Some Applications of RL in
Quantitative Trading

Weizhi Zhu

Trading with Deep Reinforcement Learning

Trading

environment

v
Training T Testing
N v
g DQN Agent g DQN Agent
State reward Action State reward Action

A

Training
complete

State Vector
* [ADX(t), RSI(t), CCI(t), position, unrealized return]

ADX(Average directional movement index) is a trend strength indicator.

RSI(Relative Strength Index) is classified as a momentum oscillator,
measuring the velocity and magnitude of directional price movements.

CCl(Commodity Channel Index) measures a security’s variation from the
statistical mean.

e could use a LSTM to extract more features.

https://en.wikipedia.org/wiki/Oscillator_(technical_analysis)

Action

* The agent could take three actions — Buy, Sell or Hold

e Could set levels of buy/sell.
e Could involve a pair of stocks.

Reward

* The reward objective is set to maximize realized PnL from a round trip
trade. It also includes commission fee.

Learning Algorithms

* DON

* Double DQN
* Dueling DQN
* Actor Critic

* PPO

* DDPG

DQN

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N

Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 0~ = 0
For episode = 1, M do

Initialize sequence s, = {x; } and preprocessed sequence ¢, =¢(s;)
For t=1,T do

With probability ¢ select a random action a,

otherwise select a, =argmax, Q(¢(s;),a; 0)

Execute action a, in emulator and observe reward r, and image x; 4 ,
Set 5,41 =5$;,4;,%+ and preprocess ¢, ., =P (s¢+1)

Store transition (¢,,a.r,¢,,,) in D

Sample random minibatch of transitions (¢j,aj,rj,¢j+ ,) from D

rj if episode terminates at step j+ 1
Sety)= rj+7 maxgy Q(¢j+,,a’; 0‘) otherwise

2
Perform a gradient descent step on (yj — Q(¢j,aj; ())) with respect to the

network parameters 0
Every C steps reset Q= Q

End For

End For

Double DQN

Here is an example: consider a single state s where the true Q
value for all actions equal 0, but the estimated Q values are
distributed some above and below zero. Taking the maximum of
these estimates (which is obviously bigger than zero) to update
the Q function leads to the overestimation of Q values.

Algorithm 1 : Double Q-learning (Hasselt et al., 2015)
[nitialize primary network)y, target network)y, replay buffer D, 7 << 1

for each iteration do
for each environment step do
Observe state s; and select a; ~ w(a;, s¢)

Execute a; and observe next state s; ., and reward r; = Ris;, a;)

Store (s, a4, 14, 8341) In replay buffer D
for each update step do

sample e; = (8p, a4, 74, 8i41) ~ D

Compute target () value:

Q" (spyae) =y + 7y Qulsppr, argmaz, Qg (5441, a'))
Perform gradient descent step on (Q* (s, a;) — Qa(s.a:))?

Update target network parameters:

=10+ (1 =7) %t

Dueling DQN

o — | V(s)

Q(s.al)

— =

Qls,a2)

CMN CMM CHN
Als,al)

=0)

Qis,a3)

Al - O I = E0 D0

C - Als,a2) 0} values

Alsad)

Motivation: it is unnecessary to know the value of each action
at every timestep. The authors give an example of the Atari
game Enduro, where it is not necessary to know which action to
take until collision is imminent.

Dueling DQN

The first one have problem of identifiability.
The second one would force Q value on selected action equal to the V value.

Policy Gradient

.I{ﬂ'g] — ET-%?TF}IR{T)J

T
VyJ(mg) = E Z Vg log mg(a;|s;)P
t=I)

where different choices of @; leads to different variants of policy algorithm.
In particular, ®; = Q™ (s, a:) — V7 (s¢) leads to Advantage Actor Critic.

Advantage Actor Critic (A2C)

Input a differentiable policy parameterization w(a | s, 0x)
Input a differentiable state-value parameterization 9(s, 65)
Select step-size parameters 0 < a;,ay < 1
Initialize the parameters O,;, 05
Loop through n episodes (or forever):
Begin the episode sg
Continue to loop until the episode ends:
Get action A from m: (S, 0) — As.
Take action A and observe reward (R;) and the new state (5;11)
Calculate the TD target: Gt < Ry + y0(St+1,65)
Calculate the TD error: 8¢ <— Rt + Y0(St+1,05) — 0(St, 05)
Calculate the critic loss L(05) =< br > 23;1 (5(S;,05) — G't)2
Calculate the actor loss L(6,) = — Zf;l In(m(As | Sty 0p))0:
Update actor parameters through backpropagation: 8, := 6, + o,V L(6,)
Update critic parameters through backpropagation: 8 := 65 + a; V3 L(65)

Results

Symbols Buy and Hold Sharpe Strategy Sharpe

Number of Trades Buy and Hold Total Return Strategy Total Return

COTY
CMS
CNC

CSRA

CSCO

-0.001793
0.008286
0.082073

-0.022823

0.084183

60

() —

-1

0.522897
1.647612
0.643396

0.502373

0.830318

24.0
21.0
4.0
7.0
13.0

-0.010763
0.021951
0.542984

-0.042829

0.283655

B DuelingDQN
B Buy-and-Hold

0.425965
0.332393
0.296637
0.056752

0.222759

Market Making

* Provide liquidity by quoting both bid and ask. Make profit from bid-
ask spread.

* Mathematically, the market making problem corresponds to the
choice of optimal quotes (i.e. the bid and ask prices) that such agents
provide to other market participants, taking into account their

inventory limits and their risk constraints often represented by a
utility function.

