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Summary

´ We have shown: 
´ CNN Architectures: LeNet5, Alexnet, VGG, GoogleNet, Resnet

´ Recurrent Neural Networks and LSTM

´ Today:
´ Attention

´ Transformer

´ BERT

´ Reference: 
´ Feifei Li, Stanford cs231n

´ Chris Manning, Stanford cs224n



A Brief History in NLP
´ In 2013-2015, LSTMs started achieving state-of-the-art results 

´ Successful tasks include: handwriting recognition, speech 

´ recognition, machine translation, parsing, image captioning 

´ LSTM became the dominant approach 

´ Now (2019), other approaches (e.g. Transformers) have become more dominant for 
certain tasks. 
´ For example in WMT (a MT conference + competition): 

´ In WMT 2016, the summary report contains ”RNN” 44 times 

´ In WMT 2018, the report contains “RNN” 9 times and “Transformer” 63 times 

´ Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016, 
http://www.statmt.org/wmt16/pdf/W16-2301.pdf 

´ Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018, 
http://www.statmt.org/wmt18/pdf/WMT028.pdf 



Neural Machine Translation (NMT)
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<START>

Source sentence (input)

         il         a           m’   entarté

The sequence-to-sequence model
Target sentence (output)
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Encoder RNN produces 
an encoding of the 
source sentence.

Encoding of the source sentence.  
Provides initial hidden state  

for Decoder RNN.

 Decoder RNN is a Language Model that 
generates target sentence, conditioned on 

encoding.
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Sequence-to-sequence is versatile!
´ Sequence-to-sequence is useful for more than just MT 

´ Many NLP tasks can be phrased as sequence-to-sequence: 
´ Summarization (long text → short text)

´ Dialogue (previous utterances → next utterance)

´ Parsing (input text → output parse as sequence) 

´ Code generation (natural language → Python code) 

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201714

Recurrent Neural Networks: Process Sequences

e.g. Machine Translation
seq of words -> seq of words



Training a NMT system by BP



Greedy Decoding

´ We generate (or “decode”) the target sentence by taking argmax on 
each step of the decoder

´ This is greedy decoding (take most probable word on each step) 

Greedy decoding

• We saw how to generate (or “decode”) the target sentence 
by taking argmax on each step of the decoder 
 
 
 
 
 
 
 
 

• This is greedy decoding (take most probable word on each 
step) 

• Problems with this method?
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Sequence-to-sequence: the
bottleneck problem

Sequence-to-sequence: the bottleneck problem

En
co

d
er

 R
N

N

Source sentence (input)

<START>    he        hit        me       with        a         
pie

 il           a         m’      
entarté

 he        hit        me       with        a          pie    
<END>

D
ecod

er R
N

N

Target sentence (output)

Encoding of the  
source sentence.  

This needs to capture all 
information about the 

source sentence. 
Information bottleneck!
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Attention Mechanism
It was firstly invented in computer vision, then to NLP.



Sequence-to-sequence with attention
Sequence-to-sequence with attention
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Sequence-to-sequence with attention
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Sequence-to-sequence with attention
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<START> il        a      m’      entarté
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On this decoder timestep, 
we’re mostly focusing on the 
first encoder hidden state 
(”he”)
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Take softmax to turn the 
scores into a probability 

distribution
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Sequence-to-sequence with attention
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Attention 
output

Use the attention distribution to take 
a weighted sum of the encoder 
hidden states. 

The attention output mostly contains 
information from the hidden states 
that received high attention.
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Sequence-to-sequence with attention

En
co

d
er

  
R
N

N

Source sentence (input)

<START> il        a      m’      entarté

D
ecod

er R
N

N

A
tt

en
ti

on
 

d
is

tr
ib

ut
io

n
A
tt

en
ti

on
 

sc
or

es

Attention 
output

Concatenate attention output 
with decoder hidden state, 
then use to compute as 
before

!̂1 

he

 65



Sequence-to-sequence with attention
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Attention in EquationsAttention: in equations

• We have encoder hidden states  
• On timestep t, we have decoder hidden state  
• We get the attention scores         for this step: 
 

• We take softmax to get the attention distribution        for this step 
(this is a probability distribution and sums to 1)  

• We use        to take a weighted sum of the encoder hidden states to 
get the attention output  

 

• Finally we concatenate the attention output        with the decoder 
hidden state      and proceed as in the non-attention seq2seq model
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Motivation of TransformerThe Motivation for Transformers

• We want parallelization but RNNs are inherently sequential

• Despite LSTMs, RNNs generally need attention mechanism to 
deal with long range dependencies – path length between 
states grows with distance otherwise

• But if attention gives us access to any state… maybe we can just 
use attention and don’t need the RNN?

