

ry = O—(erxt + Whrht—l + br)
Zt = U(Wazzxt + thht—l + bz)

he = tanh(Wanze + Wha(re © he—1) + bp)
ht :thht_l—l—(l—zt)@iLt



GRU and LSTM

Gated Recurrent Unit
[Cho et al., EMNLP2014;

Chung, Gulcehre, Cho, Bengio,
DLUFL2014]

he = us © by + (1 — ug) © hy_q
hy= tanh(W [z¢] + U(ry ® he_1) + b)
uy = o(Wy 2] + Uyhe—1 + by)
ry = o(Wy |x¢d] + Uprhi—1 + b;.)

Long Short-Term Memory
[Hochreiter & Schmidhuber, NC1999;
Gers, Thesis2001]

h: = oy ® tanh(c;)

ct = ft ©ci—1 + 1 O ¢

¢t = tanh(W, |x¢] + U:hy—1 + b.)
o = a(Wy, x| + Ughi—1 + b,)

iy = o (W |ze] + Ushe—1 + b;)

fi =Wy |xg] +Ushy—1 4+ by)



LSTM vs. GRU

» Researchers have proposed many gated RNN variants, but LSTM and GRU
are the most widely-used

» The biggest difference is that GRU is quicker to compute and has fewer
parameters

®» There is no conclusive evidence that one consistently performs better than
the other

» | STM is a good default choice (especially if your data has particularly long
dependencies, or you have lots of fraining datq)

= Rule of thumb: start with LSTM, but switch to GRU if you want something
more efficient



Is vanishing/exploding gradient just a RNN
problem?

» No! It can be a problem for all neural architectures (including feed-forward and
convolutional), especially deep ones.

» Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small as
it backpropagates

» Thus lower layers are learnt very slowly (hard to train)

» Solution: lots of new deep feedforward/convolutional architectures that add more direct
connections (thus allowing the gradient to flow)

®» For example:
= “HighwayNet" with highway connections:

» Similar to residual connections, but the identity connection vs the transformation layer is controlled by a
dynamic gate

» |nspired by LSTMs, but applied to deep feedforward/convolutional networks

» ResNet with residual connections, inspired by HighwayNet

= DenseNet directly connect everything to everything!



Some Historical Remarks on LSTM

» [LSTMO] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. TR FKI-207-
95, TUM, August 1995. Link: https://people.idsia.ch/~juergen/FKI-207-250ocr.pdf

» [LSTM1] S. Hochreiter, J. Schmidhuber. Long Short-Term Memory. Neurdl
Computation, 9(8):1735-1780, 1997. Based on [LSTMO].

» [LSTM2] F. A. Gers, J. Schmidhuber, F. Cummins. Learning to Forget: Continual
Prediction with LSTM. Neural Computation, 12(10):2451-2471, 2000. The "vanilla
LSTM architecture" with forget gates that everybody is using today, e.qg., in
Google's Tensorflow.

[LSTM3] A. Graves, J. Schmidhuber. Framewise phoneme classification with
bidirectional LSTM and other neural network architectures. Neural Networks,
18:5-6, pp. 602-610, 2005.

Schmidhuber: “In 2020 we celebrated the quarter-century anniversary

of LSTM's first failure to pass peer review. After the main peer-reviewed
publication in 19975™I1 (now the most cited article in the history of Neural
Computation), LSTM and its training procedures were further improved on my
Swiss LSTM grants at IDSIA through the work of my later students Felix Gers, Alex
Graves, and others. A milestone was the "vanilla LSTM architecture" with forget
gatelb™M2—the LSTM variant of 1999-2000 that everybody is using today, e.g., in
Google's Tensorflow. 2005 saw the first publication of LSTM with full
backpropagation through time and of bi-directional LSTMIETMEL (now widely
used).”




