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Course Infomation

» Course web:

» hitps://yao-lab.github.io/aqifin/2021/
» Time:

» FEvery Thursday, 7:30-10:20pm
» Venue:

» | ecfure Theater G

» 7/oom meetings joined from CANVAS
» |nstructors:
= Yuan Yao (HKUST) <aifin.hkust@gmail.com>

» With guest speakers, e.g. Prof. Michael Zhang (CUHK-Tsinghua), Prof. Haifeng You (HKUST),
and those from industry

®» Teaching Assistants:
» CAO, He difin.hkust@gmail.com
» WANG, Xiasi <aifin.hkust@gmail.com>




MAFS 6010U: Artificial Infelligence in Fintech

Module Description Course Focus

This course explores the basic concepts
and underlying principles of artificial
intelligence (Al), delving into the
fundamentals of machine learning with
insights from case studies of relevant
technologies.

Allowing for the experimentation of
applications of machine learning, this
course is designed to encourage students
to devise creative ways to put readily-
available Al technologies to use to
tackle problems in real life.

The module aims to provide students with
an understanding of artificial intelligence
through:

« Examining the history as well as key
concepts and theories of Al and the
enablers of the technology

* Reviewing various types of neural
networks, and analyzing the relevant use
cases of Al across industry verticals



» Projects:

» Basic level: a warm-up project

®» hitps://vao-lab.github.io/qifin/2021/project1/project].pdf

» Kaggle Contest: Home Credit Default Risk

» hitps://www.kaggle.com/c/home-credit-default-risk/overview

» Advanced level: to-be-announced
» Trend pattern prediction via CNN
» Sentiment analysis via statistical language models

» Anomaly detection via GANs, etc.

®» Team works are encouraged!




Course Schedule

Session Topic Application & Case Study
1 — History and Overview of Artificial Intelligence — Prof. Michael Zhang
2 — Introduction to Supervised Learning, Linear Regression and — Credit default risk prediction
Classification
3 — Model Assessment and Selection with Regularization: Ridge — Factor selection
Regression and LASSO
4 — Decision Trees, Random Forests and Boosting — Credit analysis
5 — Support Vector Machines — Tutorial on Machine Learning with Python
— Tutorial on GPU server
6 — An Introduction to Convolutional Neural Networks — Price change patterns
7 — Transfer Learning and Neurostyle — Google deep dream
8 — An Introduction to Recurrent Neural Networks (RNN) and Long — Google Image Recognition
Short Term Memory (LSTM) — Text Sensitive Modeling
9 — An Introduction to Reinforcement Learning — Deep Reinforcement Learning in Trading
10 — Introduction to Unsupervised Learning: PCA, AutoEncoder, VAE  — Robust factor analysis
and GANs — Anomaly detection
11 — Tutorial on Deep Learning in Python — Exercise on Python Notebook
12 — Projects and Class Wrap — Prof. Haifeng You

Note: Details may change depending on class progress, development of relevant technologies, as well as information and feedback from students’ surveys.




A Brief History of Al, Machine
Learning, and Deep Learning




Artificial Intelligence, Machine Learning,
and Deep Learning

®» Alisbornin 1950s,
when a handful of
pioneers from the
nascent field of
computer science
started asking
whether computers
could be made to
“think”"—a question
whose ramifications
we're still exploring
today.

Artificial
intelligence

Machine
learning

Deep
learning




Machine Learning is a new paradigm
of computer programming

» During 1950s-1980s, two

competitive ideas of realizing
Al LLCS ' Classical

Data —»| Programming

— Answers

» Rule based inference, or
called Expert System

» Stafistics based inference, or
called Machine Learning

» ]990s- Machine Learning Data = Machine

i —
becomes dominant Rules

Answers —» learning




A brief history of Al

T

Nathaniel Rochester Marvin L. Minsky

Oliver G. Selfridge Ray Solomonoff Trenchard More Claude E. Shannon

1943: McCulloch & Pits proposed a boolean circuit model of neurons
1949: Donald Hebb proposed Hebbian learning rule.