• And then NLP can have deep models … and solve our vision envy
45



Transformer
“Attention is all you need” 



Transformer (Vaswani et al. 2017)
“Attention is all you need” 

´ https://arxiv.org/pdf/1706.03762.pdf 

´ Non-recurrent sequence-to-sequence model 

´ A deep model with a sequence of attention-
based transformer blocks 

´ Depth allows a certain amount of lateral 
information transfer in understanding 
sentences, in slightly unclear ways 

´ Final cost/error function is standard cross-
entropy error on top of a softmax classifier 

´ Initially built for NMT:
´ Task: machine translation with parallel corpus 

´ Predict each translated word 



Transformer Pytorch Notebook

´ Learning about transformers on your own? 

´ Key recommended resource:
´ http://nlp.seas.harvard.edu/2018/04/03/attention.html

´ The Annotated Transformer by Sasha Rush, a Jupyter Notebook using PyTorch
that explains everything! 

´ https://jalammar.github.io/illustrated-transformer/

´ Illustrated Transformer by Jay Alammar, a Cartoon about Transformer with
attention visualization notebook based on Tensor2Tensor.



Encoder-Decoder Blocks

Encoder-Decoder N=6 layers



Encoder has two layers

Self-Attention + 
FeedForward



Attention Illustration

Embedding->(q,k,v) Dot-Product Attention



Dot-Product Self-Attention: Definition

´ Inputs: a query q and a set of key-value (k-v) pairs, to an output 

´ Query, keys, values, and output are all vectors 

´ Output is weighted sum of values, where 
´ Weight of each value is computed by an inner product of query and 

corresponding key 

´ Queries and keys have same dimensionality dk, value have dv

Dot-Product Attention (Extending our previous def.)

• Inputs: a query q and a set of key-value (k-v) pairs to an output
• Query, keys, values, and output are all vectors

• Output is weighted sum of values, where 
• Weight of each value is computed by an inner product of query 

and corresponding key
• Queries and keys have same dimensionality dk value have dv

35



Attention: Multiple Inputs

Matrix input Scaled dot-product



Dot-Product Attention: Matrix Form

´ When we have multiple queries q, we stack them in a matrix Q: 

Dot-Product Attention – Matrix notation

• When we have multiple queries q, we stack them in a matrix Q:

• Becomes:

[|Q| x dk]  x  [dk x |K|]  x  [|K| x dv]

softmax = [|Q| x dv]
row-wise

36

Dot-Product Attention – Matrix notation

• When we have multiple queries q, we stack them in a matrix Q:

• Becomes:

[|Q| x dk]  x  [dk x |K|]  x  [|K| x dv]

softmax = [|Q| x dv]
row-wise
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Dot-Product Attention (Extending our previous def.)

• Inputs: a query q and a set of key-value (k-v) pairs to an output
• Query, keys, values, and output are all vectors

• Output is weighted sum of values, where 
• Weight of each value is computed by an inner product of query 

and corresponding key
• Queries and keys have same dimensionality dk value have dv
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Scaled Dot-Product Attention

´ Problem: As dk gets large, the variance of qTk increases 

´ some values inside the softmax get large

´ the softmax gets very peaked

´ hence its gradient gets smaller. 

´ Solution: Scale by length of query/key vectors: 

Scaled Dot-Product Attention

• Problem: As dk gets large, the variance of qTk increases à some 
values inside the softmax get large à the softmax gets very 
peaked à hence its gradient gets smaller.

• Solution: Scale by length of 
query/key vectors:
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Multi-head Attention
´ Problem with simple self-attention: 

´ Only one way for words to interact with one-another 

´ Solution: Multi-head attention 
´ First map Q, K, V into h=8 many lower dimensional 

spaces via W matrices 

´ Then apply attention, then concatenate outputs and 
pipe through linear layer 

´ Multi-head attention allows the model to jointly attend 
to information from different representation subspaces 
at different positions.

