
Attention,
Transformer, and

BERT
Yuan YAO

HKUST

Summary

´ We have shown:
´ CNN Architectures: LeNet5, Alexnet, VGG, GoogleNet, Resnet

´ Recurrent Neural Networks and LSTM

´ Today:
´ Attention

´ Transformer

´ BERT

´ Reference:
´ Feifei Li, Stanford cs231n

´ Chris Manning, Stanford cs224n

A Brief History in NLP
´ In 2013-2015, LSTMs started achieving state-of-the-art results

´ Successful tasks include: handwriting recognition, speech

´ recognition, machine translation, parsing, image captioning

´ LSTM became the dominant approach

´ Now (2019), other approaches (e.g. Transformers) have become more dominant for
certain tasks.
´ For example in WMT (a MT conference + competition):

´ In WMT 2016, the summary report contains ”RNN” 44 times

´ In WMT 2018, the report contains “RNN” 9 times and “Transformer” 63 times

´ Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016,
http://www.statmt.org/wmt16/pdf/W16-2301.pdf

´ Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018,
http://www.statmt.org/wmt18/pdf/WMT028.pdf

Neural Machine Translation (NMT)

En
co

d
er

 R
N

N

Neural Machine Translation (NMT)

<START>

Source sentence (input)

 il a m’ entarté

The sequence-to-sequence model
Target sentence (output)

D
ecod

er R
N

N

Encoder RNN produces
an encoding of the
source sentence.

Encoding of the source sentence.  
Provides initial hidden state  

for Decoder RNN.

 Decoder RNN is a Language Model that
generates target sentence, conditioned on

encoding.

he

ar
gm

ax

he

ar
gm

ax

hit

hit

ar
gm

ax

me

Note: This diagram shows test time behavior:
decoder output is fed in as next step’s input

with a pie <END>

 me with a pie

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

 21

Sequence-to-sequence is versatile!
´ Sequence-to-sequence is useful for more than just MT 

´ Many NLP tasks can be phrased as sequence-to-sequence:
´ Summarization (long text → short text)

´ Dialogue (previous utterances → next utterance)

´ Parsing (input text → output parse as sequence)

´ Code generation (natural language → Python code)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201714

Recurrent Neural Networks: Process Sequences

e.g. Machine Translation
seq of words -> seq of words

Training a NMT system by BP

Greedy Decoding

´ We generate (or “decode”) the target sentence by taking argmax on
each step of the decoder

´ This is greedy decoding (take most probable word on each step)

Greedy decoding

• We saw how to generate (or “decode”) the target sentence
by taking argmax on each step of the decoder 
 
 
 
 
 
 
 
 

• This is greedy decoding (take most probable word on each
step)

• Problems with this method?

<START>

he

ar
gm

ax

he

ar
gm

ax

hit

hit
ar

gm
ax

me with a pie <END>

me with a
pie

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

 25

Sequence-to-sequence: the
bottleneck problem

Sequence-to-sequence: the bottleneck problem

En
co

d
er

 R
N

N

Source sentence (input)

<START> he hit me with a
pie

 il a m’
entarté

 he hit me with a pie
<END>

D
ecod

er R
N

N

Target sentence (output)

Encoding of the  
source sentence.  

This needs to capture all
information about the

source sentence.
Information bottleneck!

 57

Attention Mechanism
It was firstly invented in computer vision, then to NLP.

Sequence-to-sequence with attention
Sequence-to-sequence with attention

En
co

d
er

  
R
N

N

Source sentence (input)

<START> il a m’ entarté

D
ecod

er R
N

N

A
tt

en
ti

on

sc
or

es

dot product

 59

Sequence-to-sequence with attention

En
co

d
er

  
R
N

N

Source sentence (input)

<START> il a m’ entarté

D
ecod

er R
N

N

A
tt

en
ti

on

sc
or

es

dot product

 62

Sequence-to-sequence with attention

En
co

de
r
 

RN
N

Source sentence (input)

<START> il a m’ entarté

D
ecoder RN

N

At
te

nt
io

n
sc

or
es

On this decoder timestep,
we’re mostly focusing on the
first encoder hidden state
(”he”)

At
te

nt
io

n
di

st
ri

bu
ti

on
Take softmax to turn the
scores into a probability

distribution

 63

Sequence-to-sequence with attention

En
co

d
er

  
R
N

N

Source sentence (input)

<START> il a m’ entarté

D
ecod

er R
N

N

A
tt

en
ti

on

d
is

tr
ib

u
ti

on
A
tt

en
ti

on

sc
or

es

Attention
output

Use the attention distribution to take
a weighted sum of the encoder
hidden states.