1950: Alan Turing published "Computing Machinery and Intelligence" with
Turing test.

1956: John McCarthy at the Dartmouth Conference coined terminology
"Artificial Intelligence”

1957: Rosenblatt invented Perceptron

1960s: golden years till 1969 Minsky-Papert’s critical book Perceptron
1970s: the first Al winter

1980s: boom of Al with Expert System

1990s: the second Al winter, rise of statistical machine learning

1997: IBM Deep Blue beats world chess champion Kasparov

2012: return of neural networks as deep learning (speech, ImageNet in
computer vision, NLP, ...)

2016-2017: Google AlphaGo “Lee” and Zero
2020: Google AlphaFold



History of A.l.

Neural Networks

Expert System

ceptron

Statistical Machine Learning

“Deep Learning”

“In the first wave of Al you had to be
a programmer. In the second wave
of Al you have to be a data scientist.
The third wave of Al—the more
moral you are, the better.”

1956 1980 2000

Source: Dr. Lee Kai-Fu ¢ Sinovation Ventures and 2018 Conference on Neural Information Processing Systems

2010



The 15t machine learning method:
Least Squares

® |nvention:
» Carl Friederich Gauss (~1795/1809/1810),
» Adrien-Marie Legendre (1805)
» Robert Adrain (1808)

» Application:

» Prediction of the location of asteroid Ceres after it
emerged from behind the sun (Franz Xaver von Zach
1801)

» QOrbits of planets, Newton Laws

» Staftistics,

-

Cr




The 15" neural network: Perceptron (1-layer)

@ Invented by Frank Rosenblatt (1957)
b




The Perceptron Algorithm
for classification

l(w) = — Z v (w,x;), My =1i:y; (x5, w) <0,y; € {—1,1}}.

The Perceptron Algorithm is a Stochastic Gradient Descent method
(Robbins-Monro 1951):

wir1 = wy — e Vib(w)

_ W — MYiXi, U yiw?Xz' < 0,
Wy, otherwise.




Finiteness of Stopping Time and Margin

The perceptron converg—gence theorem was proved by Block (1962) and Novikoff (1962).
The following version is based on that in Cristianini and Shawe-Taylor (2000).

Theorem 1 (Block, Novikoff). Let the training set S ={(x1,t1),...,(X,,, t,,)} be contained in
a sphere of radius R about the origin. Assume the dataset to be linearly separable, and let
Wopt » [Woptll = 1, define the hyperplane separating the samples, having functional margin
y > 0. We initialise the normal vector as wg = 0. The number of updates, k, of the perceptron
algorithms is then bounded by
2
e<(2F)
Y

(10)

Input ball: R = max]||x;||.
1

Margin: 7 = miin yi f(z3)

\/




Hilbert’s 13th Problem

Algebraic equations (under a suitable transformation) of degree up to 6
can be solved by functions of two variables. What about

't axd+ bx? 4+ ex+1=07

Hilbert's conjecture: x(a, b, c) cannot be expressed by a superposition
(sums and compositions) of bivariate functions.

Question: can every continuous (analytic, C*°, etc) function of n

variables be represented as a superposition of continuous (analytic, C*°,
etc) functions of n — 1 variables?

Theorem (D. Hilbert)

There is an analytic function of three variables that cannot be expressed as
a superposition of bivariate ones.

_d




Kolmogorov's Superposition Theorem

Theorem (A. Kolmogorov, 1956; V. Arnold, 1957)
Given n € Z*, every fy € C([0,1]") can be reprensented as

2n+1 n

fO(X17X2a"' aXn) — Z &q Z¢pq(xp) )
g=1 p=1

/ where ¢pq € C[0, 1] are increasing functions independent of fy and
gq € C[0, 1] depend on fy.