Multi-head attention

• Problem with simple self-attention: 
• Only one way for words to interact with one-another
• Solution: Multi-head attention
• First map Q, K, V into h=8 many lower 

dimensional spaces via W matrices
• Then apply attention, then concatenate 

outputs and pipe through linear layer

39



Multihead

2 heads h=8 heads



Concatenation Linear



Multi-head Attention



A Transformer block

´ Each block has two “sublayers” 
´ Multihead attention 

´ 2-layer feed-forward NNet (with ReLU) 

´ Each of these two steps also has:
´ Residual (short-cut) connection: x+sublayer(x)

´ LayerNorm(x+sublayer(x)) changes input features to 
have mean 0, variance 1, and adds two more 
parameters (Ba et al. 2016)

Transformer block 

Each block has two “sublayers”

1. Multihead attention

2. 2-layer feed-forward NNet (with ReLU)

Each of these two steps also has:

Residual (short-circuit) connection

LayerNorm (scale to mean 0, var 1; Ba et al. 2016)

47

Complete transformer block 

Each block has two “sublayers”

1. Multihead attention

2. 2-layer feed-forward NNet (with ReLU)

Each of these two steps also has:

Residual (short-circuit) connection and LayerNorm

LayerNorm(x + Sublayer(x))

Layernorm changes input features to have mean 0 and variance 1 
per layer (and adds two more parameters)

Layer Normalization by Ba, Kiros and Hinton, https://arxiv.org/pdf/1607.06450.pdf
42



Residue (Shortcut)Complete transformer block 

Each block has two “sublayers”

1. Multihead attention

2. 2-layer feed-forward NNet (with ReLU)

Each of these two steps also has:

Residual (short-circuit) connection and LayerNorm

LayerNorm(x + Sublayer(x))

Layernorm changes input features to have mean 0 and variance 1 
per layer (and adds two more parameters)

Layer Normalization by Ba, Kiros and Hinton, https://arxiv.org/pdf/1607.06450.pdf
42



Encoder Input
´ Actual word representations are word pieces: 

byte pair encoding
´ Start with a vocabulary of characters

´ Most frequent ngram pairs ↦ a new ngram

´ Example: “es, est” 9 times, “lo” 7 times 

´ Also added is a positional encoding so same 
words at different locations have different 
overall representations: 

Encoder Input

Actual word representations are word pieces (byte pair encoding) 
• Topic of next week

Also added is a positional encoding so same words at different 
locations have different overall representations:

49

Encoder Input

Actual word representations are word pieces (byte pair encoding) 
• Topic of next week

Also added is a positional encoding so same words at different 
locations have different overall representations:

49

Or learned

Byte Pair Encoding

24

5   lo w
2   lo w e r
6   n e w est
3   w i d est

(Example from Sennrich)

l, o, w, e, r, n, w, s, t, i, d, es, est, lo

VocabularyDictionary

Add a pair (l, o) with freq 7

• A word segmentation algorithm:
• Start with a vocabulary of characters
• Most frequent ngram pairs ↦ a new ngram

Byte Pair Encoding

24

5   lo w
2   lo w e r
6   n e w est
3   w i d est

(Example from Sennrich)

l, o, w, e, r, n, w, s, t, i, d, es, est, lo

VocabularyDictionary

Add a pair (l, o) with freq 7

• A word segmentation algorithm:
• Start with a vocabulary of characters
• Most frequent ngram pairs ↦ a new ngram





Sin/Cos Position Encoding

Figure. Each row corresponds the a positional encoding of a vector. So the first 
row would be the vector we’d add to the embedding of the first word in an input 
sequence. Each row contains 512 values – each with a value between 1 and -
1. We’ve color-coded them so the pattern is visible.



Transformer Encoder

´ Blocks are repeated N=6 
or more times

Complete Encoder

• Blocks are repeated 
6 or more times
• (in vertical stack)

43

Complete Encoder

• Blocks are repeated 
6 or more times
• (in vertical stack)

43



Transformer Decoder

´ 2 sublayer changes in decoder 
´ Masked decoder self-attention on 

previously generated outputs 

´ Encoder-Decoder Attention, 
where queries come from 
previous decoder layer and keys 
and values come from output of 
encoder 

´ Blocks repeated N=6 times also 

Transformer Decoder

• 2 sublayer changes in decoder
• Masked decoder self-attention 

on previously generated outputs:

• Encoder-Decoder Attention,
where queries come from 
previous decoder layer and
keys and values come from 
output of encoder