The attention output mostly contains
information from the hidden states
that received high attention.

 64

Sequence-to-sequence with attention

En
co

d
er

  
R
N

N

Source sentence (input)

<START> il a m’ entarté

D
ecod

er R
N

N

A
tt

en
ti

on

d
is

tr
ib

ut
io

n
A
tt

en
ti

on

sc
or

es

Attention
output

Concatenate attention output
with decoder hidden state,
then use to compute as
before

!̂1

he

 65

Sequence-to-sequence with attention

En
co

d
er

  
R
N

N

Source sentence (input)

<START> il a m’ entarté

D
ecod

er R
N

N

A
tt

en
ti

on

sc
or

es
A
tt

en
ti

on

d
is

tr
ib

ut
io

n

Attention
output

he hit me with a

!̂6

pie

 70

Attention in EquationsAttention: in equations

• We have encoder hidden states
• On timestep t, we have decoder hidden state
• We get the attention scores for this step: 
 

• We take softmax to get the attention distribution for this step
(this is a probability distribution and sums to 1)  

• We use to take a weighted sum of the encoder hidden states to
get the attention output

 

• Finally we concatenate the attention output with the decoder
hidden state and proceed as in the non-attention seq2seq model

 71

Motivation of TransformerThe Motivation for Transformers

• We want parallelization but RNNs are inherently sequential

• Despite LSTMs, RNNs generally need attention mechanism to
deal with long range dependencies – path length between
states grows with distance otherwise

• But if attention gives us access to any state… maybe we can just
use attention and don’t need the RNN?

• And then NLP can have deep models … and solve our vision envy
45

Transformer
“Attention is all you need”

Transformer (Vaswani et al. 2017)
“Attention is all you need”

´ https://arxiv.org/pdf/1706.03762.pdf

´ Non-recurrent sequence-to-sequence model

´ A deep model with a sequence of attention-
based transformer blocks

´ Depth allows a certain amount of lateral
information transfer in understanding
sentences, in slightly unclear ways

´ Final cost/error function is standard cross-
entropy error on top of a softmax classifier

´ Initially built for NMT:
´ Task: machine translation with parallel corpus

´ Predict each translated word

Transformer Pytorch Notebook

´ Learning about transformers on your own?

´ Key recommended resource:
´ http://nlp.seas.harvard.edu/2018/04/03/attention.html

´ The Annotated Transformer by Sasha Rush, a Jupyter Notebook using PyTorch
that explains everything!

´ https://jalammar.github.io/illustrated-transformer/

´ Illustrated Transformer by Jay Alammar, a Cartoon about Transformer with
attention visualization notebook based on Tensor2Tensor.

Encoder-Decoder Blocks

Encoder-Decoder N=6 layers

Encoder has two layers

Self-Attention +
FeedForward

Attention Illustration

Embedding->(q,k,v) Dot-Product Attention

Dot-Product Self-Attention: Definition

´ Inputs: a query q and a set of key-value (k-v) pairs, to an output

´ Query, keys, values, and output are all vectors

´ Output is weighted sum of values, where
´ Weight of each value is computed by an inner product of query and

corresponding key

´ Queries and keys have same dimensionality dk, value have dv

Dot-Product Attention (Extending our previous def.)