@ Can choose g to be all the same g4 = g (Lorentz, 1966).

o Can choose ¢pq to be Holder or Lipschitz continuous, but not C!
(Fridman, 1967).

@ Can choose ¢pq = Appg Where A1, --- , A, > 0 and Zp Ap =1
(Sprecher, 1972).

If fis a multivariate continuous function, then f can be written as a superposition of composite
functions of mixtures of continuous functions of single variables:
finite composition of continuous functions of a single variable and the addition.




Kolmogorov's Exact Representation is
not stable or smooth

» [Girosi-Poggio’1989] Representation
Properties of Networks:
Kolmogorov's Theorem Is Irrelevant,
hitps.//www.mitpressjournals.org/d
oi/pdf/10.1162/neco.1989.1.4.465

» | acking smoothnessin h and g
[Vitushkin'1964] fails to guarantee
the generalization ability (stability)
against noise and perturbations

» The representation is not universal in
F the sense that g and h both
depend on the function F to be
represented.

Figure 1: The network representation of an improved version of Kolmogorov’s
theorem, due to Kahane (1975). The figure shows the case of a bivariate function.
The Kahane’s representation formula is f(z1,...,z,) = Zgi{'l g[Z;l:l lphg(zp)]
where h, are strictly monotonic functions and [, are strictly positive constants
smaller than 1.




A Simplified illustration by David McAllester

A Simpler, Similar Theorem

For (possibly discontinuous) f : [0, 1] — R there exists (pos-
sibly discontinuous) g, h; : R — R.

flz1, ..., zN) =g Zhi(fb‘z’)

Proof: Select h; to spread out the digits of its argument so
that >, h;(x;) contains all the digits of all the x;.




Jniversal Approximate Representation
‘Cybenko'1989, Hornik et al. 1989, Poggio-Girosi’1989, ...]

For continuous f : [0, 1] — R and & > 0 there exists

F(z) = a'c(Wz+ )

= ZO&Z'O‘ (Z Wz’,j X j —1—5@)
2 J

such that for all z in [0, 1]"Y we have |F(z) — f(z)| < €.

Complexity (regularity, smoothness) thereafter becomes the central pursuit in
Approximation Theory.




Locality or Sparsity of Computation

Minsky and Papert, 1969

Perceptron can’t do XOR classification
Perceptron needs infinite global
information to compute connectivity

Expanded Edition
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Locality or Sparsity is important:
Locality in fimee
Locality in space?

Marvin L.. Minsky
Seymour A. Papert

Marvin Minsky Seymour Papert
A U N



Multilayer Perceptrons (MLP) and
Back-Propagation (BP) Algorithms

NATURE VOL. 323 9 OCTOBER 1946 LETTERS TONATURE 533

D.E. Rumelhart, G. Hinton, R.J. Williams (1986)
Learning representations by back-propagating

errors, Nature, 323(?): 533-536

BP algorithms as stochastic gradient descent
algorithms (Robbins—-Monro 1950; Kiefer-
Wolfowitz 1951) with Chain rules of Gradient maps

Deep network may classify XOR. Yet topology?

mmm We address complexity
and geometric invariant

properties first.

Learning representations
by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hintont
& Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California,
San Diego, La Jolla, California 92093, USA

+ Department of Computer Science, Carnegic-Mellon University,
Pitisburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for
networks of like units. The adjusts
the weights of the connections in the network so as to minimize a
measure of the difference between the actual output vector of the
net and the desired output vector. As a result of the weight
adjustnients, internal ‘*hidden’ units which are not part of the input
or output come to represent important features of the task domain,
and the regularities in the task are captured by the interactions
of these units. The ability to create useful new features distin-
guishes back-propagation from eaclier, simpler methods such as
the perceptron-convergence procedure’.