• Blocks repeated 6 times also44



Encoder-Decoder 



Illustration of Encoder-Decoder



Illustration of Encoder-Decoder



Attention Visualization

Head 2 (yellow) only 8 heads mixture



Empirical advantages of Transformer vs. 
LSTM

´ 1. Self-attention == no locality bias 
´ Long-distance context has “equal opportunity”

´ 2. Single multiplication per layer == efficiency on TPU 

Model Architecture

● Empirical advantages of Transformer vs. LSTM:
1. Self-attention == no locality bias

● Long-distance context has “equal opportunity”

2. Single multiplication per layer == efficiency on TPU
● Effective batch size is number of words, not sequences

X_0_0 X_0_1 X_0_2 X_0_3

X_1_0 X_1_1 X_1_2 X_1_3

✕ W

X_0_0 X_0_1 X_0_2 X_0_3

X_1_0 X_1_1 X_1_2 X_1_3

✕ W

Transformer LSTM



Bi-Direction



Motivation of BidirectionBidirectional RNNs: motivation

36

terribly exciting !the movie was

positive

Sentence encoding

We can regard this hidden state as a 
representation of the word “terribly” in the 
context of this sentence. We call this a 
contextual representation.

These contextual 
representations only 
contain information 
about the left context 
(e.g. “the movie 
was”). 

What about right
context?

In this example, 
“exciting” is in the 
right context and this 
modifies the meaning 
of “terribly” (from 
negative to positive)

Task: Sentiment Classification



Bidirectional RNNs

37
terribly exciting !the movie was

Forward RNN

Backward RNN

Concatenated 
hidden states

This contextual representation of “terribly” 
has both left and right context!



Bidirectional RNN: simplified diagramBidirectional RNNs

38

Forward RNN

Backward RNN

Concatenated hidden states

This is a general notation to mean “compute 
one forward step of the RNN” – it could be a 
vanilla, LSTM or GRU computation.

We regard this as “the hidden 
state” of a bidirectional RNN. 
This is what we pass on to the 
next parts of the network.

Generally, these 
two RNNs have 
separate weights

On timestep t:



Bidirectional RNN: simplified diagram

´ The two-way arrows indicate bidirectionality and the depicted hidden 
states are assumed to be the concatenated forwards+backwards states. 

Bidirectional RNNs: simplified diagram

39

terribly exciting !the movie was

The two-way arrows indicate bidirectionality and 
the depicted hidden states are assumed to be 
the concatenated forwards+backwards states.



Bidirectional RNNs 

´ Note: bidirectional RNNs are only applicable if you have access to the entire input 
sequence. 
´ They are not applicable to Language Modeling, because in LM you only have left context 

available. 

´ If you do have entire input sequence (e.g. any kind of encoding), bidirectionality is 
powerful (you should use it by default). 

´ For example, BERT (Bidirectional Encoder Representations from Transformers) is a 
powerful pretrained contextual representation system built on bidirectionality. 



Uni-Direction LSTM

´ Semi-Supervised Sequence Learning, Google, 2015

History of Contextual Representations

● Semi-Supervised Sequence Learning, Google, 2015

Train LSTM
Language Model

LSTM

<s>

open

LSTM

open

a

LSTM

a

bank

LSTM

very

LSTM

funny

LSTM

movie

POSITIVE

...

Fine-tune on 
Classification Task



Bi-Direction: ELMo -- Embeddings from 
Language Models 
´ Peters et al. (2018) Deep Contextual Word Embeddings, NAACL 2018. 

https://arxiv.org/abs/1802.05365 

´ Learn a deep Bi-NLM and use all its layers in prediction

History of Contextual Representations

● ELMo: Deep Contextual Word Embeddings, AI2 & 
University of Washington, 2017

Train Separate Left-to-Right and 
Right-to-Left LMs

LSTM

<s>

open

LSTM

open

a

LSTM

a

bank

Apply as “Pre-trained 
Embeddings”

LSTM

open

<s>

LSTM

a

open

LSTM

bank

a

open a bank

Existing Model Architecture



GPT (Generative Pre-Training): uni-
directional transformer
´ Improving Language Understanding by Generative Pre-Training, OpenAI, 

2018 

History of Contextual Representations

● Improving Language Understanding by Generative 
Pre-Training, OpenAI, 2018

Transformer

<s>

open

open

a

a

bank

Transformer Transformer

POSITIVE

Fine-tune on 
Classification Task

Transformer

<s> open a

Transformer Transformer

Train Deep (12-layer) 
Transformer LM



How about bi-directional transformers? 
– Yes, BERT!