• Inputs: a query q and a set of key-value (k-v) pairs to an output
• Query, keys, values, and output are all vectors

• Output is weighted sum of values, where
• Weight of each value is computed by an inner product of query

and corresponding key
• Queries and keys have same dimensionality dk value have dv

35

Attention: Multiple Inputs

Matrix input Scaled dot-product

Dot-Product Attention: Matrix Form

´ When we have multiple queries q, we stack them in a matrix Q:

Dot-Product Attention – Matrix notation

• When we have multiple queries q, we stack them in a matrix Q:

• Becomes:

[|Q| x dk] x [dk x |K|] x [|K| x dv]

softmax = [|Q| x dv]
row-wise

36

Dot-Product Attention – Matrix notation

• When we have multiple queries q, we stack them in a matrix Q:

• Becomes:

[|Q| x dk] x [dk x |K|] x [|K| x dv]

softmax = [|Q| x dv]
row-wise

36

Dot-Product Attention (Extending our previous def.)

• Inputs: a query q and a set of key-value (k-v) pairs to an output
• Query, keys, values, and output are all vectors

• Output is weighted sum of values, where
• Weight of each value is computed by an inner product of query

and corresponding key
• Queries and keys have same dimensionality dk value have dv

35

Scaled Dot-Product Attention

´ Problem: As dk gets large, the variance of qTk increases

´ some values inside the softmax get large

´ the softmax gets very peaked

´ hence its gradient gets smaller.

´ Solution: Scale by length of query/key vectors:

Scaled Dot-Product Attention

• Problem: As dk gets large, the variance of qTk increases à some
values inside the softmax get large à the softmax gets very
peaked à hence its gradient gets smaller.

• Solution: Scale by length of
query/key vectors:

37

Multi-head Attention
´ Problem with simple self-attention:

´ Only one way for words to interact with one-another

´ Solution: Multi-head attention
´ First map Q, K, V into h=8 many lower dimensional

spaces via W matrices

´ Then apply attention, then concatenate outputs and
pipe through linear layer

´ Multi-head attention allows the model to jointly attend
to information from different representation subspaces
at different positions.

Multi-head attention

• Problem with simple self-attention:
• Only one way for words to interact with one-another
• Solution: Multi-head attention
• First map Q, K, V into h=8 many lower

dimensional spaces via W matrices
• Then apply attention, then concatenate

outputs and pipe through linear layer

39

Multihead

2 heads h=8 heads

Concatenation Linear

Multi-head Attention

A Transformer block

´ Each block has two “sublayers”
´ Multihead attention

´ 2-layer feed-forward NNet (with ReLU)

´ Each of these two steps also has:
´ Residual (short-cut) connection: x+sublayer(x)

´ LayerNorm(x+sublayer(x)) changes input features to
have mean 0, variance 1, and adds two more
parameters (Ba et al. 2016)

Transformer block

Each block has two “sublayers”

1. Multihead attention

2. 2-layer feed-forward NNet (with ReLU)

Each of these two steps also has:

Residual (short-circuit) connection

LayerNorm (scale to mean 0, var 1; Ba et al. 2016)

47

Complete transformer block

Each block has two “sublayers”

1. Multihead attention

2. 2-layer feed-forward NNet (with ReLU)

Each of these two steps also has:

Residual (short-circuit) connection and LayerNorm

LayerNorm(x + Sublayer(x))

Layernorm changes input features to have mean 0 and variance 1
per layer (and adds two more parameters)

Layer Normalization by Ba, Kiros and Hinton, https://arxiv.org/pdf/1607.06450.pdf
42

Residue (Shortcut)Complete transformer block

Each block has two “sublayers”

1. Multihead attention

2. 2-layer feed-forward NNet (with ReLU)

Each of these two steps also has:

Residual (short-circuit) connection and LayerNorm

LayerNorm(x + Sublayer(x))

Layernorm changes input features to have mean 0 and variance 1
per layer (and adds two more parameters)

Layer Normalization by Ba, Kiros and Hinton, https://arxiv.org/pdf/1607.06450.pdf
42

Encoder Input
´ Actual word representations are word pieces:

byte pair encoding
´ Start with a vocabulary of characters

´ Most frequent ngram pairs ↦ a new ngram

´ Example: “es, est” 9 times, “lo” 7 times

´ Also added is a positional encoding so same
words at different locations have different
overall representations:

Encoder Input

Actual word representations are word pieces (byte pair encoding)
• Topic of next week

Also added is a positional encoding so same words at different
locations have different overall representations:

49

Encoder Input

Actual word representations are word pieces (byte pair encoding)
• Topic of next week

Also added is a positional encoding so same words at different
locations have different overall representations:

49

Or learned

Byte Pair Encoding

24

5 lo w
2 lo w e r
6 n e w est
3 w i d est

(Example from Sennrich)

l, o, w, e, r, n, w, s, t, i, d, es, est, lo

VocabularyDictionary

Add a pair (l, o) with freq 7

• A word segmentation algorithm:
• Start with a vocabulary of characters
• Most frequent ngram pairs ↦ a new ngram

Byte Pair Encoding

24

5 lo w
2 lo w e r
6 n e w est
3 w i d est

(Example from Sennrich)

l, o, w, e, r, n, w, s, t, i, d, es, est, lo

VocabularyDictionary

Add a pair (l, o) with freq 7

• A word segmentation algorithm:
• Start with a vocabulary of characters
• Most frequent ngram pairs ↦ a new ngram

Sin/Cos Position Encoding

Figure. Each row corresponds the a positional encoding of a vector. So the first
row would be the vector we’d add to the embedding of the first word in an input
sequence. Each row contains 512 values – each with a value between 1 and -
1. We’ve color-coded them so the pattern is visible.

Transformer Encoder

´ Blocks are repeated N=6
or more times

Complete Encoder

• Blocks are repeated
6 or more times
• (in vertical stack)

43

Complete Encoder

• Blocks are repeated
6 or more times
• (in vertical stack)

43

Transformer Decoder

´ 2 sublayer changes in decoder
´ Masked decoder self-attention on

previously generated outputs

´ Encoder-Decoder Attention,
where queries come from
previous decoder layer and keys
and values come from output of
encoder

´ Blocks repeated N=6 times also

Transformer Decoder

• 2 sublayer changes in decoder
• Masked decoder self-attention

on previously generated outputs:

• Encoder-Decoder Attention,
where queries come from
previous decoder layer and
keys and values come from
output of encoder

• Blocks repeated 6 times also44

Encoder-Decoder

Illustration of Encoder-Decoder

Illustration of Encoder-Decoder

Attention Visualization

Head 2 (yellow) only 8 heads mixture

Empirical advantages of Transformer vs.
LSTM

´ 1. Self-attention == no locality bias
´ Long-distance context has “equal opportunity”

´ 2. Single multiplication per layer == efficiency on TPU

Model Architecture

● Empirical advantages of Transformer vs. LSTM:
1. Self-attention == no locality bias

● Long-distance context has “equal opportunity”

2. Single multiplication per layer == efficiency on TPU
● Effective batch size is number of words, not sequences

X_0_0 X_0_1 X_0_2 X_0_3

X_1_0 X_1_1 X_1_2 X_1_3

✕ W

X_0_0 X_0_1 X_0_2 X_0_3

X_1_0 X_1_1 X_1_2 X_1_3

✕ W

Transformer LSTM

Bi-Direction

Motivation of BidirectionBidirectional RNNs: motivation

36

terribly exciting !the movie was

positive

Sentence encoding

We can regard this hidden state as a
representation of the word “terribly” in the
context of this sentence. We call this a
contextual representation.

These contextual
representations only
contain information
about the left context
(e.g. “the movie
was”).

What about right
context?

In this example,
“exciting” is in the
right context and this
modifies the meaning
of “terribly” (from
negative to positive)

Task: Sentiment Classification

Bidirectional RNNs

37
terribly exciting !the movie was

Forward RNN

Backward RNN

Concatenated
hidden states

This contextual representation of “terribly”
has both left and right context!

Bidirectional RNN: simplified diagramBidirectional RNNs

38

Forward RNN

Backward RNN

Concatenated hidden states

This is a general notation to mean “compute
one forward step of the RNN” – it could be a
vanilla, LSTM or GRU computation.