Some Historical Remarks on
HighwayNet

» [HW1] R. K. Srivastava, K. Greff, J. Schmidhuber. Highway networks.
Preprints arXiv:1505.00387 (May 2015) and arXiv:1507.06228 (July 2015). Also at NIPS
2015. The first working very deep feedforward nets with over 100 layers (previous
NNs had at most a few tens of layers). Let g, t, h, denote non-linear differentiable
functions. Each non-input layer of a highway net computes g(x)x + t(x)h(x), where x
is the data from the previous layer. (Like LSTM with forget gatestS™2] for RNNS.)
Resnets!""2l are a special case of this where the gates are always open:
g(x)=t(x)=const=1. Highway Nets perform roughly as well as ResNets!"" on
ImageNet.[HW3l Highway layers are also often used for natural language processing,
where the simpler residual layers do not work as well.[HWs]

» [HW2] He, K., Zhang, X., Ren, S., Sun, J. Deep residual learning for image recognition.
Preprint arXiv:1512.03385 (Dec 2015). Residual nets are a special case of Highway
NeftslEWil where the gates are always open: g(x)=1 (a typical highway net
initialization) and t(x)=1.

» [HW3] K. Greff, R. K. Srivastava, J. Schmidhuber. Highway and Residual Networks
learn Unrolled Iterative Estimation. Preprint arxiv:1612.07771 (2016). Also at ICLR 2017.




Summary

» RNN is flexible in architectures
» Vanilla RNNs are simple but don't work very well

®» Common to use LSTM or GRU: their additive interactions improve gradient
flow

» Backward flow of gradients in RNN can explode or vanish.

» Exploding is controlled with gradient clipping.

» Vanishing is controlled with additive interactions




Bi-Direction




Motivation of Bidirection

Task: Sentiment Classification

36

Sentence encoding

positive

0000}—

We can regard this hidden state as a
representation of the word “terribly” in the
context of this sentence. We call this a
contextual representation.

movie was

terribly

exciting

These contextual
representations only
contain information
about the left context
(e.g. “the movie
was”).

What about right
context?

In this example,
“exciting” is in the
right context and this
modifies the meaning
of “terribly” (from
negative to positive)




This contextual representation of “terribly”

BidirECtionaI RN NS has both left and right context!
_/
(0] (0] (@] (@] B (0]
o o @) @) o o
o o o o @) @)
Concatenated : : : : : :
hidden states ° ° o o o o
o o o o @ (]
o o o o o o
PN
o @) @) o @) o
Backward RNN : : : : : :
o @) o o @) @)
AN
Forward RNN : > : > : > : > : S
ﬁ/ o) W/ ° ;V/
the
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movie was terribly  exciting !



Bidirectional RNN: simplified diagram

On timestep t: This is a general notation to mean “compute
one forward step of the RNN” — it could be a
vanilla, LSTM or GRU computation.

e

Forward RNN ﬁ(t) — RNNFW( h (t_l)’ a;(t)) Generally, these

two RNNs have
Backward RNN %(t) = RNNBW(W““), :B(t)) separate weights

Concatenated hidden states | B (%) |= [T;(t); %(t)]

/

We regard this as “the hidden
state” of a bidirectional RNN.
This is what we pass on to the
next parts of the network.




Bidirectional RNN: simplified diagram

» The two-way arrows indicate bidirectionality and the depicted hidden
states are assumed to be the concatenated forwards+backwards states.

O O O @) O O
O O O @) O O
e | T e S e a2 Al
O O O O O O
O O O O O O
the movie was terribly exciting !




Bidirectional RNNSs

» Nofte: bidirectional RNNs are only applicable if you have access to the entire input
sequence.

» They are not applicable to Language Modeling, because in LM you only have left context
available.

» |f you do have entire input sequence (e.g. any kind of encoding), bidirectionality is
powerful (you should use it by default).

= [For example, BERT (Bidirectional Encoder Representations from Transformers) is a
powerful pretrained contextual representation system built on bidirectionality.




History note

» |n 2013-2015, LSTMs started achieving state-of-the-art results
» Successful tasks include: handwriting recognition, speech
= recognition, machine translation, parsing, image captioning
» | STM became the dominant approach

Now (2019), other approaches (e.g. Transformers) have become more dominant for
certain tasks.

» For example in WMT (a MT conference + competition):

» |n WMT 2016, the summary report contains "RNN" 44 times
» |n WMT 2018, the report contains “RNN" 9 fimes and “Transformer” 63 times

» Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016,
http://www.statmt.org/wmt16/pdf/W16-2301.pdf

» Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018,
http://www.statmt.org/wmt18/pdf/WMT028.pdf




Thank you!