BERT: Devlin, Chang, Lee, Toutanova (2018) 

´ BERT (Bidirectional Encoder Representations from Transformers): 

´ Pre-training of Deep Bidirectional Transformers for Language 
Understanding, which is then fine-tuned for a task 

´ Want: truly bidirectional information flow without leakage in a 
deep model 



Masked Language Model

´ Problem: How the words see each other in bi-directions?

´ Solution: Mask out k% of the input words, and then predict the masked 
words 
´ We always use k = 15% 

´ Too little masking: Too expensive to train 

´ Too much masking: Not enough context 

Masked LM

● Solution: Mask out k% of the input words, and 
then predict the masked words
○ We always use k = 15%

● Too little masking: Too expensive to train
● Too much masking: Not enough context

the man went to the [MASK] to buy a [MASK] of milk

store gallon



Masked LM

´ Problem: Masked token never seen at fine-tuning 

´ Solution: 15% of the words to predict, but don’t replace with [MASK] 100% of the 
time. Instead: 

´ 80% of the time, replace with [MASK] 
´ went to the store → went to the [MASK] 

´ 10% of the time, replace random word
´ went to the store → went to the running 

´ 10% of the time, keep same
´ went to the store → went to the store 



Next Sentence Prediction

´ To learn relationships between sentences, predict whether Sentence B is 
actual sentence that proceeds Sentence A, or a random sentence 

Next Sentence Prediction

● To learn relationships between sentences, predict 
whether Sentence B is actual sentence that 
proceeds Sentence A, or a random sentence



BERT sentence pair encoding 

´ Token embeddings are word pieces (30k)

´ Learned segmented embedding represents each sentence 

´ Positional embedding is as for other Transformer architectures 
Input Representation

● Use 30,000 WordPiece vocabulary on input.
● Each token is sum of three embeddings
● Single sequence is much more efficient.



Training

´ Data: Wikipedia (2.5B words) + BookCorpus (800M words) 

´ Batch Size: 131,072 words 
´ (1024 sequences * 128 length or 256 sequences * 512 length) 

´ Training Time: 1M steps (~40 epochs) 

´ Optimizer: AdamW, 1e-4 learning rate, linear decay 

´ Train 2 model sizes: 
´ BERT-Base: 12-layer, 768-hidden, 12-head 

´ BERT-Large: 24-layer, 1024-hidden, 16-head 

´ Trained on 4x4 or 8x8 TPU slice for 4 days 



BERT model fine tuning 

´ Simply learn a classifier built on the top layer for each task that you fine 
tune for 

BERT model fine tuning

• Simply learn a classifier built on the top layer for each task that 
you fine tune for

51



BERT model fine tuning BERT model fine tuning
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Attention Visualization Attention visualization: Implicit anaphora resolution

In 5th layer. Isolated attentions from just the word ‘its’ for attention heads 5 and 6.
Note that the attentions are very sharp for this word.55

Words start to pay attention to other words in sensible ways



Rapid Progress for Pre-training 
(GLUE Benchmark)

6. How’s the weather?
Rapid Progress from Pre-Training  (GLUE benchmark)
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Over 3x reduction in error in 2 years, “superhuman” performance



But let’s change the x-axis to 
computational cost…But let’s change the x-axis to compute …
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BERT-Large uses 60x more compute than ELMo

6.4e19 FLOPs
1.9e20 FLOPs



But let’s change the x-axis to 
computational cost…But let’s change the x-axis to compute …
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RoBERTa uses 16x more compute than BERT-Large



More compute, more better?  
More compute, more better?
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ALBERT uses 10x more compute than RoBERTa



ELECTRA: “Efficiently Learning an Encoder to 
Classify Token Replacements Accurately” 

´ Clark, Luong, Le, and Manning, ICLR 2020.
https://openreview.net/pdf?id=r1xMH1BtvB

´ Bidirectional model but learn from all tokens 

ELECTRA: “Efficiently Learning an Encoder to 
Classify Token Replacements Accurately”

Bidirectional model but learn from all tokens

the painter sold the car

original replacedoriginaloriginalreplaced

Clark, Luong, Le, and Manning (2020)



Generating ReplacementsGenerating Replacements

Plausible alternatives come from small masked language 
model (the “generator”) trained jointly with ELECTRA 
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Results: GLUE Score vs Compute 
Results: GLUE Score vs Compute
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Thank you!