We regard this as “the hidden
state” of a bidirectional RNN.
This is what we pass on to the
next parts of the network.

Generally, these
two RNNs have
separate weights

On timestep t:

Bidirectional RNN: simplified diagram

´ The two-way arrows indicate bidirectionality and the depicted hidden
states are assumed to be the concatenated forwards+backwards states.

Bidirectional RNNs: simplified diagram

39

terribly exciting !the movie was

The two-way arrows indicate bidirectionality and
the depicted hidden states are assumed to be
the concatenated forwards+backwards states.

Bidirectional RNNs

´ Note: bidirectional RNNs are only applicable if you have access to the entire input
sequence.
´ They are not applicable to Language Modeling, because in LM you only have left context

available.

´ If you do have entire input sequence (e.g. any kind of encoding), bidirectionality is
powerful (you should use it by default).

´ For example, BERT (Bidirectional Encoder Representations from Transformers) is a
powerful pretrained contextual representation system built on bidirectionality.

Uni-Direction LSTM

´ Semi-Supervised Sequence Learning, Google, 2015

History of Contextual Representations

● Semi-Supervised Sequence Learning, Google, 2015

Train LSTM
Language Model

LSTM

<s>

open

LSTM

open

a

LSTM

a

bank

LSTM

very

LSTM

funny

LSTM

movie

POSITIVE

...

Fine-tune on
Classification Task

Bi-Direction: ELMo -- Embeddings from
Language Models
´ Peters et al. (2018) Deep Contextual Word Embeddings, NAACL 2018.

https://arxiv.org/abs/1802.05365

´ Learn a deep Bi-NLM and use all its layers in prediction

History of Contextual Representations

● ELMo: Deep Contextual Word Embeddings, AI2 &
University of Washington, 2017

Train Separate Left-to-Right and
Right-to-Left LMs

LSTM

<s>

open

LSTM

open

a

LSTM

a

bank

Apply as “Pre-trained
Embeddings”

LSTM

open

<s>

LSTM

a

open

LSTM

bank

a

open a bank

Existing Model Architecture

GPT (Generative Pre-Training): uni-
directional transformer
´ Improving Language Understanding by Generative Pre-Training, OpenAI,

2018

History of Contextual Representations

● Improving Language Understanding by Generative
Pre-Training, OpenAI, 2018

Transformer

<s>

open

open

a

a

bank

Transformer Transformer

POSITIVE

Fine-tune on
Classification Task

Transformer

<s> open a

Transformer Transformer

Train Deep (12-layer)
Transformer LM

How about bi-directional transformers?
– Yes, BERT!

BERT: Devlin, Chang, Lee, Toutanova (2018)

´ BERT (Bidirectional Encoder Representations from Transformers):

´ Pre-training of Deep Bidirectional Transformers for Language
Understanding, which is then fine-tuned for a task

´ Want: truly bidirectional information flow without leakage in a
deep model

Masked Language Model

´ Problem: How the words see each other in bi-directions?

´ Solution: Mask out k% of the input words, and then predict the masked
words
´ We always use k = 15%

´ Too little masking: Too expensive to train

´ Too much masking: Not enough context

Masked LM

● Solution: Mask out k% of the input words, and
then predict the masked words
○ We always use k = 15%

● Too little masking: Too expensive to train
● Too much masking: Not enough context

the man went to the [MASK] to buy a [MASK] of milk

store gallon

Masked LM

´ Problem: Masked token never seen at fine-tuning

´ Solution: 15% of the words to predict, but don’t replace with [MASK] 100% of the
time. Instead:

´ 80% of the time, replace with [MASK]
´ went to the store → went to the [MASK]

´ 10% of the time, replace random word
´ went to the store → went to the running

´ 10% of the time, keep same
´ went to the store → went to the store

Next Sentence Prediction

´ To learn relationships between sentences, predict whether Sentence B is
actual sentence that proceeds Sentence A, or a random sentence

Next Sentence Prediction

● To learn relationships between sentences, predict
whether Sentence B is actual sentence that
proceeds Sentence A, or a random sentence

BERT sentence pair encoding

´ Token embeddings are word pieces (30k)

´ Learned segmented embedding represents each sentence

´ Positional embedding is as for other Transformer architectures
Input Representation

● Use 30,000 WordPiece vocabulary on input.
● Each token is sum of three embeddings
● Single sequence is much more efficient.