There have been many attempts to design self-organizing
neural networks, The aim is to find a powerful synaptic
modification rule that will allow an arbitrarily connected neural
network to develop an internal structure that is appropriate for
a particular task domain. The task is specificd by giving the
desired state vector of the output units for each state vector of
the input units, If the input units are directly connected to the
output units it is relatively easy to find learning rules that
iteratively adjust the relative strengths of the connections so as
to progressively reduce the difference between the actual and
desired output vectors®. Learning becomes more interesting but

+Ta whom correspondence should be addressed

more difficult when we introduce hidden units whose actual or
desired states are not specified by the task. (In perceptrons,
there are ‘feature analysers’ between the input and output that
are not true hidden units because their input connections are
fixed by hand, so their states are completely determined by the
input vector: they do not learn representations.) The learning
procedure must decide under what circumstances the hidden
units should be active in order to help achieve the desired
input-output behaviour. This amounts to deciding what these
units should represent. We demonstrate that a general purpose
and relatively simple procedure is powerful enough to construct
iate internal i

The simplest form of the learning procedure is for layered
networks which have a layer of input units at the bottom; any
number of intermediate layers; and a layer of output units at
the top. Connections within a layer or from higher to lower
layers are forbidden, but connections can skip intermediate
layers. An input vector is presented to the network by setting
the states of the input units. Then the states of the units in each
layer are determined by applying equations (1) and (2) to the
connections coming from lower layers. All units within a layer
have their states set in paraliel, but different layers have their
states set sequentially, starting at the bottom and working
upwards until the states of the output units are determined

The total input, X;, to unit j is a linear function of the outputs,
y, of the AT THAATE conaaeied to 1 and of The Werghtsw,

on these connections

%=Ly [¢V]

Units can be given biases by introducing an extra input to each
unit which always has a value of 1. The weight on this extra
input is called the bias and is equivalent to a threshold of the
opposite sign. It can be treated just like the other weights.

A unit has a real-valued awm:u

function of its total input
=

1
1+e

(&)




Parallel Distributed Processing
by Rumelhart and McClelland, 1986

Minsky and Papert set out to show which functions can and cannot
be computed by this class of machines. They demonstrated, in particu-
lar, that such perceptrons are unable to calculate such mathematical
functions as parity (whether an odd or even number of points are on in
the retina) or the topological function of connectedness (whether all
points that are on are connected to all other points that are on either
directly or via other points that are also on) without making use of
absurdly large numbers of predicates. The analysis is extremely elegant
and demonstrates the importance of a mathematical approach to analyz-

of multilayer networks that compute parity). Similarly, it is not diffi-
cult to develop networks capable of solving the connectedness or
inside/outside problem. Hinton and Sejnowski have analyzed a version
of such a network (see Chapter 7).

Essentially, then, although Minsky and Papert were exactly correct in
their analysis of the one-layer perceptron, the theorems don’t apply to
systems which are even a little more complex. In particular, it doesn’t
apply to multilayer systems nor to systems that allow feedback loops.




BP algorithm = Gradient Descent Method

@ Training examples {z}}™_, and labels {y*}™_,
@ Output of the network {z% },
@ Objective square loss, cross-entropy loss, etc.

I ) = 5 3 5l o (1)
@ Gradient descent
Wi =W, - n%
by = b — 772—;

In practice: use Stochastic Gradient Descent (SGD)




Derivation of BP: Lagrangian Multiplier
LeCun et al. 1988

Given n training examples (1;, y;) = (input,target) and L layers
@ Constrained optimization

min i1 |z (L) — yill2

subjectto  x;(¢) = fo [Wgﬂfi (£—1) },
b=y enylly £=1yun. b, 3300} =1
@ Lagrangian formulation (Unconstrained)
Vr[g’rjlgﬁ(W, x, B)

LW,z,B) =3/, {Ilfcz'(L) —yill3 +

Zgj:l BZ'(K)T (xz (f) — fr [ngi (f — 1) }) }

http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf



BP Algorithm: Forward Pass

@ Cascade of repeated [linear operation followed by
coordinatewise nonlinearity]’s

@ Nonlinearities: sigmoid, hyperbolic tangent, (recently)
RelLU.