Mathematical Formulation

e Mid price follows dS; = odW;. bid, ask prices quoted by market maker
are denoted by S¢, S? respectively

e Inventory ¢; = Nf — N}, where Ntb and NN/ are point processes giving the
number of shares the market maker bought and sold.

e. Assume intensity AP, \% associated to N®, N® depend on the difference
between quote and mid price.

A(6%) = Ae R0 6% = 5 — sP: A?(59) = AeH" 6b = 50 — &,

where A and k are parameters characterizing the liquidity of market.
e As a consequence of his trade, market maker has an amount of cash evolv-
ing according to the following dynamics,

dX¢ = (S + 08)dANE — (S; — 62)dNY.

Goal

Find optimal (state dependent) 67, 4% that maximize CARA utility.

u(s,z,q.t) = sup E{—exp(v(Xr + qrSr))}
(85)e.(80)

Solving u and optimal {5?‘h}¢ boils down to Hamilton-Jacobi-Bellman equa-

tion. For example two-steps procedure is introduced in Marco and Sasha
(2008).

1
u; + 5021(33 - max kh(Sb)[u(s, x—s+8 g+ 1,1)
5
—u(s. x, q, e‘)] -+ max A“(S“)[u(s, X+s5+8% g—1.1)

—u(s, x, q, e‘)] = 0.

u(s, x, ¢, T) = —exp(—y(x + gs)).

Simulation

102

101

100 F

99

08 - :

o7 +

%0 01 o0z 03 04 05 06 07 08 09 i

b
Figure 1. The mid-price and the optimal bid and ask quotes.
Table 1. 1000 simulations with y=0.1.
Average Std Std

Strategy spread Profit (Profit) Final ¢ (Final ¢)
Inventory 1.49 65.0 6.6 0.08 2.9
Symmetric 1.49 68.4 12.7 0.26 8.4

Model free Reinforcement Learning Approach

reward action
R, A,
54 I?HFI r

Environment

Action Space

Action ID 0 1 2 3 4 5

Ask (0,) 1 2 3 4 5
Bid (6y,) 1 2 3 4 5|3

Action 9 MO with Size,, = — Inv(t;)

0f = 0% x M A(Spready;)/2,S¢ = S; — 0¢,
0Y = 0%« M A(Spread;)/2,S? = S; + §?.

Reward

PnlL:
ri = W(t;).

Symmetrically dampened PnL:
ri = W(t;) — n - Inv(t;) Am(t;).
Asymmetrically dampened PnL:
ri = Y(t;) — max|0, n - Inv(t;) Am(t;)].

Dampening reduce the reward gained from speculation.

Symmetric version dampens both profit and loss, Asymmetic version keep lose but
reduce profit.

State

* Bid — ask spread

* Mid-price move

* Book/queue imbalance
 Signed Volume

* Volatility

* Relative strength index

Learning Algorithms

* Q-Learning, SARSA and its variants (e.g. Double Q-Learning, Expected
SARSA...)

* Deep Q-Learning, Actor Critic and its variant.

Results

Table 6: Comparison of the out-of-sample normalised daily PnL (ND-PnL) and mean absolute positions (MAP) of the bench
mark strategies against the final presented reinforcement learning agent.

Abernethy and Kale (MMMW) Fixed (6, = 5) Consolidated Agent
Benchmark Benchmark

ND-PnL [10%] MAP [units] ND-PnL [10*] MAP [units] ND-PnL [10%] MAP [units]
CRDI.MI —1.44 +22.78 7814 + 1012 —-0.14 +1.63 205 £ 351 0.15 %=0.59 1+2
GASI.MI —-1.86 +9.22 5743 + 1333 0.01 *1.36 352 + 523 0.00 +1.01 33+ 65
GSK.L —-3.36 +13.75 8181 + 1041 0.95 +2.86 1342 + 1210 7.32 x7.23 57 £ 105
HSBA.L 1.06 £ 22.48 7330 £ 1059 2.80 +=10.30 2678 £ 1981 15.43 *13.01 104 £ 179
ING.AS —6.53 £41.85 7997 £ 1265 3.44 *23.24 2508 £ 1915 =-3.21 +29.05 10 £+ 20
LGEN.L —-0.03 +11.42 5386 £+ 1297 0.84 +2.45 986 + 949 4.52 £ 8.29 229 + 361
LSE.L —2.54 +4.50 4684 + 1507 0.20 +0.63 382 + 553 1.83 *3.32 72+ 139
NOK1V.HE —-0.97 £8.20 5991 £ 1304 —-0.52 *4.16 274 + 497 —5.28 +33.42 31 £ 062
SAN.MC —2.93 +26.51 8865 + 671 1.52 +£11.64 3021 + 2194 3.67 *13.41 4+9

VOD. L 1.80 =+ 22.83 7283 £ 1579 1.26 +4.60 1906 £ 1553 53.02 *6.35 46 + 87

Results

200000
o1, du
= 100000 ,J ‘_ L At dud
@M [. fh
e od 3 J ~
=
O
0. -1p0000
—— Basic
=200000 Consolidated
10000
@
B 5000 J jM ‘ . llh ‘A
Fa) DJ.H. § i) , L l |
2 | | a]
2 _s5000
£
-10000
’ 40

Episode [days]

Figure 5: Out-of-sample equity curve and inventory process
for the basic and consolidated agents, evaluated on HSBA. L.

Reference

* T. Beysolow Il, Applied Reinforcement Learning with Python

M. AVELLANEDA and S. STOIKOV, High-frequency trading in a limit
order book

* Thomas and Hans, Optimal dealer pricing under transactions and
return uncertainty.

* Olivier et al.. Dealing with the Inverntory Risk: A solution to the
market making problem.

* Thomas et al.. Market Making via Reinforcement Learning.

Other Applications
* Deep Hedging
* Order Execution

* Forex, Crypto Currency trading bot