Training

´ Data: Wikipedia (2.5B words) + BookCorpus (800M words)

´ Batch Size: 131,072 words
´ (1024 sequences * 128 length or 256 sequences * 512 length)

´ Training Time: 1M steps (~40 epochs)

´ Optimizer: AdamW, 1e-4 learning rate, linear decay

´ Train 2 model sizes:
´ BERT-Base: 12-layer, 768-hidden, 12-head

´ BERT-Large: 24-layer, 1024-hidden, 16-head

´ Trained on 4x4 or 8x8 TPU slice for 4 days

BERT model fine tuning

´ Simply learn a classifier built on the top layer for each task that you fine
tune for

BERT model fine tuning

• Simply learn a classifier built on the top layer for each task that
you fine tune for

51

BERT model fine tuning BERT model fine tuning

52

Attention Visualization Attention visualization: Implicit anaphora resolution

In 5th layer. Isolated attentions from just the word ‘its’ for attention heads 5 and 6.
Note that the attentions are very sharp for this word.55

Words start to pay attention to other words in sensible ways

Rapid Progress for Pre-training
(GLUE Benchmark)

6. How’s the weather?
Rapid Progress from Pre-Training (GLUE benchmark)

90

60

ELMo

GPT
BERT-Base

BERT-Large
XLNet RoBERTa ALBERT

GloVeGL
UE

 S
co

re

Over 3x reduction in error in 2 years, “superhuman” performance

But let’s change the x-axis to
computational cost…But let’s change the x-axis to compute …

90

60

ELMo

GPT
BERT-Base

BERT-Large

Pre-Train FLOPs

GloVeGL
UE

 S
co

re

BERT-Large uses 60x more compute than ELMo

6.4e19 FLOPs
1.9e20 FLOPs

But let’s change the x-axis to
computational cost…But let’s change the x-axis to compute …

90

60

≈
ç

ELMo

GPT
BERT-Base

BERT-Large
XLNet RoBERTa

Pre-Train FLOPs

GloVeGL
UE

 S
co

re

RoBERTa uses 16x more compute than BERT-Large

More compute, more better?
More compute, more better?

90

60

≈
ç

ELMo

GPT
BERT-Base
BERT-Large
XLNet

RoBERTa ALBERT

Pre-Train FLOPs

GloVeGL
UE

 S
co

re

≈
ç

ALBERT uses 10x more compute than RoBERTa

ELECTRA: “Efficiently Learning an Encoder to
Classify Token Replacements Accurately”

´ Clark, Luong, Le, and Manning, ICLR 2020.
https://openreview.net/pdf?id=r1xMH1BtvB

´ Bidirectional model but learn from all tokens

ELECTRA: “Efficiently Learning an Encoder to
Classify Token Replacements Accurately”

Bidirectional model but learn from all tokens

the painter sold the car

original replacedoriginaloriginalreplaced

Clark, Luong, Le, and Manning (2020)

Generating ReplacementsGenerating Replacements

Plausible alternatives come from small masked language
model (the “generator”) trained jointly with ELECTRA

t

artist

sold

the

the

car

[MASK]

 artist

artist artist artist

artist

sold

the

artist

[MASK]
v

[MASK]

artist

Generator
(typically a
small MLM)

original

original

original

original

replaced

Discriminator
(ELECTRA)

sample

sample

sample

artist

sold

the

the

painting

MLM Loss Binary classification loss

Results: GLUE Score vs Compute
Results: GLUE Score vs Compute

≈
ç

ELMo

GPT
BERT-Base

XLNet RoBERTa

Pre-Train FLOPs

GloVe

BERT-Large

EL-Small

EL-Base

EL-LargeEL-Large
100k steps

Thank you!