Algorithm 1 Forward pass

Input: z
Output: =

W3

1: for/=1to L do
2. wxp= fo(Wizy—1 + by)
3: end for




Background Info

back-propagation — derivation

o 9L

oB

xi(ﬁ):fg[}/l/gxi(ﬁ—l)j] (=1,....L, i=1,...,n

Ai(€)

o £ 2 = [Vf]B(¢)
Backward (adjoint) pass
z(L) =2V fi, [Az'(L)] (i — zs(L))
2(0) = Vo | 4O |Wh z(t+1) £=0,...,L—1

o W+ W+ 2\2%

Weight update

Wo +— We+ A0, z(0)z] (£ —1) 21 /550




Convolutional Neural Networks: shift
Invariances and locality

@ Can be traced to Neocognitron of Kunihiko Fukushima
(1979)
@ Yann LeCun combined convolutional neural networks with
back propagation (1989)
4 g . . :
B, et 36192202 (190 | @ Imposes shift invariance and locality on the weights
@ Forward pass remains similar
s @ Backpropagation slightly changes — need to sum over the
il s oo s, g e gradients from all spatial positions

1

Neocognitron: A Self-organizing Neural Network Model
for a Mechanism of Pattern Recognition
Unaffected by Shift in Position

\&
\

C3: 1. maps 16@10x10
INPUT C1: leature maps S4: 1. maps 16@5x5

o 7J

-l
__M

|
Ful canection ‘ Gaussian connections
Convolutions Subsampling Comvolutions  Subsampling Full connection

\E@\ ]
@



Pre-RNN: Linear Dynamical Systems (1940s-)

®» The hidden state has linear dynamics with
Gaussian noise and produces the observations
using a linear model with Gaussian noise.

» Kalman Filter: A linearly transformed Gaussian is a
Gaussian. So the distribution over the hidden
stafe given the data so far is Gaussian. It can be
computed using “Kalman filtering”.

o predict the next output (so that we can shoot
down the missile) we need to infer the hidden
state.

hi = Winhi—1 + Whexe + 6?

Y = Wyhht + Wyx:ct + Ety

—

time =2

O @) @)
C (- C
— — —
© © ©
C C C
— — —
=) =3 =)
o Q. o
O > QO > O
(D ) (q))
> > >
>5F||52||52
c S||c S| |ec =
-3 ~ 3 ~ 3
«Q «© «Q




Hidden Markov Models (1970s-)

» Hidden Markov Models have a discrete one-of-N
hidden state. Transitions between states are
stochastic and controlled by a transition matrix.
The outputs produced by a state are stochastic.

» \We cannot be sure which state produced a
given output. So the state is “hidden”.

" |t is easy to represent a probability distribution

» To predict the next output we need to infer the
probability distribution over hidden states.

» HMMs have efficient algorithms (Baum-Welch
or EM Algorithm) for inference and learning.

V" » Jim Simons hires Lenny Baum as the founding
member of Renaissance Technologies in 1979

across N states with N numbers. —

OO @ O} —[mans

® OO O [nam

time -2

OO O @ —[man




Recurrent Neural Networks (1986-)

» The issue of a hidden Markov model (HMM):

» At each time step it must select one of its hidden states. So with N hidden states it
can only remember log(N) bits about what it generated so far.

= RNNSs are very powerful, because they combine two properties:

» Distributed hidden state that allows them to store a lot of information about the
past efficiently.

= Non-linear dynamics that allows them to update their hidden state in
complicated ways.

» Rumelhart et al. enables training by BP algorithm

» With enough neurons and time, RNNs can compute anything that can be
computed by your computer.



Long-Short-Term-Memory (LSTM, 1997)

» Sepp Hochreiter; Jurgen Schmidhuber (1997). "Long short-term

memory". Neural Computation. 9 (8): 1735-1780.
(https://www.bioinf.jku.at/publications/older/2604.pdf)

» |ntroduction of short path to learn deep networks without vanishing
gradient problem.

Forget some

| Write some new cell content | @

cell content [ ——__|
-

o

s

Compute the i 'Et %
—

forget gate B [o] (o]

——| Output some cell content
to the hidden state

Compute the ® Compute the
input gate new cell content

Compute the
output gate

Neural Network Pointwise Vector
Layer Operation ~ Transfer




Max-Margin Classifier (SVM)

o 2 2
mlnlmlzeﬁo,ﬁl ,,,, 5?3 ||/BH = Z /Bj
J

subject to yi(So + Bixi1 + ... + Bpzip) > 1 for all ¢

Separable two classes with Max-Margin Solution

Viadmir Vapnik, 1994




MNIST Dataset Test Error
LeCun et al. 1998

Linear
[deslant] Linear
Pairwise

K-NN Euclidean

[deslant] K-NN Euclidean
40PCA + quadratic

1000 RBF + linear
[16x16] Tangent Distance
SVM poly 4

RS-3VM poly 5

[dist] Y-SVM poly 9

28x28-300-10
[dist] 28x28-300-10
[deslant] 20x20-300-10

Simple SVM performs 98x28-1000-10

[dist] 28x28-1000-10

as well as Multilayer  am 10010
Convolutional Neural N i
Networks which need ik
careful tuning (LeNets) N

LeMNet-4 /Local
LeNet-4 /K-NN
LeNet-5

Dark era for NN: 1998-2012 ] LeNet5

[dist] Boosted LeMet—4




2000-2010: The Era of SVM, Boosting, ...
as nights of Neural Networks




Decision Trees and Boosting

CLASSIFICATION
AND
REGRESSION
TrEES

HTHR
Stone

Breiman, Friedman, Olshen, Stone, (1983). CART

" The Boosting problem*’ (M. Kearns & L. Valiant):
Can a set of weak learners create a single strong

learnere (=NMNREETRNMEETE ?)
Breiman (1996): Bagging

Freund, Schapire (1997). AdaBoost (“the best off-
the-shelf algorithm™ by Breiman)

Breiman (2001): Random Forests



Around the year of 2012: return of NN
as deep learning’

Speech Recognition: TIMIT Computer Vision: ImageNet

TIMIT Speech Recognition Dataset ImageNet
25 . Large-Scale Visual Recognition
Challenge
30
225
225
Error 20 .q
p 15
17.5
7.5
2004 2006 2008 2010 2012 2014 2010 2011 2012 2013 2014 2015

A
F
j . *‘ﬁt
Deep Learning Deep Convolutional Neural Nets =



Depth as function of year

28.2

‘ 152 layers ‘

\ 16.4

\ 22 layers ] [ 19 layers ‘

ILSVRC ImageNet Top 5

' 6.7 73
errors
. i @ ImageNet (subset):
e 1.2 million training images
ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10 . ]88;)00'0 test images
° classes
Esiet GoogleNet GG AlexNet @ ImageNet large-scale visual recognition Challenge
[He et al., 2016] -
YGon.  aom oo Gom  onen Gmo  aam

Neural Network Architecture

source: https//www.linkedin.com/pulse/must-read-path-breaking-papers-image-classification-muktabh-mayank



Games

May 11th, 1997

Computer won world champion of chess
(Deep Blue) (Garry Kasparoy)

Deep Blue in 1997

Reaching Human Performance Level In

o 3,000
= =2
© 2,000 -%
5 1,000 - §
0l o
— AlphaGo Zero 40 blocks
-1,000 4 --- AlphaGo Master
~2.000 --- AlphaGo Lee

0 5 10 15 20 25 30 35 40
Days

AlphaGo "ZERQO” D Silver et al. Nature 550, 354—-359 (2017) doi:10.1038/nature24270



NLP and Machine Translation

» |n 2013-2015, LSTMs started achieving state-of-the-art results
» Successful tasks include: handwriting recognition, speech
= recognition, machine franslafion, parsing, image captioning

» | STM became the dominant approach

» |n 2019, other approaches (e.g. Transformers) have become more dominant for certain

For example in WMT (a MT conference + competition):

» |n WMT 2016, the summary report contains "RNN" 44 times

» |n WMT 2018, the report contains “RNN" 9 times and “Transformer” 63 times

» Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016,
hitp://www.statmt.org/wmt16/pdf/W16-2301.pdf

» Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018,
hitp://www.statmt.org/wmt18/pdf/WMT028.pdf



Number of Al papers on arXiv, 2010-
2019

Number of Al papers on arXiv, 2010-2019

Source:; arXiv, 2019,
10,000 - Artificial
Intelligence

- Computation and
Language

= CV and Pattern
Recognition
Machine Learning

- Neural and

Evolutionary
Computing

- Robotics

7,500

5,000

2,500

Number of Al papers by sub-category

2012 2014 2016 2018
Fig. 1.6.



Growth of Deep Learning

‘Deep Learning’ is coined by Hinton et al. in their Restricted Boltzman Machine paper, Science 2006,
not yet popular until championing ImageNet competitions.

GoogleTrends Compare
[ SDeep learning : ® Statistical Analysis Data Analysis + Add comparison
earch term Search term Search term
Worldwide ¥ Past 5years ¥ All categories ¥ Web Search +
Interest over time @ -

Average Apr 22,2012 Jan 12,2014 Oct 4, 2015




some Cold Water: Tesla Autopilot
Misclassifies Truck as Billboard

SEYAVERA Ve laar

- i =
1 : | EXCL!
m bca(" INVESTIGATION FOCUSED ON TESLA AUTOPILOT |obc ACTION
- ——— = 11:02 BEES

Problem: Why? How can you trust a
blackbox?




Deep Learning may be fragile in
generalization against noise!

r

“panda”
57.7% confidence

“black hole”
87.7% confidence

+.007 x

" r+
sign(VJ(0,2,y)) esign(VzJ (0, z,y))
“nematode” “gibbon”
8.2% confidence 99.3 % confidence

[Goodfellow et al., 2014]

“‘donut”
99.3% confidence



CNN learns texture features, not
shapes

(a) Texture image (b) Content image (c) Texture-shape cue conflict
81.4% Indian elephant 71.1%  tabby cat 63.9% Indian elephant
10.3% indri 17.3% grey fox 26.4% indri
8.2% black swan 3.3% Siamese cat 9.6% black swan

Geirhos et al. ICLR 2019

https://videoken.com/embed/W2HVLBMhCJQ<2tocitem=46
1:16:47




Overfitting causes privacy leakage

» Model inversion attack leaks privacy

Figure: Recovered (Left), Original (Right)

Fredrikson et al. Proc. CCS, 2016




What's wrong with deep learninge¢

Ali Rahimi NIPS'17: Machine (deep) Learning has become alchemy.
https://www.youtube.com/wafchev=ORHFOnaEzPc

Yann LeCun CVPR'15, invited talk: What's wrong with deep learning?
One important piece: missing some theory (clarity in understanding)!

httpz] /techtalks.tv/talks/whats-wrong-with-deep-learning/6 1639/

Being alchemy is certainly not a shame, not wanting to work on
advancing to chemistry is a shame! -- by Eric Xing



£C
Shall we see soon an

emergence
from Alchemy o Science
IN deep leaninge

How can we teach our students in the next generation science rather than
alchemy?

b



In this class

» Critical Thinking:
= vou have to understand what you are doing...
» Understand its principles: statistics, optimization

» Practice and Theory: What/how/why

» Analyze the real world data with the methods and understand your goal

» Team-work (no more than 4 persons per team)!




Thank you!




