{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
\n",
"
\n",
" An introduction to Machine Learning with Scikit-Learn
\n",
"
\n",
" Yifei Huang\n",
"
\n",
" MAFS6010U\n",
"
\n",
" HKUST\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- Materials available on Piazza\n",
" \n",
"- Require a Python distribution with scientific packages (NumPy, SciPy, Scikit-Learn, Pandas)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Outline\n",
"\n",
"* Preprocess data with Pandas and Numpy in Python\n",
"* Scikit-Learn and Machine Learning in Python\n",
"* Various Classification Models\n",
"* Model evaluation and selection\n",
"* Summary"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load some packages"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting mpl_finance\n",
"Requirement already satisfied: matplotlib in /home/yhuangcc/anaconda3/envs/mafs6010u/lib/python3.7/site-packages (from mpl_finance) (3.0.2)\n",
"Requirement already satisfied: numpy>=1.10.0 in /home/yhuangcc/anaconda3/envs/mafs6010u/lib/python3.7/site-packages (from matplotlib->mpl_finance) (1.15.4)\n",
"Requirement already satisfied: cycler>=0.10 in /home/yhuangcc/anaconda3/envs/mafs6010u/lib/python3.7/site-packages (from matplotlib->mpl_finance) (0.10.0)\n",
"Requirement already satisfied: kiwisolver>=1.0.1 in /home/yhuangcc/anaconda3/envs/mafs6010u/lib/python3.7/site-packages (from matplotlib->mpl_finance) (1.0.1)\n",
"Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /home/yhuangcc/anaconda3/envs/mafs6010u/lib/python3.7/site-packages (from matplotlib->mpl_finance) (2.3.0)\n",
"Requirement already satisfied: python-dateutil>=2.1 in /home/yhuangcc/anaconda3/envs/mafs6010u/lib/python3.7/site-packages (from matplotlib->mpl_finance) (2.7.5)\n",
"Requirement already satisfied: six in /home/yhuangcc/anaconda3/envs/mafs6010u/lib/python3.7/site-packages (from cycler>=0.10->matplotlib->mpl_finance) (1.12.0)\n",
"Requirement already satisfied: setuptools in /home/yhuangcc/anaconda3/envs/mafs6010u/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib->mpl_finance) (40.6.3)\n",
"Installing collected packages: mpl-finance\n",
"Successfully installed mpl-finance-0.10.0\n"
]
}
],
"source": [
"import sklearn\n",
"import numpy as np\n",
"import pandas as pd\n",
"try:\n",
" from mpl_finance import candlestick_ohlc\n",
"except ImportError:\n",
" ! pip install mpl_finance\n",
" from mpl_finance import candlestick_ohlc\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib.dates as mdates\n",
"plt.style.use('seaborn')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Loading external data with pandas"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"data=pd.read_csv('./okex_future_BTC_USD_this_week_1H.csv',parse_dates=['candle_begin_time'])"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" candle_begin_time | \n",
" open | \n",
" high | \n",
" low | \n",
" close | \n",
" volume | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2018-05-15 00:00:00 | \n",
" 8674.33 | \n",
" 8761.76 | \n",
" 8663.17 | \n",
" 8696.66 | \n",
" 172152.0 | \n",
"
\n",
" \n",
" 1 | \n",
" 2018-05-15 01:00:00 | \n",
" 8694.66 | \n",
" 8728.17 | \n",
" 8662.17 | \n",
" 8701.85 | \n",
" 122668.0 | \n",
"
\n",
" \n",
" 2 | \n",
" 2018-05-15 02:00:00 | \n",
" 8699.98 | \n",
" 8741.04 | \n",
" 8642.36 | \n",
" 8673.34 | \n",
" 181228.0 | \n",
"
\n",
" \n",
" 3 | \n",
" 2018-05-15 03:00:00 | \n",
" 8673.19 | \n",
" 8717.70 | \n",
" 8638.95 | \n",
" 8707.10 | \n",
" 193166.0 | \n",
"
\n",
" \n",
" 4 | \n",
" 2018-05-15 04:00:00 | \n",
" 8710.92 | \n",
" 8737.36 | \n",
" 8684.20 | \n",
" 8699.16 | \n",
" 155912.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" candle_begin_time open high low close volume\n",
"0 2018-05-15 00:00:00 8674.33 8761.76 8663.17 8696.66 172152.0\n",
"1 2018-05-15 01:00:00 8694.66 8728.17 8662.17 8701.85 122668.0\n",
"2 2018-05-15 02:00:00 8699.98 8741.04 8642.36 8673.34 181228.0\n",
"3 2018-05-15 03:00:00 8673.19 8717.70 8638.95 8707.10 193166.0\n",
"4 2018-05-15 04:00:00 8710.92 8737.36 8684.20 8699.16 155912.0"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Visualization"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 0, 'Date')"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAACR0AAAJ7CAYAAABk7KTkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl4VdW5+PFvckKYhwQQlEFGV1BExBHrWHGotUK9jrWz1rZX621rZ+ut1Q52tLV01Hvb2uqvDuVisbbO1VpnxYEqixkEBAkECGPgJL8/9oYcMAlJyMz38zx5svbaa6/1npOzTzDn9V15VVVVSJIkSZIkSZIkSZIkSVJ95bd2AJIkSZIkSZIkSZIkSZLaF5OOJEmSJEmSJEmSJEmSJDWISUeSJEmSJEmSJEmSJEmSGsSkI0mSJEmSJEmSJEmSJEkNYtKRJEmSJEmSJEmSJEmSpAYx6UiSJEmSJEmSJEmSJElSgxS0dgCSJEmSJHUkIYRDgfOAScCBQD9gM/A28CLwN+CeGOPmPcxzHfCN9PCbMcbr9jD+VOBeoHva9UvgihhjVXr+H8BJDX5AUBRjXJuzzneBr6SHt8cYP7inCUIIBwEvA12B9cDYGOObjYiFEMJlwC0NvOzQGOOsnDm+BVyTHl4bY/xWPdd+EnhXenhCjPHJEMIk4KEGxlObmuZ8JMY4qZ7x7fFxhRCWAoNqmWITsAZ4DXgAuC3GWLaHNQuAbfWJbzcvxhiPbMR1dcVS12MD2AisAGYC95Dch9nd5mjM66s2Q2KMS2uJdShwLnAqUAL0B7oBa4E3geeB+4G/xRgb8/zmrvUn4ML08OIY45/qed0KYEB6uH+McUUt4zoBk4H/AI4ABpI8lk0kz/dckve+J4EnYoxbapjjTJL3xppsInnfWAvMBl4CnkjnqqrPY9kb6Wv8YOBIksd3JDAO6JIO+WqM8cZ6zlWv53S3a0qAN9LDGGMsaUD4kiRJkiQ1K5OOJEmSJElqAiGE/YEfARcBebud7gz0AQ4CLga+E0L4Sozx9iZa+33A3ek6AN+LMX6ljkv2xnXAOSQfwl8SQrg7xnhvHbHlA78jSTgCuLqxCUdqdt3Sr8HAe4CvhxA+GmP8a+uG1WS6AyPTr/OAV0IIk2OMi1sqgBBCEfAd4ONAYQ1D+qdfE4BPAitDCNcDv4kxbm+pOOsrhHAYcDtwSA2ne6Zfo4Gz0r4naHjy447X5UCSBK0paf+8EMJNwC+bOfnoXqrjlyRJkiRJOUw6kiRJkiRpL4UQDiGp0jEk7aoAHgQeBd4i+cA8kFQ2GUWS1PHHEMLhwBf35gPzEMJFwB+o/m/8r8cYv72Hy64FZu1hzA4bcw9ijFtDCB8DngIywK9CCP+MMa6p5frPAxPT9oMxxlvruW59PAz8vB7jmjOp5BXg/XWc/wBwftq+gyQ5rDavN1VQ9XQZsDrnuAdJ8siHSCoG9QP+HEJ4V4zxxXrMV0lS7aY+6qyg1AR2f2z5JIl/RwAfBHoBhwEPhRDG5VTfeYi6f56fpTpp5ifA43WMLc09SCvWzCB5D9jhaZLX8WKSaj79SJKi3kOS2DeA5DX+EvBMHWu1uBBCAB4DitKuUpIKUjNJKmZ1A4YCR5FUdOpO8p6xJzOB63OOC0h+dgOAo4ET0+NRJM/N+SGEi2KMK/fyIdVm95hLgXUkPydJkiRJkvZpJh1JkiRJkrQXQggDSJIGBqZdzwAfjTHGGsZ+FbgS+CHQCbia5MPrGxq59mXAr0kSKqqAq2KMU+tx6ZMxxn80Zk2AGONzIYQfAV8iedw3kyRy7B5fCdWPbT1JIkhTWhxjnN7EczZIjHEVUGsMIYTcLcTeaO14d/NATdt/hRC+Q5JE9y6S6lnfIkmC2ZOqNvT4anxswP+GEG4kSfYZRFKF50OkW6qlVY9qTVILIZyXc/hifR9v+j7xCHBA2vUS8KkY4/O1XPKFEMJE4NvAKfVZoxX8lOqEoxnAJTHG8poGhhC6kGzBNqEe875d1/MaQuhO8l7ybZJEppOBGSGEk2OMm+offr09TfLzehF4Ica4OITwKZItLCVJkiRJ2qflt3YAkiRJkiS1c7+nOuHoaWBSTQlHADHGyhjjzSRbrO2obvSNEMJxDV00hPBZkkSJfCALfKyeCUdN5b+BN9L2JSGEc3aLLwP8FuiSdrmtWjuRJo5ckdN1apro0SGkr8Mf53Q1dLuvxvgj1QlHTwAn1pFwBECM8ekY47uBLwNtamu1EEJ/4LT0sJw6Eo4AYoxbYox3xhi/vLdrxxg3xhh/ChxDUlEJkmpK393buWtZ75sxxq/FGP/cklvxSZIkSZLUHph0JEmSJElSI4UQjgfOSA83kXzwvrGOSwCIMf4Z+E16mAGua+C61wI3pYcVwAUxxt83ZI69FWPcCnyMJOEJkm3WinKGXA0cm7abels1NbMY4yskySSQVOUa1nrRNIvZOe3ezblQCOEUYFJ6uBa4uD7vEzvEGL8fY3yhWYJrvIOo/rvizLoSjppLjPHfwKU5XZeHEPZv6TgkSZIkSdqXmXQkSZIkSVLjXZXT/l2McWEDrr2e6uolp4UQDq7PRSGEH6TXQpLodE6McVoD1m0yMcZnqa4Ysz/JNmuEEMZQHWM58ImWj05NYGtOu0uto9qnfjntJc281mdz2r+JMS5v5vVaQian3b+1gki3YXslPewCfKC1YpEkSZIkaV9k0pEkSZIkSY0QQsgDTs3puq0h16eJB4/kdE2qbWy6Xn4I4VfAF9Ku9cAZMcYHGrJuM/hvqqvGfDCEMAX4HdA57bs6xtjcSR1qYiGEAUDfnK4O8zMMIeSTVOna4eFmXCsDnJLT9YfmWquFzc9pl4QQ6nz/amb/L6fdElvlSZIkSZKklElHkiRJkiQ1TglQnLa3Ai81Yo6nc9rH1TGugCSp6ZPpcSlwSozxyUas2aRijFtIEjgq0667gKPT9kMxxltaJTDtra8CeWl7XoxxVWsGs7dCCHkhhKI0OeZ+4OT01EPA9GZcehzQM22vB15vxrVaTIxxGfDP9DAPmBFC+HEI4ZgQQkELh/NsTvuoFl5bkiRJkqR9Wkv/EUCSJEmSpI5icE57YYxxWyPmiDntQXWM+yzQPW0vB06LMe5N8sJjIYT6jPt9jPGjexoUY3wmhHATcDXQKe0uBy5rdIT1c2kI4dI9jDmhLSRntQchhG7AWOAK4MM5p75XzykyIYSqeo79UIzxjw2Jr4He3MNrfD5wO/CtGGN9Y26M3Pt6QYyxstaR7c+ngSeBPiRbm30u/doSQngZeAF4Cng0xriyGeNYlNPuV9ugNuiter4PS5IkSZLUZlnpSJIkSZKkxinOaa9t5By51/WtdVR1whHAtL1MOGouf93teKrbqrV5b4YQqnZ8ARtJqsbkJhz9KMZ4a+uE16wqgA00/9/Gcu/rxr5PtEkxxn8DR5BUjsrVBTgWuBK4A1gWQpgRQjismUIpy2kXhBB6N9M6kiRJkiRpN1Y6kiRJkiSp9eTteQgA/wYOSdtXhhBWxxiv24t1rwVm1WNcvZKGQghdgF/u1v2xEMIPYoxlNV3TRB4Gfr6HMW0xQas9WAB8MMb49B5HVqsE/qOeY19oeEgNchmwere+bsAo4DzgUOD7wMUhhNNjjKXNHE+HFGNcALw3JCV7zgdOItlesVfOsAxwNnBGCOGTMcbfNnEYuyeONWflqqb0MeqXiDYImNrMsUiSJEmS1CgmHUmSJEmS1Dhrctp9GjlHbkWO3RMkct1DktSz44Pnb4QQKmOM1zdy3SdjjP9o5LU1uQHYsU/QKqA/MBD4CfCRui4MIZxA3VWe/h5j3FLLucUxxukNjFXVchNzOgNDSBJyjgFGAF8KIVwUY9xaz/mq2tDP44EY49KaToQQvgX8APg8cDjwR+DMZooj975u7PvELkIIR7Lr9o67e7yZk/3eIcYYgW8B3woh5AEHAccBk4H3kSQGdQJuCSG8EWN8pgmXz31et8cY1zfh3M3p7zHGFXsaFEIoaYlgJEmSJElqDJOOJEmSJElqnNyEhmEhhE4xxm0NnOOgnPayugbGGH8eQsgHbk67vpkmHn2rgWs2qRDCsSTJGwDLSaqcPEGStPLhEMKfYox/q2OK7wLvquP8EHZ9rptCNqfdkL+N5I7N1jpq77VUfDUl5vwwhPBl4EZgCnALu2631u7FGCvTx3guMIykAs/RMcbnmmG55TntESGEvBjj3lbi+QJwYR3nJwK5ST0t+npPH19Mv34bQpgAPESyJWUG+DpJ5aOmMiynbcUqSZIkSZJaUHPvWy9JkiRJUkc1m+pqR11IKqY01MSc9r/2NDjG+DPgczldN4QQvtqIdZtEuq3ab6n++8KnYozLgEup3uLo1yGEnq0RXx1yK6E0JLbcLaPqsy1SY7VqfDHG7wEz0sMPhRDe39i52qoY43bgkZyu05ppqVeA8rTdi+ptEltSY19PuWPXNXbxGONLwNU5Xe9OqyE1lWNy2s2ROCZJkiRJkmphpSNJkiRJkhohxlgVQngEOD/t+hAN+MA7hLA/MCmn6+F6rvuTtOLRj9Ku76QVj75X37Wb0PXAjq1//hhjnJHG+I8Qwq+BT5FUKvpB2n6HGOPxLRHobnK3NBpZnwvS53xYTtfKpgxoN7nxjWjAdbmPZW/juxo4i6QyzfdCCPc1opJXW5e79dkBzbFAjDEbQngMOCft+hDw5b2c8yLgogZc0pjX+xCgMD0sizFWNGC9muQmeHUl2RKtqbaAuzin/XgTzSlJkiRJkurBSkeSJEmSJDXezTntj4UQDmzAtV+n+n8GeijG+EZ9L4wx/hj4Yk7XjSGELzRg7b0WQjia6m3VVgL/tduQLwFL0vblIYRTWiq2eshNDpsYQsjU45ojSZIlAObFGNfUNXhvpNWidmzL1SeEcOiergkhFJJsbbfDs3sZw1zgjvRwNPCxvZmvjeqb097YjOv8NKd9eQihWRKc6pD7ej+hntfkjtur11Jq96SlJnm+0ypc49LDLVS/ZiVJkiRJUgsw6UiSJEmSpEaKMT4JPJAedgf+GELotqfrQgiTgU+nh1ngukas/UN2rZjygxDC52sb35RCCJ2B35FUwQH49O5JODHGcuAT6WEecGt9npuWkCbU7Ejy2o/qalV1uTKnfW+TB/VOf8lpX1GP8R8kqR4D8GKauLS3vkf1NnlfCyF0aoI524Q00ezUnK56J/01VIzxUeDR9LAPcEcIoXt9rw8hfDGEcORehPAE1dvtHR1COGoP6+UB/5nT9Y7XewihRwPv53Ny2vOaoHISIYRDgP/J6fp1jHFFbeMlSZIkSVLTM+lIkiRJkqS98xGqty86HngohDC6poEhhPwQwhXAXSSJOADfjDE+1ZiFY4zfB76a0/WjEMJnGzNXA10PjEnbf4ox/l9Ng2KMDwK/TQ9HAN9pgdjqK3c7uqkhhGNrGxhC+AzJtlgAm9m1ck1zuYnq6jCfCCFcXtvAEMIJVG+3B3BjUwQQY/w31clPB9JBqh2lSTXfo3q7vA3AjGZe9hKq3ydOAh7fUyJRCGFiCOFR4PtUV0VrsBjjRmBqTtf/CyGMqmXNDPBD4F1p11vA72sYOgpYFEK4JoQwuK710ypn38/p+kN9Y69lvm7pPfksUJR2Pw98bW/mlSRJkiRJDdfoP1hIkiRJkiSIMa4MIZwG3A8MAY4DZoUQ/g48RvKhfTcgAOeSbFW1w4+Bb+3l+jemiQI75rkphJCNMf6sjsuODyH0qeN8rmdjjG/tOEirpFydHq4CPrOH6z8PnAEcAHwmhHBXY5OsmlKM8fchhLOAC0i22fpXCOE+koo0bwGdSBKlpgATci79VIzxzRaIb04I4XPAz0n+p7FfhxA+QVJ1ZgFJhaz9gUnAWVQnsf02xnhPE4byXWBy2r4mhPDbGOO2WsbmhRCmNGDuGTHG7N6FV6szQgird+vrSpIscx7VW3IBfCXGWNpMcQAQY1wRQjiVJLlpBHAE8HwI4SngYWAxUE7yWhwFnAkc0oQh3EDyWjkWGAn8O4RwD/AkUEry3ASSql873qO2ARfHGDfXMmd/kved60MIzwJPAxEoI/mb4zDgNCB3a8XXgB/sIdb9dnsdZUgqRA0AjgJOprqqF8DjwIUxxk17mLdR0iTSj+zWnfuecHoIocdu5++MMb7WHPFIkiRJktSWmHQkSZIkSdJeijHOCiEcQ1Kd5gKgkGQ7oXNquWQZ8NUY415V/MhZ/9shhHySCkQAN4cQKmOMP6/lkhsaMP37gelQ47ZqV+wpWSPGuDaE8CmSijn5wP+EEA6PMW5pQAzN5RKSn8VVJI+prp/ZWuDyGOPdLRQbMcZfhBA2AD8DegFHpl812U6SzPH1Jo7h2RDCYySJI0OBjwO/rmV4PlBj1ata9CSpMtQcbq3HmE3Al+q4T5pUjPH1EMLRJIlcHyVJbDsu/arNMuCbJJV89mbtijQ58lbgQpL3qA+kXzVZCnwgxvjPWs6vI0mUOpDk5z4x/arLdOCyOpKYdjic+r2O5gE/AX4ZY6ysx/jGGglcU8f5U9g1sQpgFkmClSRJkiRJHZpJR5IkSZIkNYG0GtBFIYRvk1QLOY0kSaMfyZZcbwMvkVREurseH7w3dP0b0sSj69KuqSGEqhjjL5pwmeuAg9P2n+ubgBNjnBFCuJ0kyacknecrTRhXo8QYtwOfDyH8nCSZ5iSSKjNFJEk8a4BXgAdJKgiVt0KMt4UQ7k3jm0RSoaeY5G86ZcAckkovt8YYFzdTGN+lOqnia2m1o4q6LmijtpI8Z/8GHgF+l1vFqyXEGFcDl6fvE/8BnEpyT/QjqTa0DlgCPAfcB/y9qapBxRg3kLxH3UhSuecEkqShPsAWksplL5K8R91e1884xrgQGBZCODx9DBNJKiUNBnqQbA24juT1+SzJNowvNTL0zcB6ksS/2STvo/8A/hljrGrknJIkSZIkqQnkVVX53+aSJEmSJEmSJEmSJEmS6i+/tQOQJEmSJEmSJEmSJEmS1L6YdCRJkiRJkiRJkiRJkiSpQUw6kiRJkiRJkiRJkiRJktQgBa0dgCRJkiRJkvZNIYT+wLv2YooXYoxLmyoedQwhhGHA+L2Y4vEYY1kThSNJkiRJUoeVV1VV1doxtGmrVpVXFRV1o6xsU2uHIgnwfpRajveb1DZ4L0pth/ej1PSef/5ZPve5Kxp9/bXXXs8ZZ5zVhBGpI5g+/R5++MMbG339r371W8aOPbQJI2q//N0ntRzvN6nt8H6U2gbvRanh+vfvmdfSa7q9Wj0UFGRaOwRJKe9HqeV4v0ltg/ei1HZ4P0qS9jX+7pNajveb1HZ4P0ptg/ei1D64vZokSZIkSZJaxVFHHcOTT77wjv7+/XuyalV5K0SkjmDKlPOYMuW81g5DkiRJkqQOz0pHkiRJkiRJkiRJkiRJkhrEpCNJkiRJkiRJkiRJkiRJDWLSkSRJkiRJkiRJkiRJkqQGMelIkiRJkiRJkiRJkiRJUoOYdCRJkiRJkiRJkiRJkiSpQQpaO4D6CiH8F/AJIA+4Jcb4kxBCMXAnMAxYBFwQYywLIeQBPwXOAjYBH40xvpTO8xHg6+m034ox/r5FH4gkSZIkSZIkSZIkSZLUzrWLSkchhLEkCUdHA4cBZ4cQRgNfAR6JMY4GHkmPAd4DjE6/Lgd+mc5TDHwDOCad6xshhKIWfCiSJEmSJEmSJEmSJElSu9cuko6AMcAzMcZNMcbtwOPA+4HJwI5KRb8HpqTtycBtMcaqGOMzQJ8Qwv7AGcBDMcY1McYy4CHgzJZ8IJIkSZIkSZIkSZIkSVJ71162V5sFfDuE0BfYTLJt2gvAgBjjWwAxxrdCCPul4wcBb+ZcvzTtq62/VkVF3QDo37/n3j8KSU3C+1FqOd5vUtvgvSi1Hd6PUsvxfpPaBu9FqeV4v0lth/ej1DZ4L0ptX7tIOooxvhFC+B5JZaINwCvA9jouyauhr6qO/lqVlW2if/+erFpVXt9wJTUj70ep5Xi/SW2D96LUdng/Si3H+01qG7wXpZbj/Sa1Hd6PUtvgvSg1XGsk6rWX7dWIMf5PjHFCjPFEYA0wF1iZbptG+v3tdPhSYEjO5YOB5XX0S5IkSZIkSZIkSZIkSaqndpN0tGPrtBDCUOBc4P8BfwE+kg75CHBv2v4L8OEQQl4I4VhgXboN2wPA6SGEohBCEXB62idJkiRJkiRJkiRJkiSpntpN0hHw5xDC68AM4IoYYxlwI3BaCGEucFp6DHA/sACYB9wC/CdAjHENcAPwfPp1fdonSZIkSZIkSZIkSZIkqZ4KWjuA+ooxnlBD32rg1Br6q4Arapnnf4H/bfIAJUmSJEmSJEmSJEmSpH1Ee6p0JEmSJEmSJEmSJEmSJKkNMOlIkiRJkiRJkiRJkiRJUoOYdCRJkiRJkiRJkiRJkiSpQUw6kiRJkiRJkiRJkiRJktQgJh1JkiRJkiRJkiRJkiRJahCTjiRJkiRJkiRJkiRJkiQ1iElHkiRJkiRJkiRJkiRJkhrEpCNJkiRJkiRJkiRJkiRJDWLSkTqM+xfc19ohSJIkSZIkSZIkSZIk7RNMOlKHMav01dYOQZIkSZIkSZIkSZIkaZ9g0pEkSZIkSZIkSZIkSZKkBjHpSJIkSZIkSZIkSZIkSVKDmHSkDuH+BfdxyNNzWjsMSZIkSZIkSZIkSZKkfYJJR2rXstsqKJ1xG8899Qf6P/8qW755NZlHHoRstrVDkyRJkiRJkiRJkiRJ6rAKWjsAaW+smPUE4y+9kv4nQ/eFMOTBefDzW1jz5HNkDypp7fAkSZIkSZIkSZIkSZI6JCsdqV17IH8ep18CJat2P5PXGuFIkiRJkiRJkiRJkiTtE0w6UruV3VbBzHmPMXo1FFTufraqNUKSJEmSJEmSJEmSJEnaJ5h0pHYpW5nlpWf+RPk//8ZZ86B4M6zokTvCSkeSJEmSJEmSJEmSJEnNxaQjtUvzV0fe98qV/HMoZPOSpKPZ/XMGZHxpS5IkSZIkSZIkSZIkNRczM9TuZLdV8Pz9N1OZD+VdYFMhbOrU2lFJkiRJkiRJkiRJkiTtO0w6UruzYtYTnHHjHRy4BjpvS/oqMjB+RevGJUmSJEmSJEmSJEmStK8oaO0ApMbIAIuLk/ac4iTh6OTFrRqSJEmSJEmSJEmSJEnSPsNKR2p3Bo49kfLb72b6+Kkc0n0Uq0uGUrK6taOSJEmSJEmSJEmSJEnad1jpSO1OplMhQyecwVDg3Xnz6bH8cWBJa4clSZIkSZIkSZIkSZK0z7DSkdq1ayd+s7VDkCRJkiRJkiRJkiRJ2ueYdKR2b2y/ca0dgiRJkiRJkiRJkiRJ0j7FpCO1e2e8+zOtHYIkSZIkSZIkSZIkSdI+xaQjSZIkSZIkSZIkSZIkSQ1i0pEkSZIkSZIkSZIkSZKkBjHpSJIkSZIkSZIkSZIkSVKDmHSkDmd6Cfx15WOtHcY73L/gvtYOQZIkSZIkSZIkSZIkqUmYdKQOI5sHq7vCLRPgidXPMX/tXLKV2dYOa6dZpa/ubJuAJEmSJEmSJEmSJEmS2jOTjtQhZIF/DIU7xsKjw2FavIvbPnsEi0pj68a1rYJlMx9m2cyHGfG3f7Js5sNkt1VQNeOeVo1LkiRJkiRJkiRJkiRpbxS0dgBSU1jUB0asg1MXw8oecMY8OOFNePWCF+Csg1strhWznmD8GecCsPZAGP/zf/HyA9M4YMHKVotJkiRJkiRJkiRJkiRpb1npSB3C8p5AVdI+oByGrE/ahStWQrYVt1hL155eAn03QWkXqLjvHraVrqB0xm0wN7ZufJIkSZIkSZIkSZIkSY1g0pE6hH6b4LKzk3ZFprq/5Cs3kFm0oFViylZmWTlvJnOKobQrdMpCaXc4+md3cODL8xlz6ZX0f9dRrRafJEmSJEmSJEmSJElSY5l0pA5hSR94s6i1o9jVovULuPlf3+F9F8Go1fB2d1jRA6YeBes75wy00pEkSZIkSZIkSZIkSWpnTDpSu5cdNoJev7qbm8deC0BhmsMzvaQVg0qVdk+qMOUDj46A8kJ4egj8uz+UdYYHRsLS+AzZbRWtHaokSR3K/Qvua+0QJEmSJEmSJEmSOjSTjtT+ZTKMOuwMjj5sCtk86L0FVneF34+DOX0hW9XylYSylVmWrF/Mmm5w/WOwonvSX7wpqXhUtAWKtkLn7TDu0qtY8cpjLR6jJEkd2f/Nvae1Q5AkSZIkSZIkSerQTDpShzK/CJb2godHwGsD4CfHwIsz723xLcwWrV/Ahfedy4Ji+MQ58Pp+sLwHdN0OB6yHsW8nlZj6bWrRsCRJ2me8vWlla4cgSZIkSZIkSZLUoZl0pA4jO2wEW798LZMjHLgOBpfDL+6HM6/4NplFC2q8pvD+5t16pTIfFvaFlwfCLUdBv0MncmLvwylZnfTtMKj3sGaNQ5IkSZIkSZIkSZIkqSmZdKSOI5Nh4MT3UrIaZvev3yUFs15t3phS945Jvm9+/3/w/k/fWr1+ZfI9k++tKElSU1qzZXVrhyBJkiRJkiRJktShmemgDiXTqRMA41fAwA2tHEwNyk47ZWd7/Aoo8fNQSZKaxcZtG7l/QfNWNJQkSZIkSZIkSdqXFbR2AFJzmDK75dYqvP8+Ks46u8HX5cb415WPcebI0U0YlSRJ+57stgqef/oOVm5ZyZYNZdz36I857PVSGHgAAw87mUynwtYOUZIkSZIkSZIkqcMw6Ugd1u6JR41NDtqTglmvNnjeOcWwvHtSjenPB0P+777H8vuepeq4Exg46UIyXbo2eZySJHVk2cosLz3zJ0Z98iquvhi6F0Bm6QuMv+cFAF5+YBqDDp/UylFKkiRJkiRJkiR1HG6vpn1GwaxXm2XezNw5DRqfHTaCLT+8mQPLYcAmGLQBRsdV9L3zbsZ//CrW3jEVstlmiVWSpI5q0foFfPaxKyGvum9Fj+r2oB5DWj4oSZIkSZIkSZKkDsykI+0T/rryMQDuX3Dfzr7cdkNkK7PMXz2b0hm3UTrjNrJvvErpjNtgbqxfslAmw+CDJrIlHx4blnRtKITt6d1Y8pUbyCxa0KjYJEna12WqaunP95+9kiT56nnxAAAgAElEQVRJkiRJkiRJTcnt1bRPmFU+h3MpZlbpq5w1ItkKrWrGPcBBDZ5r0foFfPjnRzNnanJc2hXGXHolAGuefpHsyNFkKyvrniSTD/mwvBdsKYC1XeDkRQ0ORZIk7WZH+u/gdVDarVVDkSRJkiRJkiRJ6tD8X761z5iRmUPV9u07KxQVPPsU2x9/EGa/DtlsoysfbSisqfedZRbuPHsaw3qN2HmcqUqGjSqDeX2hIDdPye3VJElqkKKHkqqGO7ZXm7Sw9WKRJEmSJEmSJEnaF1jpSB1WNg/WF8Ib/eCtBS8x+qVFrMy+xkE/nMsfxsG2DLy2agWDzjmW3r+6m1ndX9lZBWlPqoA3+sLMATB0Pdw+FqbMhqUP/JKeR76b0q2lAEx+A+4dk1wztNeBZPIzSWzDRlA04znOv/G/GfCXvwMwuDx3hbwmehYkSdo3dH9jDrDr9mr9NrVSMJIkSZIkSZIkSfsAKx2pw5pfDPcdBMctgxGPvcCoOaUUzJnL+s6wqBg6VcL2DAxfC8UXnU/+2rIGzf2eS+CWI5I5Bm2AjZ1h+M9u5eP3f4CDLr8KgKufqr5mly3XMhkYVUK34yYBScLSDtNLSLZfkyRJ9VZZVZ1ttLGGtPr8JYutJChJkiRJkiRJktSEzGxQh7a2S3V7wAaoyMBT44oBmFecVCxa1hPm9IU1W8uYv3Yu2co9fyBZlQ9L+sDyXrCiB/SogOU9k3P5VewsVDRkfc5FNXzQue2kU8gCb3WH2cVw6+HwdjdY+sS0ZNs3SZJUT1XML4b3XgyFWRi/AgZuqD7b58JzySxasMt2qoX3N25r1do0dqtWSZIkSZIkSZKk9sikI3Uo2WEjWHvntJ3HI3KKF+23Ce44DLaUr+GV/eDJA6EyD647CX5yDGz56918+OYjWFQ2t9b5cz9MrMqHqjyY3T/ZvqUik8aQD0t6J+03e1Vfm1n+Zo1zLukD5V1gykXw5NAkaekLr36b1U/91YoMkiTV05LyxVTmw7x+sL5rUkWwpPSd42aVvroz2ahg1qtNGsOs0qadT5IkSZIkSZIkqS0z6UgdSyZD5dADdx7227Tr6clvwICN0HV7cry8Z7I12tf+CZe+BHOmQpeFS2qdvmrGPTX2d94OxZuTdlkX+OWRSfuRETnX1hF2FqjMh2HroKASHrwdSr5yA5lFC+q4SpIk7bBm8+paz2WBhX1gaXya8hUL2Pjgn3nl7h+wbvk8/vjIt1k282GYG5sk2be26klWQZIkSZIkSZIkSR1NQWsHILWESqCsc7LVyj+GQa+tMOjNpLLQ291haU94ZUBSmejQ5UuSDx0zmZ3XZ7dVsGLWExzy4PO8vv5L0Dfpn1cMfzgUPvIyDF0Gr+0Hq3okCUwPjYDlPaB/OdxywlSGH3xK7QHmVTdLuzXLUyBJ0j4jL830Hb8i+b6kDwxfC3z0SgaeDL2ehEl3/BmAZyvgc2lO8ZqnXyQ7cnSNcxbefx8VZ539jv5sZZZF65Mk4bItayh/4R8sPS4wrNcIMvnV/5bYUQXprBHvnEOSJEmSJEmSJKk9stKROrTSbpDNgwVFcN9BSd+8YtieD4evgHsOgcPehoEbYVsGPvQajL/s87tUGMpuqyDe+t+MP+Nc+s15k4onHwHgC/9Mtlhb2zUZt6Q3vDwQyIOtBbCpM9xyFPz0/Ls45thLyHQqfEd82WEj6DHjabZ+4Rq+v99lDNvSDfbbn8VHlvDqd7/GkjXzyW6raO6nSZKkdilbmWX+2rnMWfVvNpRX76W2Nc31mTI7+d4t51dpJclWqACz+8KKHtXnOj3+2K7zb6tgyfP3M3fqV3jtf6/liStPYsvnLyXz0N93VkWav3Ye7/rjEXz45iO488XfcOcLv9llu9bcCkduvyZJkiRJkiRJkjoSk47UoS0ogjnF8NfRsK4LdNkO+VWQXwlfOzUZM7tf8v2FQTkX5myvsmLWEwy96RdkSZKVqvIgrIL3zE/Od6mAt7on7eljku87tloDGFaet0ulg11kMhAOYdDHv8wBx51F/9JNfOHet5i5YTbjvvodxr/3AlbMemKvnwdJkjqiRWVz+fDNR/D1GyfSe1719qg9d8vXLaiE0y9J2uu6QGH6a35FD1jVLamG+Osj4N9P3LHLVmsrZj1B8SUXcdz1v2D74vn0fXYmQ/54N8WXXLAzQTlbmWXkmmSL1iPeSr7emApdnn6GZTMf5o7nf86ymQ9TVVn71m1uvSZJkiRJkiRJktojt1dTh7e8J5CXJAttKYD1nZOkoV/8FR4eDv86EDYUQklp7lXJfmfZyixz+2S59T0weS4MWZdUSyioTBKLwioYuB6KNsOZl0BempBUCZyZHcU33vUdhtW1rdpuFhRBFnh6EGwogA2dYdS8mQwce2KNlZIkSdqXdVmylDlTYX4fiP2q+weW7zYwDxb3hoV9YEMnmDYGLpmVnNqWD0Vb4a2eEP79EseecS6QbrVWlU22YB0IfTbXvAVqJj+f/Mp03Q3Qb1Oyndv4j18FwJGnQO+Z/6L0s0fStXd/luU/yMDDTt7l9/r/zb3HbdckSZIkSZIkSVK7Y6Uj7ROqctql3WBVd3jvh+Cm45MPG0u7wfgVOYMyya2xaP0CLvjb+Swuhjf6w11jofu2JEnp7W7Jh4sA5MOc/ZKkpi0FMPUY2P/A8YyccGa9k4WGjjmR8w44k2kl0DUL8/ollZkmXXEDy179R1M8DZIkdSjZqixzimFZukXa5DeS7wM2vnPsAeUwfC10255suXrzkbCpU5JQvMPuSUVLt6zk0snJ9qlVJNu2vdkTnhwMUx+6hg3Xf57Sfz+zI1eZklLovxGW9kySiKeVJPM/ORSG/eMFTrr1b4w/6zxWvPKPXdZ5e9NKCu+32pEkSZIkSZIkSWpfTDpSh/d6f+i+2zYrD46sbg/YmCQPTZmdHE8veecclemHiY8MT7ZkKahM5i2oTCoaZHKymnpUwL1jYEzPke+cqA6ZToWUTziMD5wHawvh9X7Jli83Hwmr571IdsvmPU8iSdI+ZOmWlZz9Aei/GV7bD45dCgXbkwShx6+5jDnFSXWj/CwcuhKyebCuMKlqVLwVlvaCUxemc/VMkoprs6UANneCIeWwPQOVj/6dVx6+lTGXX8X6zkmSUVkXyKuC/z0cnhoMa7pCr63JulCdrNzzkUfJbtnMspkPs2zmw1RsKGPzw9NZNvNhsnVswyZJkiRJkiRJktSWmHSkDilLUokAYFsmqRiUa0kfOHANTB8/lQsLJlCyuvrcywPfOd/8Yrj90GTrtNFlsD0f1naF8kKYPgYW/denuHfQtRxc1Y+Ts0N5+ti7+NDxX2xw3GuPPZLha+GrT8LBpUnhhHGr4PTPfJe3H727wfNJkrQvyJAkBL08ELYXwJZOsHbCoZxzUXV1o9MWJr/PHxueXFOYhTVd4Hfjq48Hr9913n6jj2DQumTb1PlF8OqA6uTkKuDZA5J/b5R3TqokreyRJCqfPQc+MRkGrU8qJfaogNnp9m+VQP7//ILnfnYlN//sXD7653Nh9uvMfuIuvnTbuSwqm9v8T5gkSZIkSZIkSVITKGjtAKTmsKRPso3K6/3hwLWQzYc+m5MPIcsL4f8mTGVAOIZhRaPoPnsL2byXmF8Mg9fC6q4wb+NihlaO2DlfZT6UdYNlvWHkmqQq0meeg9Xd4A/ToWjGx2FUCc8sfJTK4QMYOeHMRkaex/xi+PBkmPgWjCpLKikBDO60H9lsFjKZvX+CJEnqgFak26wN3ABkMuSnlQiz+VC0GT72viRBCJIko7+Prr62MAuTFlYfZ6uyLNu4lCeGJ9uynjsbRq+Gh4bDKYug21ZY1hfe7p5USHqjX7J+pgr2L4e5fWFO36QvrypJUtqWD9vz4JWB0PPuuwkHwNANsKg3nLwETr4dXv7wUuhbQ9lFSZIkSZIkSZKkNsZKR+pwslVZlvYA8uCVAUnFgR4VSWWiLQXw0iDoV3IMI/sGMvkZtp10CvOL4OyL4X8mwNou8MHpNVcamF8MY66A/zr2y3T7wOV0+8Dl9LvvRRiefGp5yKCjGTPxvMYHn8mnMh8WFyeHU2YnsQMUX3IBmUULGj+3JEkdzI5KRDuqGx6/JPm+JU2rr0z/pVsFFG+Gp4cmiT89tyYVh85avz+/6PdJAIaX7Tr3wk1Luea283nj59B/E7zVHf5cAlV5sDUDmzoBeRD7Jd8fTnOV84ElvaHvxmTdY5fBXWNhWFmSrJxXBTMHwsDyNEaSqozrC5MkpcWblzN/7Vy3WZMkSZIkSZIkSW2eSUfqcBZuWspHpsBlZ8PS3rCxsLpaUPXWaVW7XNOpEuZMhSHlcOlL8MZU2PDoDFa+/vQu4yrzYW4/WHnJBVQWFVNZVEx25Oid1YdOP/+bnDXi7EbHPnTMiTx7/DTuOmoq41ckfTuSjiRJ0q4ynQp5YjjccEKSSBRKYXKXI/nax+/hyCPO566jppIlSejpUQFV+bCpc1Lt6KUDYPK4DzHhjMuBJDlodwuKk6TkZwbDsUuT5KAJnYaxekg/+m1OtlsdtwLyK2FdZzjqTVjSE0pK4Zp/JtutnbAkSYA+eBX8Xwlsz8DynknyUuftUNYVlvWEfw6Fm46BB35zJR+++Qi3WZMkSZIkSZIkSW2eSUfqkBYVw/Ie0HUbzCtOt1kB7h2TfM/kV29Rlq3KsjStkLAjKWlJH5h0xQ3cf+uVTH4DJr8B756/6xrbx45jbL9xTRp3plMhw8dNYnCYyJTZSV+/zU26hCRJHUplPjw+MkkkyubDxKMuYvjhp1PYuSuDw0SW9IGCqqT60W/+AhOWwdHLIKyG4jOqqxMes1vSUWVVdmey8ZZCmFECTw2DM4eczrKLpnDGgmRbteItSQzZDJw5Hyb8J1x3CvTeCjeeAO+9GH454D+ZtBDWd4ZsXrLlWo9tSVxPDU7WO2lRUo3puCXwwB+h91PPQdZqR5IkSZIkSZIkqe0y6UgdTmVVlqp8WNQvqR7wzGDotQUuGvgeLhtyAU9f+DzDeo3YOX7hpqVcOrn6+gEbYGmP5EPBpwfDpAVw0SwYsn7XdSrOOnuvqhpJkqSmNa8YThpySo3nlveENV3g9f2grAtMnPzFnduj1qRqt+N7x8CdZ0+jT+cixnZPrpu1H2Qqk/O/PhJ6/vR27h10LR+fdC37ZXpxfNeD+cPZd3HIR75B4QPPMabfwWw98ggq85KEpTl9k4pLi3tBj+3QqSpJRBq+FsZceqXbqkqSJEmSJEmSpDbNpCN1OLt/SNhvE5z+qakMHjyOPgNGMLJv2KXS0dAxJ3LPhJt3Hu+3Ca47CeYXJx8G9qiorpQkSZLahmxlliXrF+/S9+RQyFZW7jqwCioKYEVPOHAdbOkEq7pD6QcuSLZHraWaUKbynX1Dex1IXl4e7x34bgBi/6S6EiTVjujelYmTv8jEyV9kaNcDOHbsOYyccCaZLl1hVAlHdy2h2yFHULQZZhyUVDwiD9Z3TeYYv4Kd26tKkiRJkiRJkiS1dSYdqcPJ5GV2Od5SAEO7HkBeXl6N26FlOhUy+KCJQPpBX1plAGBrQXNHK0mSGmPR+gVceN+5O49fHgibC2DZhjffMXZjIczut+t2q/nLdozLq2WFmvu3jx1HduQoimY8x7PHT2NC74P5/pgv8+zx0xg65sSd40b1O/gd174vexAV7zqRoaecz9dOg8o8CKuqz0+ZDSWr63zYkiRJkiRJkiRJbYZJR+rw7h1T3a51O7RMcitMmZ18APjoCPjaSez8vLHfpmQbFEi2Vsndnq1F1VKNQZKkfd29Y+C5ITCox+Bd+oeu28OFmVr+OVxLf8VZZycVkkaVMHzcJAqHl/DRU65h+LhJZDoV7hy39f3n1ZjsXHH2OUw5+GIg2Z7NaoqSJEmSJEmSJKm9so6LOpyhY07kWaYB8NpbP+L7x1/N0DEnsn3plnrPsb0Apo2FbluT7VUOKOxHpyJ4+sK/Maxo1C7bs7Wk/GVLyR5U0iprS5LUHuT+js4OG0H5ndPgP5OKSCt6NP162dEH1dhfcdbZnLWHa2N/k44kSZIkSZIkSVL7ZaUjdTiZToUMHzeJ4eMmcVHPE3ZWHqg4q5YqR7vZcVNU5cOmzvDng6HggKGMGTaRkX1DiyQcZYeNYO2d097RXzloSLOvLUlSh5HJUDn0wJ2Hs/u1Yix16Ly9tSOQJEmSJEmSJElqOJOOpD24dwxU9O/Lpy+7veUWzWSoHDS4hhNVLReDJEkdQHbYCIpmPMcnhl7AhN4Hc9mQC3j2+GkMHXNik8y/few7t1BrqB4VTRCIJEmSJEmSJElSCzPpSKrB5Dd2Pd4yYngrRJFXzz5JklSrTAZGldBnwAh6vOsMjj9kys4qiE2hvpUUofYEpfzKWi7IZhsRkSRJkiRJkiRJUssoaO0ApOZU7+oD6Yd62Two6wIXzUoqHO1QXjKazs0QX50yNeQE1tQnSZLq5dCPfZNDW3H9WhOUas0pNtlYkiRJkiRJkiS1XWYwqEOrf/WB5EO9+cVw+6EwcEPSG1Yl3187eliTxyZJkgRQuVtu0fSSHS23VZUkSZIkSZIkSW2XSUcSkB05irV3TgOg95bq/h3JR52Xr2yFqCRJUm2yldV7kh39Zs39uepd/bAFVFbtum3a/GI4/ZLq45cH7mhZ6UiSJEmSJEmSJLVdJh1JAJkMlUMPJLvnkZIkqQ3Ibq/Y2e66PfdMzdWB6l/9sPnlRrg9Hyrz4fMnXPvOgW6rKkmSJEmSJEmS2rCC1g6gvkIInwMuI/mc5jXgY8D+wJ+AYuAl4EMxxooQQmfgNuAIYDVwYYxxUTrPV4FLgSxwVYzxgRZ+KGqjslVZFhYl7SeHVm+tBjCg28CaL2oh00tgyuxWDUGSpDalbN7MGvsz+ZkmW2PyG3DvmCabbqdMXnWMBWlhpgO6DGj6hSRJkiRJkiRJkppRu/jfp0MIg4CrgCNjjGOBDHAR8D3gphjjaKCMJJmI9HtZjHEUcFM6jhDCwel1hwBnAr8IITTdJ1Nq1+ZvXMx7PwjdK2BeMYxfUX0uP7/lb5VsVZY5fWFOX3hqMKzuCvM2LiZbaT0mSZK2HtA8STpVwMI+sGLhzF3+LdDcstntLOyTrL05k3xn8QLI+ntfkiRJkiRJkiS1Te0i6ShVAHQNIRQA3YC3gHcD96Tnfw9MSduT02PS86eGEPLS/j/FGLfGGBcC84CjWyh+tXE7tjpZ3gs2FEJJafW5ykFDWjyeheWLOftiOPtieG0/uGMsfHD6uSwqm9visUiS1JZkK7Ms3fjWzuOBG5Lvd549jWG9RuzV3FsyULgdun/7hr2ap6HWLJ/D8LUwfC10zSbfiy86n8yiBS0ahyRJkiRJkiRJUn21i+3VYozLQgg/BJYAm4EHgReBtTHG7emwpcCgtD0IeDO9dnsIYR3QN+1/Jmfq3GtqVFTUDYD+/Xs2yWNR21XWJ/kZV+VBaTd4eSCM63MQv7lyBiOLRjbpdi31saF8HXOmJu3rTobPPJ98LfzgGvqX7NuvR+9HqeV4v6ktmrN6Dlc/ftXO4y0FcOv7buU/xp/T8N/XZT12OawCHhoBxy1LjnO3WCsu7kH/vnt/T5T17vaOvmEHHVrj2OLiJD7vRant8H6UWo73m9Q2eC9KLcf7TWo7vB+ltsF7UWr72kXSUQihiKRK0XBgLXA38J4ahu4oVpNXy7na+mtVVraJ/v17smpVef0DVru0dt2mXY7vHQO3vtWfosr9WbN6Uy1XNZ/yDVtq7F+3btM+/Xr0fpRajveb2qo1azfscnzvGPhKz8Mb9fs6s2YDxWk7C2wtgP4bk+OXB8JFs6qTjtas2cCqyr2/J3b/NwfAxs3V26jlbuu2Jo3Pe1FqG/zdKLUc7zepbfBelFqO95vUdng/Sm2D96LUcK2RqNdetlebBCyMMa6KMW4DpgHHAX3S7dYABgPL0/ZSYAhAer43sCa3v4ZrtI8bOuZEnj1+Gh9495eZ0Ptgvj/my5x79CdbLZ79Rxy5s73jw8fpJTCo6wGtFJEkSR1PdtgI1t+UlBZc0gc6Z2H0GijvlCQbDdywhwmawZTZLb+mJEmSJEmSJElSQ7WXpKMlwLEhhG4hhDzgVOB14DHgvHTMR4B70/Zf0mPS84/GGKvS/otCCJ1DCMOB0cBzLfQY1MZlOhUyfNwkij59DV16FPHRU65h+/umtF5AowOr/3Q3c4rhpIWwoQAeGwZvzX2O7LaK1otLkqSOJJNh+1FHA7AtHxb0gScOhF5bIaxq5dgkSfr/7N15fJTlvffxz8ydnexkgyxkhQRCZBEQRARFwAAVUcRq3Y7VLqKetra1Vdunj9X22PbYWvRpXc5pqVqViqCIG4rFBQOyiFECISEJCQQISQjZk3vy/HFlISTsCUPC9/168Zp77uW6r5noDHp98/uJiIiIiIiIiIicw/pE6Gj79u1ZwL+ATcCXmHk/DfwU+OGwYcN2AgOB51oveQ4Y2Lr/h8D9reN8BbyCCSy9Ddy1fft2G5GjZNiR7p4CWBZ5YRazbwCXExo8IX0/fPyXe8ja8BK2S//oioiI9CgHlPlBTjhUeZtKg6X+PX+btuqKWZOXMSZoOFmTl3WqcCgiIiIiIiIiIiIiItIXeJz4lHPD9u3bfwn88qjd+cD4bs6tBxYcY5xHgEd6fILSr8y1h1Lr7km0anLCHXNh2i6o9YTHJoP32kWs2V1L6MLvunt6IiIiZ92/d6/p4REdAOwKhugqaLBMtaPUMsgJ6zjLbmrqkbu1VVcE8PngDyRkTMfKy+2RsUVERERERERERERERM6WPlHpSORsa07PcPcUDNumBciOgLs2QLUXPPYuLMwGv6WvUPbGErVaExGR805uxY6eHdAyfyWOOwRJ5TByH/xmMmyJMofb2qyV5X7es/cVERERERERERERERHpwxQ6EulGY+Ycd08BAOe+fe3b9R6wIRqSKiCoEWLXfk7a7YsozV7rxhmKiIicfa6Wli77bJfrtMez4xMpX7eRyDc24hmXyGVT7sCvCVakmeNR1ac99Am5ws+Blq4iIiIiIiIiIiIiIiKnQaEjkXOYKzKK3cEQfcg8t53dLHza9lmfl4iIiHt1DR11v+8kWRZ2Ugp2UgquqEGUz73y9Mc6RXbK0LN2LxERERERERERERERkZ6k0JHIOSwufSqfTVnGny5fDICjBVIPunlSIiIibuZ0dP0rrOW0emz8uLQpPDHyoS77I/2ieuweIiIiIiIiIiIiIiIifZ2HuycgIsdmeXqRkDEda0Au9RZYLlieevRJPbfIKiIiIub7d3zmvWRtG0103kvsCd3KY5MfJS5tSo/fKz0so8fHFBERERERERERERERORsUOhLpA+z4RBqHJZEXmscWFVkQERHpdW3BX7/I9QRNTSQhY3qv3CczcU6vjCsiIiIiIiIiIiIiItLb1F5NpC+wLPzu/SWvxppWL6NKOw5F+8e6aVIiIiL9jysistPz5nQ3VyKybffeX0RERERERERERERE5BgUOhLpI5rnziN6yjwA5uV07Lec+tdYRET6t1X5Kzs9L6gq6LV7NVx9bafnjZlzzkoLNDs+kcqXl2EDu4KhzoLPB0Hx9s+wmxp7/f4iIiIiIiIiIiIiIiKnSmkFkT7myCpHIiIi54Pssq3t27bLZk91cZdzbJerR+7VmNm13dlZaYFmWbjihlAUDAmV4GtDtRdk3H4PRZvW9P79RURERERERERERERETpFCRyJ9zJFVjkRERM43BVX5bCv/GoBhB4480uKW+YiIiIiIiIiIiIiIiJyvFDoSERERkT4pqrpj23Ja7ptIL1ie6u4ZiIiIiIiIiIiIiIiIHJ+HuycgIiIiInIidXXVvPvRk1Tv3cVV28y+Sh/3zqmn2S02xQGmvdqWKKj1gEpfKC39mGsSJ7l7eiIiIiIiIiIiIiIiIp0odCQiIiIi5xy7qZHS7LUAHC7N55Vt9/F04Yus+CdUpptzPox33/x6Q15NIbdfBdsWQ6MTtoVBgwdU7/qEeeMasTy93D1FERERERERERERERGRdgodiYiIiMg5pzR7LaNmzgcgaipc8TU8fR0sHeHeefWmltbHT2PB02W2R+4Dlqwh2+tPpM+7V8EjERERERERERERERE5ZzjdPQERERERkeNxAU1OcLig3gJP24RxoqtgSDm8OOsV4gMT3T3NM5YwfBrPz11Kze3fpsoLrBYo9Yfkcph+18OUbPnA3VMUERERERERERERERFpp9CRiJxXVuWvPKv381p1du8nItLf2JjKP6F10OQBXi5osmBgHaSUQ2EoxAXHYzktd0/1jFmeXiSMnsng+FF42VDraUJHbSoKvnTf5ERERERERERERERERI6i0JGInBfspkZKNq9mXfZy1v32Fko2r8Zuamw/3lvhII/srb0yrojI+aIoGKq84asI2BUM/g3g0wwHfSE3FF6e+QpJwSnunmaPs53Q6AFhdSc+92wHakVEREREREREREREREChI5G+xba77HIWFYJta8HxOOymRrKXPc6omfOJev4VAl99jZGz5rN5xR/JO7idvMpcDn/+IXmVudiuru/xmbByd/ToeCIi54uamMHMuBHeSTLPEyph8GHwaIHPYiAwbQy+N97JlIQr+kWVoyNFXLaAuimXEFXdef/I9Cu7PT+7TAFXERERERERERERERE5+zzcPQERORWOTs9soOI78zn8x8Wsa17LBYd8iPaPhcRksPrXAuyZKM1eS9KDjwDgAoLr4N4ZsOfDX/PZzl9zQSlk5sKfn3iaJXetJ2lg6hndr7Ghjs/Xv8yA0gOM/epznnr+dm4sH4L/9+4Hy6L0izUArCnPYlroBPMzSxl2pi9TRKR/sZwUhMDX4eapfyOE1EN+CKxIgyfzkrkkZmq/CxwBWD6++JlijzwAACAASURBVMenEf7+R4wq7djv6eWNDdgum4KqfMq/XAfAoHfeZUNDDGMuvrFfvh8iIiIiIiIiIiIiInJuUuhIpC+xOhcnq/I2lR+4dRFRU2HUh68AUL5uI3ZS/2s1c7JW5a8kM3FO+/P6uBh+PAfefhG+jIBbtsAzF8JzK8DlAGcLhNTBO89D0MVF2FNTzii09fnGpfx4zT2sfBHqGmHin4twlsPjZDEp4xo2L/5PPo2FxAo4VA0Lb1lMWDdBMa9VK2nMnHOMu4iI9F+2y6akuhiAvFD4MhI8bIipghpPWBh5JX6xczp91vc3rsAgUr71U2a9vYvPDnxG/biLwHaBbVNwOJ+Lnx/L5Xnm3Bn5sD5nE9sbd/OtqfcreCwiIiIiIiIiIiIiImeF2quJSL+zceUTnXdYFh8kQdLdsDUSAhug0QN2B0GZH+wJgBoveGgafPWTa2FnzhndPyxlLJFVcP9lcNAXYqvMgrnvxx8x57r/5Pqv4K0X4aodcPcGCPzPRez6ak2X1m4e2WqXIyLnp4KqfK5/fT55ofBBgqlQBxAXEMdPZvyOmJgMmufOc+8ke1lGSyQ3fvu/8PnXK5SWFeHzr1cInTwOqyAfgKRyeOsF+OubEFQP930KBX//L6wP3u22HauIiIiIiIiIiIiIiEhPU+hIpA9zOSD1+zDjRvjHSPgwDrY9txg7doi7p3bW2U2NFG1YxRdLf8e+PV+z58HbKdrwNnZTIwAuJxSGQn4o/DMd5niPxjcqDp8mmFYAww5CfCVcshv25m08o7lYnl58nAguC/46FraFQdoBaHDCq2nQ7DT7750Fn0XDSyPgW8vnU1CRi11fR9kbSyh7Ywm1O76g7I0lkPO1FpBF5LwTV2k+u+s9YWAdNFuQ0RRG6MLvMDL8AndPr9fNjpzWvp0T3vV4XijceLWpeLhjIOwKhpH74NBdC7Hycs/iTEVERERERERERERE5Hyl0JFIX+YwC7LvvgA3fQlTiyDt9kVYuwvdPbOzrjR7LbXfvZ7pdz2M78EqvF5dSsDN11H4559RVGXej6u2AQ74IBEeuPZZbsn8NRe6ovjN+2aMqQXmMcYz4rRDPrbLZt/X6wAYVQovZkBWNJSG+2C5YPMgqPYEF/DYamjygDF74d0lUPjCf5P9s4Wk3b6I0LsXceijt9j0+CKqv3ERnmvXKHgkIn3KqvyVZ3R9UTAMKQfvJphQbAKc3/AeDdCv26qdyJv71gDm+3/zYFieCruD4eAAKPU3ISRnSbGbZykiIiIiIiIiIiIiIucDhY5E+rjp+e6ewbmhPi6GX04BG2hywheRcOktkPPmM6z72XzAhIAAVqSB3dRE89x5OFJHto8xfZd5DL3xuvb2NSfDbmqkZPNqSjavpvCPP+Gx5YsASC2DCj94bArs/+YCvj3yDmwn7A0AywVbomBzlGn35t8ID1W+RNNnH3LvDAivhUPe4OECnybY+JP5bH32AYo2vN1+r7YqTiIi56LsstNvEWk3NdHSWqEuvtK0qcy8CepGpPXgDPsWF6aa0ae73mff1+u4ahvsHAjfnW2+b3ybTegIwBUd69a5ioiIiIiIiIiIiIjI+UGhI5E+6Mh6NyP2m8ecsONf47XqzCpOnPMsiz3BpjJGi8MEeybthn+NMC15APwbOk537tkNgCshATCLtafrn2t/x8iZ8xl09XzqX3yGoeWmOkdMFYQfhuWjFjP5e08QeMN3SSyHJReA7YT3EuCwl1kk9m0Ghws+jjOVK/6ZDn+8CBZ+DR8kwKsj4PKHnmLs7Oto+I/5jJo5n9Lstac/aRGRc1hZ7uft21HVJqQJUHHFtGNc0b9llEJJgKlidOmzb1H0yCJGlZpqR4e8ocIHImpgQKMJJhXvzFIwVUREREREREREREREep1CRyJ9UFGwefS0IbjetFZpq24AdGnDtSp/JR7Zp19xoq/IHQh3zobEcmh2wiEf+DISvoqAkaUQWQOWDU+mPkTCcLNwnR4wFIAJJSd3D7upkV3rV/LYn65kya0J5M9Np+l/n6QoGCJrocYLhhwy1Tk+ioMDARA5fCKW08KOT+Sq2FncdsVDJLoCmRk/k+QKeG4MfB0GKQfh0UtNpaZ3kk3YyAbWRcMFe83PeXkq1HmYuUT7Du6Fd1FExP3CUsYypDXAGXsItkTCy5lLiQ9MdPfU3GJ0qamIZztMdbxXRnSEjb1tmFZgAkm+tnnMuHWRgqkiIiIiIiIiIiIiItLrFDoS6UPs+ETKP15P9c8eAmBVstnfVgGig6NTy6/afzzJ4dL8fl/1wOWED5KgIATCa2DGTkjfB3GHYFwJVCXF8M3hNzN/6g+xPL0AmB05DdsBO0KhwhueT2+tErF9XZf3y3bZvP3Bnzi86AaWVX3CoMKDDP66iEuzq1kzxLS+qffoOP/nV7Rd5zIbloXf1Tcz8aofE+c7mEUzHmV6Prw2HPIGQnZk6+twwP4BMKAJdoWA02GqNdVb5medctCc51lc3CVgJiLSH1ieXhSGmgBnUoV5jAtOxHJa7p6ae7TAmymQFwJfRsD6aEguN4caLJiX0/WSaH+1WBMRERERERERERERkd6l0JFIX2JZ2E6o/PPD2MDmQdCCqXYQVX3keU5Ks9cycuZ8ghbOJ/7tT/Be+grZy/90XgSPXrgAXk+FBTN+ygWDxnBl7Aym3v57Cm6/kf++fHGXResdoTDnBghpgJWpx64SUVCVz6NZDwOmipKPbUJGgQ3waho8egm8n9DdrFratxoz5wCQMOZKoKNVXk6YqWAVVAf7BsClMZexOOxO1g+GrZEQX2l+xl9GQHTrzzr4hmuxCvLP+D0TETmXdQ3Wnp8+j4Y1CaZ16AX74LJdZr9Hx1cMo0rN4/JUsFpaug4iIiIiIiIiIiIiIiLSgxQ6EuljdtUW84tpUBDcsdBY6g+pZV3PLfNrbbfSDPv8YfpdD590uxWvVSt7cNZn32vDYd+N1zE8+VJmXXgrsybdCQ5H9yc7wNlajCg7omP3sdqXDT5sWtwc9IF3kszi7mFvExx6v5vOP91V5qh96Fft927T4oRDvqaix5TbfkvwxBl86xrwaoboKvPz9HSdzKsXEek/VqS5ewbuZQP5wRBSC0+MM+1Daz0htM4cr/aCGTea76Xh+6HaA9bEQ9U/n+b59x/p92FjERERERERERERERFxH48TnyIi55o9gbAn4Dgn2DbOvXs6tfrKjoDUg8e+ZFX+SjIT57Q/98je2l6V51xhNzWyK+sdDh2qbd8X7R8LicnHvGbGgl/RttyaHpbRdcz4RMJeX88fN78O/LrTMctpcXTzsrxQ+MY3IbHCLPRuu/0aPKtrGNJcTcC/P2Z7+Cm+qGMUorCcFnHpU/nEuZSScfuIW/8YOyni+uxTHF9ERPq0rGiYWmQq+UUfhoBGGHLIhIy+nwVPTYCiIPP9NOebsGOxCRrHP/ksgz6EumvB/64H3P0yRERERERERERERESkH1KlI5E+qMUBYbWmDZdHd6GV4kJ8friIN1MgZ6DZVe1lHqP9Y7sdM7tsa+9MtgeVZq8l4aJZjJo5n4b/mM+omfMJv3jcSbcYOzJU1c6yIDmV8WOuBsz72nGs4yPSdtkUVebjcsLOMLPo++8EuGXyj/k/N73CjGHzSD9w6q9pd6B5zAmDgTVme+nYxcQHJmJ5epF8wUwunXAzA+KGEVsF83JO/R4iItL32PGJVL68jLA6SLvLfPdX+kJSuQm+HvaGcXtaT3Z0tOtsAWo84H8yTEtO18pllC3/G3Z9nZteiYiIiIiIiIiIiIiI9FcKHYn0URbgZZtKB1HVkFEKB3zh/SGw7tXfgcMsSJb6m/P9W8v9WM7u/7UfsW4HYNqqrcp3f2u17uZguzp6i311qhWFTlJUdff7C6ryeWDJArb/Gbb/GVLK4bHV4LN7NwCzI6cx/eSyT+3s+ETqf/4QYH5ObfeO8x3cpSVb4xUzmVByauOLiJyqc+HzX1pZFq64IeCA3DDznf9xHLwxtOOUtu92l8NUQGwBDnvCwDooCoWSQEjamEvanfdQ8d5St7wMERERERERERERERHpv9ReTaQPyguF2+bCuL1mYTG1DCaUwGcx8KOZsOLF9fzhIpiZ13FNpwo+reymRkq/WIP33n2kr/yE7Ttms9WzjP1vHmSPYyzBudtN6zLL6nrxGTi6lVvHhOz2qkXZuR+QdsiTiJXv8tpFISRtzMUncUT7qfW99Ol1vPZl+a2tawDiDpntJUOGnP7NLIvxmfeStW00/+APjNoLn8VGE5c2pcupTZdOO/37iIicpOyyrV0+n71WrTxhu81jfq6fgau2wYq0Hh2yz7HjEwl5Yz1vN2wl/IUfc2BSAiPixlD94bOsi4GEShh2gPZWnbYD/ngR1Hh2HSss5cKzOncREREREREREREREen/FDoS6YNcTlO94IL9ZoERoMYLwmvA6YKl6TCoxoSRXE54Oxnm7Og6Tmn2WkZlLsAGckPhwi/2sfhamJULKV+8Ba+8RfnH67GHpvbo/Ltb1AYgfyehF48DoP5KqNj+LOPz4dCXELgL0g68hg0UBYOnDfv8oNYL/JsbAa8emdvx2pe5nKbaBMCYvfB+EmccyLI8vUjImM6F/vXMywGPVLNPRORc4ZG99YSho2N+rp+GVfkrGRY6jFGlCh21tQCdGT6OzVG/Z1LSDBLGLyDgf55l2N3wyzWmSl5bVcNBh2HTYHC2hpA8XEcM5enZ3oJNRERERERERERERESkJyh0JNLHuAYNbt+u9YQ3h0LEEVWM4g7BjoGQXA4OTOuVlcPgvnXm+Jv71jArKQWA+rgYbp8ND34CVguU+pmFy7Z2LYaj119Tm5Lq3YQDjU7YHQBj90DOQPBvgC8iIaHCBI4SKsHTBRW+kHoQtuZthMiJZ1QVw25uZFew2f44BsbtgZLVzxFcPhXLwwMcrk7np5ad2Ws9WmbiHBoTIbNnhxUR6RNsl01BRS4+RcV8UvQaEd0EQI9ssXk+OhAz0GzYXaNDuQMh6Ge/41uNuXz/4NNMbW33OSf3LE5QRERERERERERERETOOwodifQxzr17Oj1fnQg3tLYEO+BnQjkjDphQzEFfCG4wVRDaZB/eway2J5bF38aaakmXFMOVrYuT6fuPuIHl7NH5r8pfCbS2dstey5ryLACmhU6gZlAks26AH2TBhwngZZsWMWG1sHEQrIuB50bDey9AmR/s9TfVHJy7i3njzd/w+9wkBo9PYY1HIb+6+BFi/U++9dnevI1kVJrtv4yFm7Ih9aGnyIp+irElJsjF3R3nb4nqOkZe8Om+KyIi57eCqnxuenI8bz0P5VfA6kpI6NIWtMUdUztneIwa37rVNQzscoIrPoGrL/g2o6u+ww+fm8mo9WXHrd4nIiIiIiIiIiIiIiJyphQ6EuljEvxi2P5n00Zt4yD45b/h76PMsf0DwOWAau+OoFGZHwwtgwpvqPSFqrLdLHvyFubP+DmEmoXKv19o/nz2NEzcbaoH9SS7qZGSLavxWPEq7yfvA2Dv8u8w+tlXWT4VUg/AqK9gxfLFvJcMzQ6IOAyNFhQHHlF5yQFfRZrNam/wb4K518Pi//ktj94CvgPgg/w8tofDwpXzWXfDRpKCU05qjhGXLWDzM41Ubfuc6j1vsjz1EPNyoCAIJpR0Pf/oikp2fCL1P30A9jwCwPjdsD4Wlo5dTHxg4mm8ayepm4oXIiLu5rVqJVbFDhh/4nPb2A64Yy742XDQD0bu73zccp5ZO8u+buRtv+Kt9Y9iJyUT8sZ6smqLic57iaqgbB6b/Gvi0qZgOS2SglMY3BLIvJzOJfns5kZKNq/utC/aPxYSk8+4VaiIiIiIiIiIiIiIiJyfFDoS6WsSUghbuRFsm2vuuJXaX36fUX9dhA2UBEJkFZT4g28TVHpDhR8c8oGgBhM6GrvkLXJDofpPr8HLL3causwPfvN+z07Xbmoke/mfSHrgYRosmBUFL2RA0CpzvDgApu7qON/lhPdbc0KrE2F8/BQastZSFAQ5YXDYu+PcxAoYfBhiDkNQHXwVDt/8En5zCfz3yIdOKexj+fhieXox+fEX+eJC2BwFlV7QZMGWCLMAfvwBLCbO/gFZ28YSnfcS3q6tXJt2FZPHXN8jC+V2fCKVLy8jeOH8o46cvfZ3InL+sF02BVX5hLy3hob6coorc4kPTOz0ebYqfyWZiXMAaGlpIe9gDj5Fxawpz+KiNz5mWH0h9nWNWJ5eJ3E/F54ueHYlfPMaCK+Bpp4ttNd/WBYkp5JAKl6X1+NV0UxCxvROp6QEJAH5nfbtzdvIqFsXAZAV3RGoLV+3ETvp5AK6IiIiIiIiIiIiIiIiR1LoSKSvsaz2xUFXcAjNF03kGz+At5NNYOfjRLh0F9R5QnVqEj678hi+HxosSKiE4HoYXWq2n9m2tNPQ+SE9P93S7LUk/fxhmix4JxEuKoEDA8xi8jOjTYu0Og947YEbiPAe2OnanHC4cOxFhH2wlpeHw5V5kFDRefzCIPjG9Wa7wtcEkSwXXDAy85TDPvWDIplyC8zIh20DTZzHvzWsdTLVnyxPLxIypuN1eT33ZCdSO+3np3T/4w9u4Yrrpl1cD7e/ExEBKKjI5eYnx3N3lqk699cnnmbJXetJGpgKmFDSR7s/4IJDPtgtNkEr3uAWr//i7RchIAG89kKML5S99QKRs2/uUkmnrcVmG+eaVewcCN/LhPBaGFhrgrTSWXpYRqfnjZlzSMvvep4rPuG449TpvwBERERERERERERERKQHaMlBpB+o8IXZ34LHV8GQcvBwmT+DfCOZlJNHXpA5z3ZAuQ/EHYJPo2HL3g3g2zHOtvDem2N8JUTVQAtmQdnR+jixGMbtgZBHX+SdpBfhWx3XbImC2RMvpNkP/rYCXk6HiBpToaGNywm7Qs12vQe8OhxqvTmpyhpHi0ufxu+vfwnr9VeJ3LeRUvJJrjCt6nyaT36cxsw5eGRvPeX7i4i4g+2yKajIxaeomMOl+Sx78haSItLZsdgc/3AI7FgMW+YWYwcmUpq9lsK6Pby24VmefexZ3koGOxoGx5lAa3QVHGqtSjfgvnvxDIilacq0TsGj0uy1jJppKrctT4VLCsH1UygIgaRyyAuFUaVn+50497VVljrRvuNZngrBdT01IxEREREREREREREROZ+pRIZIH+aKiARM2AZMRZ7CUGh2QnEgDBp5CTaQFwI7QuGvF5pWaz427A+A1M2FPPpex3gfxHe9h7OoEGz7tOdot9j8c6RZSN4WDnsC4N9DoNYTvGxILoewOrPAPPtbna9dkQYtuNg3AHDA7kAYUtm5QkNRsAlaBdWZYNCWSLhvzI9PqbVaG8vTi+QxmST8n+e4JXg6o0ph7nYYXAWHTjHD1JyeceKTRETOAQVV+Vzz1/Ec/vZ8Gl5/hZXbX6Pu8Ye7PbctLJR2+yLu+wRm3Ggqw3k3w0dD4KarYONgqPIBT1drhb2F87EKuinH02pLFLhatycXQdkA8/l/pKVjF5/W57oYtgMO7P4agE1RptrgrmDzp+rFv1CyeTV2U6ObZykiIiIiIiIiIiIiIn2NQkcifVjD1dcCUHNUIKbOA3LC4NCkCRQFQ/xhKA6C5IPwRaRZZPwsGlwOmLvjiAsdXe9xosXi47JtSnZv5Q+TILe1ddvXEVDjDVkx4NdkWqgdz97GMi67zbRQKwmEAQ2mJdugw1DpBS1OE7Q65GtaxxWGwjWp159ya7WjNacMZV6OCUPdfwUEta7FXrXt5K5vzDy1yhMiIu7k6YJLdkNsFZT7QUq5qYjTHdsBu4JMdaJ3XzDV9oYeBNsDsmJhZ6gJlUZVd3exjZWXC3t2t1etcx1xeFiZ+Xw/Wpzv4DP+XD+f7QiFte89BZifl1+TCYR9EQUef3uGUTPn888P/8vNsxQRERERERERERERkb5GoSORPuxYwZb1saZyxJHyQyC+At4cBvsGQJkfDGgC/0YYvxuGHTAhpJ5iu2xKtq4h5f6HCag3+8JqodkB3k3w0gjwbT659jkuJ+wMMxWd3hpq5v7tTXDQz8y7bf71PdgwsunSadgOyAuG1UcU17g+++SDRyIifc3GwVBvQWSN+R5ZPM58drezbfJC4TtzoMUBJf6mit3AOrh5E3g1mQp2A+sg9WA3N8jfSejEsXy2+F7qPEzg6NOYjr+QHhgAqWW9/zr7u/QByZ13OMx7PONG2BliWp6W+MMHQ6DGEzZFwKZNr1G2/G+Q8/UZVTgUEREREREREREREZHzh0JHIv1Ue2uaFvNQ7mtCOi2YKki7A83+ai8T/um2IsUJrMpfecxjBVX5LHhjPnsC4LCPKaJU6g84oMETSoJgQgnMyzm1ezY64fEJMOUWeCsFYg9BZi6E1prWai/OernHWvDkhcL3ZoPDBQ7bhI12hp5cUEpEpC8pCjat0fb7QUQNNDnMd8XX4SacCuBRVAwu86Xi4TIt1V5KN1WNAEbuh71BcEW++Xzv9j5VhdjAhsEmQLp0OBQEwxcRMPgQFAaZFqFyZmZHTOv03GoxIbGCENO+blcIvJcI9Z7wdjIUhcKdr+wk7c57CJ9y0elXOBQRERERERERERERkfOKlnVE+pkjq/DUx8UQ9NTLgFlsbPCAAY2wZBTsDTBt1nYFg6cNSeXwVMT3Tule2WVbj3u8yQnfnQOzcuHVNNPaLdOVwuUDJ/GvCxef1D3CUsaSNXkZWZOXcZPPxfzf0f9JQahZlN4WDk2WqaixbohprZYQmtyjLXiKgk2gqcbLhI22RHWuwmG7XMe+WESkj2hxmtZoOFrDKaEmKOplm9CR7QDr/nv4esNybExFooJgOOwNB33NGD42JFYcO3Bku2w+9trDPTPBr9lU3FkfDTGH4ctICGiEw14Q0ND1Wpfd1FsvvX+yjv1X/Iga+P0k+GgIbI4y7/2WKEhThSkRERERERERERERETlFCh2J9DOdqvBYFiR2brFS5wk5T4JvE+wJgOfGmODOQT+IiBvRY/OwXS6Kgk3waOR+KAyGBguiRk5hdMIUYoZNPKlxLE8vEjKmk5AxnWsn3sX4EVfQ4oQNMVDpYxa76zzg6vDLWbdwQ49VObLjE6l6fLFZiI8Dj9aKUdkRptpRh5YeuZ+IiLu0hSdbMJ/TwXXwdpKpgNdoQVidqfw260b4PwdfBAfEHTJtO8Nqzed8qb9pRZnSXUu1VgVV+fznR/ewOtlcazvhywhzbHsYpO831ZX+fkHHNcMOmMf9Rdm98+L7MRsT7NrrB68NM/tagFpPUw2xJBBSymFOrjkWVgfLU901WxERERERERERERER6YsUOhLp49rCMSej1B8qfGHONyHMOwToaMPW3o7tJHitOnZbtQ4txFV23nPXgsUEjJtGeljGyd/sCI2Zc7AcpopRixPqPSA7Cj6Jg59c8RhJA4f1XJUjy8I1eHD7vYoDTSWI7eHmsf20HqyqJCLiHiY82eQ0YaDABtg0yFR1G3y469lWi6kwZ7eGjQpCTFhoRRr4HacgUVu4aedA+CABLBfs9zVj7B/Q0catKBiGlJvwU0yV2Q6P7blQ7PnAbrH5NAZcDng5Hcpaq1E1OeGzGJhUYCof+jXB8P2mdWmFtzlvVzBg2+6cvsh573gtjEVERERERERERETOJQodifR1R4RjwLSmOZacMMABuWGQEJ7KmKDhZE1e1v44KPHCE97Obmqk/rV/8Npvr+HLr9+l5uEfQe72LguUltOiMNS0PKv3MPOKHD6R5tnfIDNxzum+2m6dSmDqVMSlTWlv7RZ12TX4jp/C8pFPEDfIvF89WVlJRMRdjgxP1njDM+Og0QMySmHMXqj2gDeTTKW8vFC4ba45t8kJnw+G8OqOsWo9j32ftcVrAHA5od4TPouF+7+zlElT7yAuYQwz7ET+dJmpMFcYCpW+JvBZGAqWx3G+3KSLXbXF/GKaaZ9605cworV1WspB895/Gm+qS9V4ws+nwfg9ENIAyeWQUAngcOPsRaSthbHXqpXYLpu8gzmUbF7d6Y/d1OjmWYqIiIiIiIiIiIiAh7snICI966Bf9/u3RHVuvTZk+BRiN+WSkDEdnw/+QELGdKy83OOObbtsNn32Epkr3mLPVPAPh/ilm+DPz1C+biN2Usox770+9ujBOkJKLmB3wIlfG0DSBdPIOrQMgJfKH+Sxyb/GFR3bK+GfttZuAF5X1BMTtpVJ42+lbv2H7fvdZXkqzMtx6xREpJ85MjDUAlxSCD+cBZk7YW8gTCqGLZHQ7DRhFhwmVLrPv+O6Cp9jj59XubPT8xVpcH9QIgN9BzJqyKXM315I5bjryfI3QdrovJf4JLWEJWk/Ii5tSs+90PNAXNoUnhz+IK7Xf92+b0sUXLwbVh/xVd3igG9f8RCzXn248wCWfi9B5GxrCxeV5Wwgb/tqfvXGS3x3fQuvbfsLe79cy1OrzHlZ0TChBLa8s4zo0e79+6iIiIiIiIiIiIiIQkci/YDL7r6fjWll4ySpHB5bDQNrTSjp7vUQ8sY1+G1YRi0wInr8ccd/Y+97XFBVyIslr/Nszt8ob93vf5K/YN19JaKOKgoH/GDoQbN91bbjVy46Mgg0dvtHZy3805g5B9ab3zqfaw+l9qzctTO7uZGPWsNbz42CgTUQkPMx0fGJYKnNm4icmrYF7i++eJOrtpl9bydD1GG4ijTqPbbxfoLZb7WY4OqKNNP+bHKhaX92rccY4kbOZtMXD3d7j2WpcGAATNy+jsN1Rd3MwbRcm7HgVzQMWNnpM94vcj2jEhLdHvLsiyxPL6IuuYp9v/81LwwFLxveT4AbtkLmDnj8HXh2NPz0E3As6Gh5GlV9nEFFpFflVe7kxr9OxMsFV+TBXn/YVQ2/8C3kuRITNoqugrrW/4KP9j860S8iIiIiIiIiIiJy9il0JNIPtLSYxy1RuV0NSQAAIABJREFUEFzf6Qh2fCKHPt1IGOD57zX4Re8g7BffwY5PpDndLDTOWPCrbsddngpzc2D1l/8iZ+3n7A0An0Szv8zXhJhO2xFVFKo9IbA1wDSq1CyyrI+FpRl/PG4Fo2PNu7e1vW9n2968jVyy22w/5IPZvu1eytdNPmaVKRGRYymoMAvcALe2VsLLCYPt4TBjZzh1XtsIbP1OcbZ0XNfihI8SILQeFvteiEfmvaTuaSTz4gm8svcn2Oxk7wDTw9fDhr0BMOK2RdQuhPEDjq581zFwY2bPtt4839lJyYS9sZ5r/t/v+YPHp6REBJLsV8V119xN2N3TGf3Bn/Eb4kVdTHz7NakH3TdfkfOd7bIpCoboSngrGbxc8GUkTNkFnw+CxEpTka4tHGg5ndjHH1JERERERERERESk16l3gkg/kDDycrImL+PndyxjkE8Y3469jnULN5AUnAKWhZ2Ugp2UQv1/3IkrJNQEVCyr2wVeG9gVDBXe8EE8/DMdpiz/nNeHgW8zBDaYcFO1FwR0X2DplNjAJ3HwRWTHvtgq8xg3IAbLee5U8EkPM2Ejdy6M2w7YEQpNDqj2gL+OheLt67CbTrLslIhIm92FgKlc5NNs/owrgSHl4BMcYc5xmBaYzQ5ILYPL8mivirQiDWrShmJ5ehHyvQdIyJiOt18g+wdAkycMrjHXWDZ84zpYmWo+34cdMNf/4ZI/mu+p42j73JXTYFmQnEpwZCLN8xYQF57K8JjxZF7yPeykFKbf8QSukFC1UhM5R1hOJy1OKA6FXSGwOxAuCB5OY0gAQ+fegW8zDC1XOFBERERERERERETOLVplEOkH2trRJGRMZ0x9GMGRiSQNHHZagZ2iYEiohKAGSDkIVT7mt6orfGDHQPBrNJUwjq5y9Obe90/pPnZ8IpUvL6MoGMbtBQ8X3LwJtoXBuGJ4bfADxKVPPeX596bMRPdX4dgRCnNuAM8WWJ0MQfWQcesiSrPXuntqItLH7KstpQVTuajewwRKkyqgMBRcIcGEvLGel2If4ItIKPODnaEmNOTT3DFG2eWXdhpzpNcQvP/y4pEFjEgph9+v7njuYTqqEV/lwHJaxw0WnQufu31dc3oGD038FSkhQ2m4+toux0TEDWwbKy8XKy+Xtz99GnbmULxjXcdxJ9R6w8ghFxM6eio3j/kuE0rcN10RERERERERERGRY1HoSKSfuWr/wDMewwZKAiC5HLaFm8VogLBa0+phS6Rp7TWqtOOa7MO5p3YTy8IVHUOTE75xPWRFw6RieCcZro6azkWzf4Dl6XXGr6U/cUVEgcNsR1WbgEDbzyDaP/bYF4qIdGOQdxj3ZJntnDAo9TefKwA1w1MhOZXGC8dy9UKzb2eoeSz1P3KUliOfcGXaAkge1v68ytuEJf1bi7HtDjSV8gAi/czNFCzqXUdW5zu6Up9a2on0npW5yynZvJqSzat5/v1HqH7ykY7KlPk7CZo4lkNXjqXhV/fxwe3j+cnqe4GOanIANWkp/O3KF9wwexEREREREREREZGT4+HuCYjI2XW8ihJ2fCL+/+8lPv3J9Qw/YFqrlQ6AkfvAr8ksGmfFQkI5zMsx4aQ6C0oDoKq8mJLNq034JTH5pObiLCkGB+wMg20RML4EDvlC5V3fJ0SBoy7qE+JYcD2MLYHUChM4amuxYTmd2O6dnoj0MXsbyrhvJgyuhAN+pgLR2jh4cdbLBMXPaD+vKNhUvPNwwWFvaHTC08kPMHz03C7t0Roz52Dl5bYHJPf7wweJUBQE3k2wbwAMd0bxyuSniEubctz5qQpPz1KrOpGzx3bZVPz9j4x6ehPLU8EOgYR1kB0TzeD0iyk6VEh1a3XR5HKo84Cn34RZN5m/361IM+McmnE5Ye59KSIiIiIiIiIiIiLHpUpHIv2MKyLyuMePW1HCstgV7sXtVwEOs9Dc6GkWm0v9IXRAGFmTlzESU52iKBh8bbNgcumzbzFq5nzCLx6HVZB/UnNtungKNb9/gqcivk+AXwj7IgawdNQTJ1yIPl/Fh6Twj3s2cv93lwHwjRyo8IZdwbBk018o2by64zfoRUROICxlLEMqwdMFTU4YUgl/WbCUafEz2ttzxqVN4bMpyxgUM5zwuOFcPP+nXHXD75g7/T6Ghg/vto2nHZ9I0F+WYgMNrYejaqDB07Rumx07i4SM6SesZqcqPD1LFaVEep/d1EjJ5tV8um4JTdmbsDEV5IqCIGcgpN9xD6ETx9JotXDnbHNNmZ95jDsEb//DBJB+8SE8mfoQ8YGJ7nopIiIiIiIiIiIiIidFlY5E+hk7ZegZXe9qsckLhRfSwasZImrA0QLfTFjAmMGDSciYzvVZs4C/deqqE1V95CRsoOtCdBdeXsTMvpVrgceLv6AhPJJLJ916RvPvzyynRVJwClag+S34Q94Q0mD+RD31DKO+eoYt7ywjevR0d09VRPoAy9OLwtaWaYWhcFkBxAUndgoSWZ5eJGRMZ/x7zwNw+bQHTmJgC4YksmMgvDocDntBahkE1cHfkx5gwjfu64VXIyLiXrbLZtNnL5F5zSI+Ggd4wqcxpn1lvWUC/CnlpuXku1+9yleRpmpooxMGAL+bBB/HgZcNjRb878jZ3QY7RURERERERERERM4lCh2J9ENn0kKlBXA5TTucRg+o9oaARrh1yo8ZGpoKwMzL7gb+duxBbBcnFTo6QoYdScPEa0932uedeTmwz6/jefp+8+hdvAcybLPoLyLSQ+baQ2lOz+CUaqk54IULzGaVt2mfGZEwSovoItIv/f2r5/jf9+8jE9NaMnMHvJECe/0hrAaanbDbH668EQqrXmJIMzw9Fuo8YUeYqXQ0oRieH9U6oKWixCIiIiIiIiIiInLu0//JFOmHzqSFiuUwi8Er0mh/9Gui20XiJguWjDS/sb0zFOoseCcJineux25qOqX7Xpl2rVq/nCS7xeagD2wJ79jn35oESLt9EVZernsmJiJ92pao4x8/1XZn1hHV8HLCWvc5FDg659h2l13OosJu94vIseVW7ACHqV5UGAQNHvDX8VDvARNKIKYKKn1hRh5ctQ0O+5iw/zuJpl1uQRA4W+AuJrNu4QaSglPc/ZJERERERERERERETkiVjkSkk7i0KWSxDICXyh/kscm/JmhgHkGBiZ3Osx2wKxgqfOG3kyCg2SyU1HhCwI/uoeg3J9GC5winuph9PttVW0zWSJizA352Ofzo06PPcLhjWiLSx61Ig/t7aeytkb00sPSArt8ZwQvnU75uI3aSQg8ix2K7bAoqcvEpKgag+sBuXA4oCoagBtNO7ZJCyA2FH62DMl9YORSiD8PwA/BeItR6mlBmYEwSJKZwSXYV1333DVWEExERERERERERkT5DoSORfqY5/fRbqwFYnl4kZEwHYPx7z5vt1udt7Bab1QnwnTnwg89gUA14toC3ywSPEiqh6cFH4O4zmoocg6vFZk0CvD4UmjzNolYnaschIj3sVL9b7PhEQt5YT1atWYxvC7HGpU3pjenJmdB3hshpKajK5+Ynx7NjsQnjTxgPm8aZSkeHvE2YyKfZtE3LC4W7ZsHVObAtHO5aD8H18PEQ+O0Nr1Df0ojT4eTanVupVeBIRERERERERERE+hCFjkT6mZ6sGDTXHkptN/vzagr5TutttkZCiwMianrstnICLcBrwyGlDAZXQ42XqTqVfsDdMxOR/uqUv1ssC5JTSSAVOCLEKiLSD+WFmjZqeaHwwDTYGwSJFSYY7tvacTh3oGljmR0BmwZBSrmpMHdb6X6mT7oZgOZ0N74IERERERERERERkdOgX20WkVPWgmkd4XDBAT/wbIaqYB+gY2FFek/C8GlkTV7Gvy5cTFQ1TCiBnPAjTrBtt81NRKQ7V6Zd6+4piIj0KNvlAmB5KryTCBU+4HLChwmm0tEef1PpaP8AuDMTfjTux4ybcSdeXj7kDvEn3SuW5SOf4MKxC9rHVLthERERERERERER6WtU6UhETlnC8Gl85lgGwEuvP8ig+XM5uH0jvLqa4AY3T+480N4Cb4TNvG3vA68ddYbDHdMSETkmLaSLSH9iu2w2lGYB8H4CrBkC4/dA2W/hB7Og0YJnxsGlu2BTtLnmtxOuJyk4hZzHtzIucTB23BAmXXKr+16EiIiIiIiIiIiISA9QpSMROWVtoZeEjOn4+Idw67QHaElIBEzVHYDuau20/Ua49BDLYsa8B7vZr492ETk+22VTVFXYzX59TouInEhBVT4/+HAReaEmcFTvAS4H7AyFVSmQWnbsa38x7B6uTLuWGQt+dfYmLCIiIiIiIiIiItJLVOlIRI6pOT3jhOeMiB5vNo5eqO622E7LGc9Jujeq1N0zEJG+pKAqn4Ur53dzRJ/TIiIn0hbQdDlhbwAMroaBtabC0UE/01ptafp/s5+PeGzyTbiiY4kPNAF9VX4TERERERERERGR/kShIxE5ppNZFGn7Le30gGHt+1yYxZajWU6rp6YmR5mX4+4ZiEh/oM9pEZGT0RHQdDkhOxKSysF2Ag7TWu22oFgu/f7f3TdFERERERERERERkbNAPXhEpEfMHnRZ+3aDBbGHzfZV29w0IRERERE576zKX9nr9zgyoNkWP1qRdtQ5DoU4RUREREREREREpP9T6EhEeoZtmwfA5YBdwWa3T7P7piQiIiIi55fssq1n9X6HfGBIOSwftZiRCRfz7djryJq8jLi0KWd1HiIiIiIiIiIiIiLuoNCRiPQIu8XFtoHw9wzwcMGCa+Gar2D/APCvh8en/In4wER3T1NERERE+rER63Z02ee1qmerH9kuV8cTBxSGQljqBHwuvITJI+aRkDEdy9OrR+8pIiIiIiIiIiIici5S6EhEesSuhj1ceSP8dgrUeMFlBZC+H/YEQLUPXBQzuVMrChERETk/9HTgQ+R4BufvY2Xe6+QdzKFk82pKNq+mbvVySjavxm5q7KG7tHS7rzk9g8zEOT10jw527BAqX15G5cvLaE4bTuXLy7Bjh/T4fUREREREREREREROlYe7JyAi/UNc2hT+2fwSBwq/pCHyaWaW1gHQNMifFy/7o6ociYiI9HG2y6agIhefomLWlGcBMC10AlHpU7qt6mI3NVKavZao1ctZv3UpcTNvIto/FhKTwVIQWXqO7bIp3bQa7737aDq4j3WvPsqj9V/z5ouwJgFu/AKytr1C0n88RPq8e8+4ClFbkP6qbbAirWNfY2bPB44ArN2FBC+c3/48eOF8ytdtxE5K6ZX7iYiIiIiIiIiIiJwshY5EpEdYnl4kj8kkeUwmAau2keS3jwi/SH4x/VqmJ2a6e3oiIiJyhvIqd3Lbk+PZsRiWT4XUAzDqK9jyzjKiR0/vdK7d1MjW1x5nxqJHWJ0AjT4w6r9fA1BYQnpcQVU+D72wgPs+gwZPcHiCnQhzboAbssG/GYLqYfpdD7MleXSXf15Phd3UyL6v1wEwqrQjdCQiIiIiIiIiIiJyPlJ7NRHpcXbKUPYkRpISMrRXWkyIiIiIO3RuKZW+3zxG+8d2ObM0ey1JDz0CQHEgVB9ZWMa2e2uCcr6xbay8XJxFhWyNhLuvhNxQWB8Ns3bCO89DTpg5NaraPH5Rm3dGtyzatIa02xed4cRFRERERERERERE+geFjkSkV3w1cSjN6RnunoaIiIj0EMtp4XDBjoFw0BeyoqEkAHZVF2C7OoJEtstm9+FidobAjBvNPpfjyJE6PRE5ffk7CZ04loCF8/Fthh2LwWoB32b45pfwvSuh1B9sIKIaPoqF8tf+hw0fLcG1/etTCsB5rVqJ7bIpriruvdcjIiIiIiIiIiIi0seovZqI9Ljm9AzSw6BxvKociYiI9Adeq1bCpGE0eUDaXRBfAU1OSCqHR5cs4P8+uJ6kgamAaXV199p7KLwZUsrM9fkhRwxm6fcepGeUVO8mHCgKNn+WDYP/HQ0xhyD2MDgcUOYH2wfC8IPAQdi3YRuN6xcRmQOVLy6ladp0sKwuY9sum4KKXHyKirFbbCqW/Y7CQ2vZ+NZfuMOz61zspqZef70iIiIiIiIiIiIi5xr9H38R6XGNmXPUVk1ERKQPsxvqKNm8mpLNq3n+/UeoW72cfV+vw3LBzidg3F6IqoGpRfDuC5BU3n31ora2ajsHnsXJy3mjPi6GW+aC7YAWJ8QegloPGFreuaWfA8gaZLarveCldLMdfMMCrIL8bscuqMrn5ifHs+/789nwswUscWxm0J//QoOnCTEBeDd3nO/cs7vnX6CIiIiIiIiIiIjIOU6VjkREREREzlN2fCKVLy8jeOH8Tvv35m1i1O33ALB8KkR8CD7rXiH/RrjsZhhSBddnd5xvOZ20NaqyXa72/Ye9wb8RUst693XIecqy+CgBlow1TwdVw94A+FcaTN9pwkYj9sOeANgdCBfuheJA2B0AFd5Q6Qv+zY3HHD4vFL49G4aVQWkQTM+Dvf4dxxuO+K9py9G1WpKIiIiIiIiIiIhIf9cnQkfDhg0bBrx8xK5E4BfAktb98UABcN327dsrhg0b5gD+BGQCtcCt27dv39Q61i3Ag63j/Pr/s3ff8VHV2f/HX5mbTkJ6Ib3BJBBC6NICCAICCkaaDXtZZdFdXdfVdXdddVfXddUVLKvuV382FDeCIiqCdCK9RWASUkkgkJBGSL8zvz8+qZBIS895Ph48ZubeOzOfG+beucl933NMJtMH7bEOQgghhBBCdDqahjkouJnpTQuifjwQ/jgRzAbIdVaho9lHmn9J3ayT5Qou5epxYAkk+bTyuIWoZW50v8geNDMEFUFw+DD6OGYzLimXwDNwyAvWhkGNBnFZkOwJI3PgyNbVeEREolup6kZ1/pf8OWYD9KqBx7fBvbPApQo8ymBTEPzK50buCTSQHlDDQyG3ERQV127r/IdJ8Lt2ezchhBBCCCGEEEIIIYRoWZcIHZlMJhMQC2A0GjUgB/gSeAJYZzKZXjAajU/UPv49cC3Qt/bfSOBNYKTRaHQH/gwMAyzAbqPR+JXJZCps51USQgghhBCi0/rx7H4GAFmuUGgPB33gsURYPAOuM/1yj2bNYMBigGIHsK9WwY4Tzu01ctGT6GYzWa4QXAA5vSHdDWzM8OgDywn+uZIJbrmMXf4Y1dZQ4AAHvdXz/r4ONtRm7SKfeJaC8bNJ9YAxHw0lvEBNH54DDAKsIOQMZLlBoQOcsYePBsP2vrfg7FDBP6e3T0thHdgWCANPwrcRMPeDF7DMmk9Q7CTQpMqSEEIIIYQQQgghhBCiY/zS+YLOahKQajKZMoFZQF2log+A2bX3ZwH/z2QyWUwm00+Aq9Fo7ANMBX4wmUwFtUGjH4Bp7Tt8IYQQQgghOicLkOwOpzZ/zSsj4VQvcKsAG10FOgAG5Z7fLs2QlQm6jm7WySnNrp9uXVuGpqWqSEJcGQsWA2S6Q4017PaDe8f9nrigydTMuJ5p3nEke8CMm8ClQlU5is1tePaKyKavFlYAqz5V/248rKal1D2/XH2eh8Q/xPaxCQRFxVHVToEjdJ0MVxh3DFyr1HoMeWs5Q6+dg5aa0j5jEEIIIYQQQgghhBBCiGZ0iUpH51gAfFp738dkMp0AMJlMJ4xGY+21q/gDxxo9J7t2WkvTW+Tm5giAl5dcni1EZyHbYyOFTudNcnd3AvkZiVYi21v3VGg4f98Bav/h5SH/551Rm26LhU7oQLYz+JXChDvgmfW5VFhDubVqX1VqC+muanG7Gqg+57cI1/nxYDKR7AHzV8XXT7erOf/t3IvzwH2QVGcRV6zQ4NLk8T5f+MdVd+HroT6syZkFTFuo5hU5gK0O1x2BzYFQaYCfPcEjEEYXnsQ9LAQdmHA7OFXByGyYdRhWRsFRT/Ua5dawYNJi+nn0a8e1BPKdKLRqeFhq23DfvbRAjvtEtybHokJ0DrItCtF+ZHsTovOQ7VGIzkG2RSE6vy4VOjIajbbA9cAfLrCoVTPTLL8wvUWFhWV4eTmTl3fm4gYphGhTsj02pRWU4n7OtIKCUnT5GYlWINtb91VQVNr89IJS8szyf97ZtPW2qOUVU+wK2U7gfwbGZ0BNbT3UzUHwXQRYWcChBjzOgtnQtFpMnYKCUgrOOdpuLnTEtGkUJO5GD+/b2qsiephz92Uro+CJRvsxt2p3TK+reR5l8GWkahk4rvYylDP26r4+fTpH3nkaGwss3AN/2QDzb4R8x4bgEUDULb8n3C28/b8b3frQ+6tEjmxdTeQTz+JU1TCrwMlDjvtEtyXHokJ0DrItCtF+ZHsTovOQ7VGIzkG2RSEuXUcE9bpae7VrgT0mk+lk7eOTtW3TqL09VTs9Gwhs9LwA4PgvTBdCCCGEEKKHsqLaAE9PVI8GnII8RzjgA72q1e2O2iNo31LQzKpaTLIHlFnDhzHq/ntZn6ObzU1euVd1O6+KEI2F9sVz1W48V+3G8eb7SHnkHlyWfl4/27NM3Wa5wrT7n+Xdr6BfHvxtLJTZqs9144Cd9fXz0AwdUKFL08A4AO/xqpv4dabG87rar/RCCCGEEEIIIYQQQojupKv9hfImGlqrAXwF3F57/3ZgZaPpC41Go5XRaLwKKK5tw/Y9MMVoNLoZjUY3YErtNCGEEEIIIXokPTwCt1U7eGLM01is4IAveFbA7j5gzFcVYkAFNDzLIM0VUt1hxk2wLgSWDIf/Fw1Lt77IoV0rAFUdRogOp2no4X3Rw/tidnPH7OEJYeHNLprhBvPngksl/Hcw1FhB1Tn5onNDdR3BAty3G8o1KLSDbFMipJhA1zt6aEIIIYQQQgghhBBCiB6oy4SOjEajI3ANkNBo8gvANUajMaV23gu101cDacBR4B3gQQCTyVQAPAvsrP3319ppQgghhBBC9EyaBhGRjBg0GwuwvD98PAAKHMHkAX1rj5brWjpdN+NJwgvgm09VUMNBh79uhD9uhrCnngfAvrm2akK0so3H1l/S8tGeMeghYRR9upx0Vyi3hg8HwpYAuPM6qLRWlbwAhh0H23NyPLq544M9FRqEFqnt7qQTxNyxCK8xw9FSUzp6aEIIIYQQQgghhBBCiB7IuqMHcLFMJlMZ4HHOtNPApGaWtQAPtfA6/wX+2xZjFEIIIYQQoiszWwEGyOmtHuvnXKLgWwru/QZTvGUHxYlfwefPYQE+GgjhBeBWrpaLKAC/4vYcueiJUgqTL2n56WEz1R2DRmgRnOql/j0/Hg4vhasXqs++S6VqG2ijwxFP9Vk+7gK5ZR3bmVuvqaLIDmbdAGs+Vu3fIk/XzbXqyKEJIYQQQgghhBBCCCF6qC4TOhJCCCGEEEK0rcpzfjuwaVTYpdQWok+hWlb1i6SmPJPD66HaAIe9VACid6VaNqIA3CrOb08lRGvRzTrFlUXNTL9wCzSzfyAAI3Og2Fa1C4x6CI65QL/TUGYNNmYos4Eie5h2FNaFgr9TQKuvx6VIL8thWzRkuajHGa6N51o6YkhCCCGEEEIIIYQQQogersu0VxNCCCGEEEK0rZrakFCWK1iboVcV5DqpafmOsM+3YdmIXsH8bhtgAbMBtgWp2zqeZe02bNHD6Gadf+z4G1+kfA7AiGON5zYfvqmJjml4oDX9Nfg6E6R4QoUN5PWCibFzOeoJec5QYQ2BJZDpDpqhY1N0QdETGD1sbn1Roz19Gs+VSkdCCCGEEEIIIYQQQoj2J6EjIYQQQgghBHpIGNZ/+gfbxybwU1wC/W0DiAuMw+TVsMzKqEZPCO2L29sJTE9RMY8iOxiYC2H5oFuBEQ+W9H2ivVdDdGNVleVs2/w+33z2B17Z8xKzDqvpZ23V7SsTlhDu2rf5506f2ex0z3Kwr6H+tVZGwS1jfsv2sQlsH5vAbfZjuPnq35M4fychvcNae5UuiWZjS9BTb/L58CUADGvc7U2TX+2FEEIIIYQQQgghhBDtT9qrCSGEEEIIIUDTqLr7AUJrH/Y/OAJ/Szjbxz4CwMETL/OPsY8SFBVXv3x13EQWkcDXz8ezwx/O2EOaJ3xthCdve4eIXsHACx2yOqL72bV7OY+tX8xr38GsobAgSYWEXCvg5bh/M7ffgouuRqQD6S5gX62qefmWNszTDNaExkwGYMB3Oyj71ZO4tcH6XA7NxpYA4ygAFu3s4MEIIYQQQgghhBBCCCF6PLkcUgghepDVaas6eghCdAj57Atx6fS+/bAyaITGTCY0ZjILnMcRGjMZzca2YSFNozowgFHHoNwajniqySujwGzRO2bgotvy7DsU9zKYcSvE5jYEhTzLYKTfVdha2/7yC9TSQ8I49OLTaFbgU6ZaB9YYwJin5htyGvq1NWnLJoQQQgghhBBCCCGEEKIJCR0JIUQ3p1dXkbN3LTl715KYtIKcvWshxQS6nAwWPUdS/oGOHoIQ3VZ6WTYfxcCOwKbTsytOtvwk+Q4Sl0GzsWVnAIzOgN4VcNYa/ug6lyf+srPFtmrNv5DG2UEDeGC6elhqC8FFTasd1WmpLZsQQgghhBBCCCGEEEIICR0JIUS3l5u0idip8cROjWfCK58TOzUerzHD+W77ex09NCGEEN3EPt/zp/nb+6CHhFH0WUIzz7Bq8zGJS9cVqsJZDLAtBErs4Z1hMGP6E4R7GC+6rVr962ga6e5QUdtw3Lmq9ccqhBBCCCGEEEIIIYQQ3Z2EjoQQoodIdwWXCnhrCOzxhvIP32TZp7/tVlWPusLJUiGE6CqiPWOatJZqqc1UUFQcT96bwPaxCdwbNI97AuexfWwCof0ngqZhDgo+/0ma/BrSGVm+/qKjh3DR9vmqNn6XS7NSIaWztuBUpV7Ps6yVBieEED2A/O4lhBBCCCGEEEIIkNCREEJ0abpFJ9ldBYoK7dRttikRvbrhcv2KoACm3AJBxVBtAJdK8C+F8N2pHP32XUpnDIejRzpwLVqPtNASQojWMz1sZpPWUi21mdJsbAmNmUxozGTsltD5AAAgAElEQVScJs3G1SeM0JjJaDa27TVU0Ur80n6hJV4ncyWBI1BhuS+GLQGgxqBez0mqHQkhxEWT372EEEIIIYQQQggBEjoSQoguLb0sm5k3Q2gRuFXCqV4Qc8cicpM2NSykaaS7wdowFUryLoWDPqBZYNQx9dycMzkdtxKix5OrpIXoPloKJgnR2Wg2tvSZegtuX+/gnuh72Rm2hD7WbuwMW0JQVFxHD08IIYQQQgghhBBCCCG6BAkdCSFEN1JurW7XF2xvMr3aANNug/VhUGGjWojkOoFvqZrv79JM65tuyHa1hFs6I7lKWojuJdqz+TZsQnQ6mgYRkdx+48sET1vIkBofgqctlCpdQgghhBBCCCGEEEIIcZEkdCSEEN2Q6Ww60FBBJssVggtgQwjkOUJEIRzxaggdaYau9XVwuZVxrJMk3CIujQTVhLh008Ok2lFX1pOrz00PurajhyAE0LO3QyGEEEIIIYQQQgjRtXSts8xCCCF+kQU47AHBG3azf/lLFL7xHD9/+w4WA2S6Q7ED7AiA2UcgNhciT3f0iC/P5VTGWZ22CiwWtNQUtNQUvtv2n/r7tqu+aoNRis5kQGLyZT1PgmpCiO5MN+uknj5Czt615OxdS1VpIYlJK9Crqzp6aB2i7OlnOnoIogfTq6vqt8WyD5eSs3dtl9sWJSwlhBBCCCGEEEII0fNYd/QAhBBCXLkqKyi1hRNOcOcsiMtM5Q8PPUviOBi35hA8ALMOw8ooWBumnjP7iLpdEQlxHTf0dvNlyhfMKfTAZdRQslyhMhSKVUEofK+eQ9W1M1SbFdFt6NVV5CZtAsDzgDqp7hsdB5pGRmEK9lnZTZb3jY7rMS119Orqjh6CEKITyChJY+HSESQvUY+LgsH3zCFyAxfgP3hyq73P6rRVUgFLiAvITdpE7NR4QG2LsUu3su/7hFbdFttC4+OtT5KXMqjYvkcdUwkhhBBCCCGEEEL0dFLpSAghuoGNIZDlAoe9YHwGnOitph9zgRQPdd++pmF5HUh3hUI7yHeAbFMipJhA19t34K3o2cQ/nzdNN+tk7VzNri9eJP3oNo5v+pLnx0JoEUQUwH5fdd8h4Qu01BRArtDuTnL3ryd2ajyxU+MJ+ekQsVPjKXnvZbZt/C//79ER9fMq71K3dSfMeoL8lF319415HTgQ0eOsiOzoEYiO0FKFwkv9znX7YX1rDEeIzqnRcbhnmbq1yz7e6Y/P68JSsVPjGZ6wtccdUwkhhBBCCCGEEEL0dFLpSAghujgrM+Q5Qu9KSHMH3QpKbCHRH2x08C1Vy9XUxkwtwLZAGHdMPXatgJg7FgFQkLgbPbxv+6/EZaprC3Ps2w9YffZ/uFdb47H5J7z9ojA5VxLbfxpLli/gtCO4VMFuWxiQB28OAStUKKtMgxkpYPhpG3p4X5LyD0g1hm5GB6x1OOYMvzn0d157Bc4GwG+mwJ17VfhuzQMziYka09FDbRe2q1eBa8Nj31IweXXceETPss+3odKe6DkGJCajD26ohrK+YDsT3UdysHIvwEV/7/Y6nAyebTZMITrE6rRVmC1mfM+eJqM2mBl7Qt1G3b2IgsRRXeb4PKKgo0cghBBCCCGEEEIIIdqbhI6EEKILC4qK4037m7Gc/QSAocfhKyOkuKt2a/Y1EFgExlMwLAeSvODRsU9zr/lZjryhXqO0ceeDTnoltW7Wm7TDCvt2Mzk2azkb4Medb45i1aeQ8wCEZ0BW4QmSD2+gWoNl+/7LsSAYmw7ldrAhBKYeBYcaeG0kXJcCe/uooFbuF48QkrWGDJ9T7M2wZtDA6Rj6RUnLtS6sIjSYaTfDm6uhWoNepXDWDr6JgB/CwakGym0hrAgObViF7e3ZfG1lYvfJnTw96pmOHn6r0auryNm3lsKMn9laeYTFSxLRH7uV4AIos4HAYggugH/cupyQ3mEdPVzRDek1VaTXBt3KNVVpzyUzDULCZB/bjenVVeTuX4/diZN47TyA6d0/Mf7Pb6BbwddjweUgnHoyjsRTmb/YjqnuGMBl2w7WF24+L3Skm83ttEZCtI2Dp/bi+806XtT2MM8XkrxhRDa8HwPjs8Al7WiT/aVeXUXhd8sAWFu2n8mOg/CMHAlhEe2+T9XNOv/L+ZbY86bLdimEEEIIIYQQQgjRU0joSAghujDNxhbPmNHkJajQUWCxmu5dpioaOVepUEXkaQgpBpM3eDh4qjI/qDY3TlWNXlDvnCcIMkrSuP31EXy9DGyrYagTOH6ylTfv7A+oSjau5WCxgtv3ww9hMDYLntwM/RdBrgu4VMLbI8D3LFQawL0MrM1wwAeqNHCrBJs1qxnvBFN27QKe63KVn7oSvbqh4kVdiKylE86XTdP4IQIeuBb6n4ZrUsGtHIrtweQJT2wBjzIwmGFlXzj+6W9ZZ5POIdsiBv1nOe4DxzA6pYQTu9bgO2hC646tHeUc2ID7zQuILYGXb4L7TkLVkhfInKfmn7GDTHcIcg1DM0gARLS+E6m7iSlS9wfnqraWLJgr+9huLufgetxvnktoEeQGQ96xowAku6vDkNAiCFu9iX554Hjicw789Y949x2Cy7btFI8eWf+dkFGSxh2vj+DAm/DqdPjbD7A9AFZGqffRzZ0zMC3EhdQdC506sp2J6/bAVCi2gwJH8CsFex2CiiDrofmcefk11jkeZ6L7SMjJJvbuxQDkB0JUbfXSgi070Pu1bw/LjJI03jz8Ds/WPq77vcIuOwdidQmWCiGEEEIIIYQQQvQAho4egBBCiCvnd0aFjKpr9+pmK9ANqo1NkjdMToMj9ZUBrEjxgCm3qPnRpxq9UCc+MVBtDTNvVi3RvMtUtaLpqw4BYGOGqHzQzFBuDT+GqpZRmkU9N9UdDnuqai7XjrqX0vFj+PvC5Ux6/BNCrdz52Rtye8GXRkh3g0f/Po2TG7ehh0jVl7aSu389sVPjiZ0aT9SqrcROjVdX7bdytS2zAdYY4dVR8NC1MGvMg0wbOBd7a1teGg2prrC6LzjWwI3vbuTG77IIzSxh5I5srFZ8RuGWb4mdPoecfT+26rjaU0WQPw/MUNtBYiDkO6qQ3YhjYMxrfOK+c4YORdfXJ3hw/f26lp9Ap62u19MYzCoIlO6qvkMDiiE/efcV/f9U1VTxQ856rr1ZBZyPO0OqG+Q4wW5fsLJAglEtazytvt+nLHqO2KnxVC55kdip8fXBVN1sZlI6bA5WgdFR2SpoXEczyK+0omuqOxZy/XETPqXQPw8+G6C+p0HtL/MdVUAv5u6HKX5bbRuOjy1m2k1qmdOODa9nyMpqt/2qXl1Fzt61rNz2VpPpnmXqNvreh9Ey0tplLKKd6TpaagpaagqGwoL6+/KdLoQQQgghhBBC9FzyF1ohhOgGNKDCRgUscp3UCUQri2onltsLTjuolmvLB/6LkcPmkxiXwD+vWQKoKkgNL3TpXwur01a1yjpciBkVmvjzeDhjC59Eq+pFo7PgyYnQqwreWK3CSPY1TdfLbFBttTLdwXLXAwyb9hChg6fSb8RMXIaOJ3TCPMbYG5lc4smxa0YTfqyEExW57bJeouEEVdTdi/hu+3tt8yZWkOEJkdfeTehf3qNvn1g+H/oaxtNwy0GosFYVsio1iMwH1wpYFq22J4DK7Ru67MkUzcaWg76qIhiodoJvDlPbinWTnJGlA0YneoKWq4RZtes4RAusVHg3tAgCSyCiACb/+vkrCgxsPb6JJzPfIKhYhYzKbNTrLouGaalqGQNqn9u7Uh236FbwxjAVfnpzKKRt/JynXpvIy2/Fc9YG5s6FszZg8gBnB1eecJvLlhu3Ee4q1bJE16WjWh33rgRbHU46Q6GdmudQA70rGpY1A2dsIMMF7vCeDqhQtQW13RQ+OIePEx4nZ+9a9Oqqc9+qVeUmbWLg1HjOfPYOt+5X0/4wSY1ZdHNpR3EfNRT3UUNxeO8/9fdJO9rRIxNCCCGEEEIIIUQHkdCREEJ0cX3ChjV5bPICrMCjAoodoMgB1ofCJ4MgyCkIWzsHQmMmE2Ac1Srvn5R/oFVe50KyXCGwCCwGVS1hfx8VCAkphkM+KnR07DcPMjIH7tvzy681PWxm/X1zXyOuPmHMcR3Pbevz+fzxbVz92TZip8bLFdptSdPQrVR1DRsdTjjCin6Q+MObkGKqD/jYrm6bUNus8Y/QZ/pCen+diOP4aQwptKcowJMA91CqetkTcKbp8qP/+kaX/jyMyIF7Z6iT+qFFqq2clRmiT6oKYMuHLpET96LtNAq0Nql0dBlBV9H6Ujzg/hnqvlOV2i9cKX+nACwG9d39ZZQKQVdrsM8HPh6o4mZVBrDTa+OOtd8HiYEQUKKqI63dt4wtBbvxNx0jzV2FGfJ6wQPXw233/pff3vQe/XyipS2k6LIqQoO5bbZqh3zGDmoM4FcCPqUqjOR9VlUuHXyvepzdWx0zvTECfqutZkWk2qdWGlQbthOOYPvfd/jshXiSHp/DyRX/haq2Cx9luKpt2bMc1obC5iAYmdNmbyc6iZzSY5c0XQghhBBCCCGEEN2f/KVfCCG6OM3GBmioyALqBGKiP7iUqxYkc6yHcE/gPIKiJzQspOvEnlvMpxNXcrEYVKWijaGwfADs9YEgv2hO+bvhr7nxTPRjRMXdAsDsIxf/utGeMUR7xlDTt1/9tCbVn8QludiQUEVQAHG3q5Y61ZoKyDlVg/fPqXiNGY79B6rikXVS24TapofNVMGnqAHUxMQyLuwanP/yb0YPm4/1rAUALEg6JyDRxehmndTTRzh5KJHYXEjxglI7eGKyqjqS7qbaEr529RLGDlkgJ+5Fu5D9a+djNkCWS8NjzwrY7g+GrMzLPi6o25+YrVRQ6JOBYF+tqrjs9IdTjhBcAjG5KrTgXwRYwbgMVfGl1A7iMmFQbQvYXCcVRnJq2+ItQrQbvbqKg3u/5qQzHHVX24hrBQw8pT7n2wJVSNhsUMdH2wLUNmTyUMcnJXawxxf6n4Ss3vDuUBh9HOKyIMUTJn+8gej7HsFm8/rWH7tZp0qvwuShQoQmDxUstLaocPNpe1V5KduUyEfrnm+XyktCCCGEEEIIIYQQouNI6EgIIbo4PSQMt693MG7IPPrhCagTFAWODZWOZjsMw9Un7JwWN1bNhHMurdVNe7VWa8xiUFWbjvhAkHE0x6+dyMKoO3Bf9KdfaOHTsulhM5keNpPq8RPbYLQ9R91noXFI6Bc/H5pGYhDEnIAkb3VCuXGrL+uUZFanrWJP6oY2GnGDmugY+vzz4/oKWH8y/hpQ4bUmAYk2rBbQFlKLjrJw6Qjy/7IIgMlpgBW8NUIFvTLd4dOB4NN/1GVtO0KIbsQKqqzgoDectVYhhkO/jSfx/T+QfDIJ3Xzx4SPdrJNepCrDHXWHYjuYboI+pXBVuSeDgkcTuPAxRuaoqijf9IUcV1WV0bEGvotQ1Y+OusOAUyp8keIJOwIb2nH2eM2Ewa4kJCbaX27SJsb/+lnSXeDHUPjZW7UPzHNU7YTvmgWH3eGIO2gWuDUesl1gRZRqR2htBrcy+GiQ+qPOhmD4eIBqWehVpqofvT0Uss7mtHrgJ6MkjXnfLWDGbVDoCMd7q4pMo46psX8yEPb7Qswdi+jz3IvETo0nN2lTq45BCCGEEEIIIYQQQnQeEjoSQoiuTtMgIhJXnzD8B4w7b/Y+X3Ub7RlzzvOa+Qq4iFY3ulknOfcA+5e/xLpNb1Gw6iOO//FuzIeT2v1k19moftzQdw5T5j6jJjQavxk45nx5r7siUt3KCbyLV9dmT9dr+N+av/PKqzP4btXfSH9gBkmfvIBeUX5eCMligAN94IiXapvjUKNONCd7QEFVER8eep+ykxmXdLL7clRNb2i3VxMdgx4SRsnL/z5vOetdO7vY58FCDfDqCEh1VSco+9W48Vb4k0zsfwPbxyZw5+yXCOkd1tEDFUJ0MLMVbA6GhTdAjjNoZnhnKHy3+S3ufHs0GYUpF/1aGSVp3Lx6LqD285U2sDoKrELC+M3MV7njqe+4M/wmAM7aQrE99CmBw56Q2wuWDQCvs+r4pcagglDBBfCl31PcZj+G7WMTCIqKa4sfQxdyfkjcdb60he1KKoICmHGTOu6x1lUVoxF24cyb+BgLB95DtQEenAGhxWp5Bx0Oeants9rPl1nhsxl33794PPxeivoF42ywp3+Rxiuj4M1vwM4MLhUQc88jrR740c1mslzVdulSDiGF8Pd18NyPcKy28uqyaHXblStGtrWOuHhDCCGEEEIIIYQQoi1Yd/QAhBBCtJ6ce26DLV82mbYyCl706ldfxeVKZZSk8ceXxrL2I1g5DQoc4Ofk5Tj8bzluKxLBOKBV3qcx3Wxudnr+pPFMdzeeN73KAMnu6mQlwKzD6ucAoFdXN/8eFp2jLqBZqdZ0lQYYcX88xf98Fd9rb5VKMC2oa+F1LGsfezJehB2f8NbZ40QWgH8x+P0EAQmbOezsR5JPdrOfQzMQUAxV1lBoB68OhxH7P2eXHxQWw4mn76PP00vQ7B2aPG912qpW+1zXqQsg1QwfAcAhD4gogKUjYNirixkYEEB13EQV9uvkNINGuip+RpIfGPPgrolPET/wPpiqpocyueMGKIToNFLd4VfTVfinX6HaH1us4I3Van7ePDN4XNl7ON/8ADUzrm8yTUe9T9RpsNFVW7VNoXDHXvXd4B0+mOFeVvxm5F1cNWQBDrYDqIqR/dbFhMRFJ6dpHPVseLiyP7zo9SvcJ99H+oG1vJjxLtm9VSWwYjsILVRtUYff9BTTyiOYMutGAIIBx5y/YT+uksrqbfwYur3+Ndsu8GOpb3sMan+hAz+GwF/Gw4M7Veu3T/vDIW8ILga77OMQo7d4/KRXV5GbtIn1BWr8E91H4hvd+cKFrXXsqZt13tn2Ev67D5O/ax2ewybhFjaIoNhJXeIYUwghhBBCCCGEEKIxCR0JIUQ3URMd0+K8wmsm4t6K77U5GObcCJvCYPAJWNUP/jIBvkjeSZ+IyDb4Y7nlkqavCwWTB7x6lXpsX6MCFyYvyE/ZRT+v/uc9J70smz9cD+s+VFeTH/aG+YeAex5h32p//IdNbZ1V6WYyStK4+e1RFDpC3Lrv2O4HMSchyw08z4JdjQqAndm7hbKQInasuJGwUbPQrxpW/xqFDnD1Qvj+I9WeY97PMCEL/jlWnTAb/M5yDowZT5/pC5u8d1L+gVYPHdXR+xop+nQ5/W9S1TrcKmDcMWB+PAVbdqD3i2yT920tullne/aW+sd1n//xfuM7cFRCiM7KbIAUb8ACHw4EGzN4NGplphk0rrTOW/GUSdRnLGqrxh2vrUgYlwHvDYFe1WosugGK7GHI7/5Deur/GD9C7f8bV6YTorupO14Piopjq2U5ORUn6Z/6DY4DTtLnjD19jAO4btxjmA3nH2c/PeoZ9GFVfPf9J8DiJvP8HfywXb2q1bYf7Zz3/3gg3BP7IAGvv0FiEDyxVQWRTN5wzAVCi4C7F1GQOAo9vG+T59aF13evep3Fv/+EIwNU4NAlB5KefxqrUitOxMbiGx3XKS4AuNJjT726ipx9a0nc9hHBh/aysWAv3mfBY/02CoCka+NwjRmL59iZhHtFnfezFkIIIYQQQgghhOiMJHQkhBDdRNX0mQRVV7GdBAD8U5fRKyqUcTFzWrV9km42o1tDkQP8egdkuMC0o/BJAsBiChLHoJlMrXpisKU/uLf4h3iLatdSZg1OFZDvCFeddeP5iU8zbOjcFt9nYzDcNgvCiyE2t2G6v1PglQy/W6uuqiTLVbVG03QotYWhx+GsHXiWg5VFhb/eWLKM1RMg+GeIevcHEhKati/zOwPlNvCzN4zLhIRIKLSHaoOqfmSuqUGvrmpywslisZB6+giJ+/7H7COqLd7sI+Bw3+/QbGxx+2H95a+YpmEODKl/GFDSeOb5bW06E726iu07l/HKjw+DO/gVq/CWyQsMOcfA4/zqYEIIAYAVJAbClDRwblwYsNUr61ihW0GlBq7lKsBcqcEhT3h53Kt4JP8fxr/8l5DeYee3hxWim9NsbIkYNJUIwHFjNveNVNtAUv6BZo996y480GxsCeg3ClDBHedK1Wr47OZVFG9ZTW+9ALdpC1o9vGMxgNOw8WiWN7AYwL1cTQ8pgBQ3+CgaxmSDSzMtajNK0rjl7VHYmlVU6qt+MP9nqLaCPR8+yy4DBH8Ah8aOJ3rkjfTpOwL6GrtsNaDcpE2UPbCAaaVwYDScclI/r/eGwrgMOJK+CdI3se+nv/GH65cwfPQtXXZdhRBCCCGEEEII0XNI6EgIIboRzcaW0Nq2I7aTKrhj4qUHfy50JXRO6TEAjvdWjyMKVKChLvCBrmOddKBDqhHoIWEUfZZA+IPxbA+EuYfVuM7YgnNgf+Li7mnxuUFRcWwjAfuI46S9sEitSy3NxuaKKzx0R7pZ59D+b8CgAkNbgiDPUbX/uO2AOuF1wAei8hqe41RVd6+ZKlW1WZ4UD/V6NmboUwonnSD2nkfYtzoA/2FT6hcvqizkjtdH8KeN4JkMaZPA9wc4nJdJyLg59DpkAq8rWEHNgI4KrQ08CaXWkOcETpaaK3jRtpebtImouxeR9RC4lKtAWHgBjB46l6CozteqRPQMOpDlqu7v8IMRx8ElMw1CwuSEaiezNqyhrdql0s06WUVpF14uPIK9HyxhRtoiZh2G2SbYHKrmjfQfTfQUb6pcVUWUtqpoJ0RXUBMdU78NJOUfaHaZJsfctccumS6wNRCsLXDdC8+R7QElz+2hMPMQYff/tdWDR5q1Tf19lwootoU7DsAqoxpDaBEUZWWhh/dldea39evk9sN6slwhLh3SXeCwFyR7wLHequpoeKGqNLk0dSM3/2cjAAVbdvC19VHg8vcPbdGi90J0s85G62xenQUBZ8DWDENyoH+vUEqsyrHY5PHrHTrfh8MzP8LmrYvI8n6NFSN6s+CoIz4LHsIyaap8ZwohhBBCCCGEEKLTae1LVoUQQnQSlxv6sU5q/oRGHX+nAACOeqgrl6+pPbe4z1fdrln5d7BYWJ226rLe/4poGtVxE/FYupz73K7lnuO+/FG7hqXjlzDkmvt/+am1ga0A46gmgSPRstSio/zK9DzBBaqNmsECRzxhsHsM1x0Bgw4BpWr6dn/1HGuzuj33Sv3NwfCrayG0UFW7sLJAQLEKKdXUHq3YH9iPXlFO1p7v2bb5fU6l7MJiBY7VqiVPpbVqx/PzpmVU3jOHNXlbuFJZLuBTpv5l17YIOb11dX1roM7MYoBiB/A6C6cdYbZxXqdoTSJ6pixXtf2EFqkTyaFF4L5gLlpGywGVurY7OXvX8tG65/lo3fPk7F2LXl3V4nM6gw75/msDl/NdmFGSxhMfNlQUvDq1hQU1DbOfHwAro86ZZdCkjZro1nSzTlZJZjPTzedNa7wtXGzVr20BKrhttlLHV7v9VfCnTymM/usb5CZtuvzBX4T8XqDVZsutLTA2S913vXkOWkYaB0/tJWfvWnL2ruXYmk+wGCDDDe6fCX6l8GMoBBXDLj/wPQPuZfCzlwp/p7tC2s+bWL3rfdZteov9y19i//KXyNr53SV9N7QU4GpLH/z8Ho9sXkyGJ2wJVdVB/f+0hEGf7uHBN5LxmHkr4QVgMANW8OZwOFSaQkr2bgas2oznrQvQUlPafdxCCCGEEEIIIYQQFyKhIyGEEJhRf8TPNiVyJjftF0/q1oVFzAawWMHIHFWzplxTJwMqv/+S0qMHOHhq7yWPw3Z1K5yo1TTMV0/FJWIQ/eJuYs7j/yN42kJm9p195a8tzmHBYoBMd6i0US3tltyUwNz73yPLFYwFMOMmsK9RV6yDurIbwMdRpdRS3WGFEXRr2BiuqvIUOELMSZicrk7I1FVHinziWU79uBznW+by2PrFjPl6D5UamDxhdV9VKOmMHdhYYE047Cs5fN6Imzuh1xI9JAyXNz6rf5zr1DCOXwpKdLSKoADuvK7hsfF03Un9zt0WTvRQvxDgyyhJY+HSEcROjaf47Rfp89yLxE6Nb/MT5leqI05mdyZ9zjTcDyxpebmgqDi2j01g+9gEvF0DuSdwHonzd7ZqS1ghOqOMkjTmr4pvZk4zVSAbudjKPFUazL9RHZdNSFcXBjjUgGuFmh9UYG718HRFUABuX+9g+9gEhrj0Z67ftQBE5oP/GUh2h6NusCVpBY4fvE/aw/F8+fd4So/sYdZhFUzN7QVhharaZZkt2OoqtP7hINWC7NnxYF8FP7z/GGsz11CyexOblz+L/q9nCZg7j/xvP77k9aoLiepmndSilCb/dLNeP2/nhvdZ/+ETaJ+o25xV71/Ue+nVVfUBK+3zT5rM2xEIV/mNqv/dauqkxaR6qIDVnj4QfQoOealAfh3r7T91ieC7EEIIIYQQQgghehZpryaEEIJiO9jvC7PvWMQRD4j96HNSn3+a3rc/DLYtV0YptgfdCspswEEHpxoYegJ8DnxL1dCzMFy/pBYArd2WrezpZ1rttcT5zq1WtDIKnugdDM5hOH2dSNHRnbxck0fpTy+R4VDRZFmDQeWezQYVFKpjq8PrI2FekqqGYm1WwaN6uo4OVNe2dLt/N+ztox6fcFJtOBID1Am23pUw6/C5VTR++YRe0xXUICyi/qFD5+6q1kDTSAyC4AIoclCVo1bELiEoekJHj0z0UHpIGKdf/Tf3/7CYNR+fO/fiw3C+pa06rFalV1fVh6HCvt1Mjs1afKPjLru6WEe0/mkNutnM9gAYnaFCBJF56v7D9392XpiocUtYQ+xwXH3CCPcwtv+ghegkzj2uuhx6SBguzy7hp6OLmHcITvWC2Fx1kUAd95vmULBlB3q/yCt+v3qaBhF9CSUS29CP6O3pWT/rjC1cvwC++Axm5TzLygPwfYSqJjktWVW2vOEQnPC2Jyq/gjxHWBYNzlWw36RyIXoAACAASURBVAc2hsJde+B/A6BfPjx5Dcz9WR1D5jhDijtMTYXEfz6MX+SoFtdLN+tszlyLvnkd35StJOaf7/D5WDcccpayK9KFj0+sZt4hOGsDGa7wrwn/xmfmbWScSeOVlYtZ+h3khULZwTc4cRaWb/gnt5wOpGz+TVTGDqY4RV1w4ePoi2Yw4BsdR27SJmKnxrMuGK7SgXvOHdP5Yfg3rwLvcjjqCW5l8H9fN8zr9ehiMjwMmPv4sb5gOxPdRwJc0feNEN1RVz2OEkIIIYQQQoiuSkJHQgjRw+lAqU1DezTXcog8DeFPPUtRxGCqJ05u8bkWK0h1gxdGw/xDcMSjoSqN+4+b0K5JQw/v2+xz5Q+B3ZimgXEAAcYBBACmL7/GMW3fRT/dbIAkH3U/8jSsD4ZCO3XlfkblSd6erE5m29ZAQAmsD1XLjy7zJNU9n2/D4bAPPLVJXSXeOHR0JSf0Gp+w6+zqKlABpLmBT/9RcjJKdBxNI7jfVbz9SHPzukfh1boTywBFwRC7dCv7vk/Af3DL36HnahxcKvtqKTnX23fBE8kWdGvYFlL7yAoeXpRAXMDEX9z/Vt4wh2jPFmcLUU+OHy9A0wiYtICf/PzwT1/Gy25JjN3vCke2nbNg21U/rLxhDtHOx+sfV2uq1e7x2qqXvatUpcvAYsh0U8dwKe7Qq7qCV0bCv+3mcnbCeL5f8y9uuP5x/NLLcPz0tywdAWdtYWYKRBRApisMPQ6HPeHDaKiwhrwv/w9f9xCq7rrvvAsfMkrSeOrDuaz6FNIfgGEHYZvjaTILj/JSMIwvhEcTYVsg3HgIUr9dTKZVDRtKdpHiAcZfw637VMs37ww4dTqL3INZ3BW+lSnLwKMS7twLhQ4wNAf2fZ9ARVAAU26B4EK46WcYcUyNZUdg3agawvB6SJiqFlWWjavVdnpFwtSz/vD14vplslxhwJ2LSHWDA2PhtjVw2At+fuQBJi14rot9XwjRunSzTkZhCvZZ2SQeW0Hct/spHj2yCx5LCSGEEEIIIUTXI6EjIYTowaqs4Jt+EJcJbw2FB3arqgR1zP6BLT8ZKHCAh66F976BFDdVaSaoWAVECu1VuzZzSWazf+hLyj9A4MadDLyzbaoR1UTHtMnriks3tM8IHFY3hI50K8gqbzgZVWyvqvL8a8K/qdj6ItvHvo5XzU/s/+If6FZQYgdulXDYAyyv/I3v5sPwbPX58zkL0VVu5E+N436r2aTOOcvJHxZxVbaqmrQ5qLlqRz3Ljl/ejIVoH6F9cXs7AeY311KoeS21Q7yUNokdwbPs0p+jm3X2/LSM6TcuAhqCS7u//YKgoVNaeYRt59xg0ZPXQGLv4AsGPqumz2R6Ww5MdBtJ+QckdHQBdVXEbCdVMPSsP4abboVRQ89ZqO0Cn1XTZzIjNaX+sRkVKNdq8zWaGWoM8Nuf4LMBUG4NbhXwsw8sH7qEwcNvQTNo7En8lOmT76dg6y7ygWxXGHUMVvVTrXsD3EKYtj4Dn7OqyuWCJDi06k0cj8MrVau4esCNDBtza5PfQVLd4YmJagxmVNXMg95wVSa4l6lWcNnOsMMP3hkCk1/5Lf+dCPfvVRdXrIiC+3arY9cfwlUL29HHVBgqqATSXeBnbwjPh5TPX2XVEGd+6AsGM5Q4qMC8k3cAo1y9mBdzJ+GujS7O0DSIiCSUSIiZzB2AdvhQk59thQHiboc8J7g5CTwrwNYMtzz6Fvuip1xS0FWI7qauLW/yEvCdAJUHIfYZLjkELoQQQgghhBDi0knoSAgherDNwTBnPiz7XFWMic1tqHgEYMg5hh4eUX+l8Oq0VRjdG7U+sVJXKIMKL91wWLU58CxTf1z3e2AR5TaQ/8pr+MxYCJqmTqxu+hD/r1aQnp5FfuperE6dxHvijQxPOwr6pbVka0lrtmkTV6amb78mj98eBg/tXtQwwUpV5fHpfxWxg26jLGYyWq9gZj/3D5I94Cd/uC4ZjniqkzrXpagQkYMORz1gUUUog2Z/SA1gPrCWzcGqtVqWi/pcDu9CFYpaQ3OBjM4e0hA9gKZhDgoG1HfNikiYfeRCT2raDrGhvdoltElsL7pef7eu4p9d9nGIubjvtIySNB5Zv6g+eJPvWDenE67rOeorz+g6ZKadN1/2P+JK6Gad1NNHKEjajrZ3Bzapayh+biW24f1xuP930NfYKseN3VHV9JlMYSY0CgB1BAtgtoJxmarij40OsScg3x6ujbqRafE3sWfbxwwbextBUXH1IcUYXZW91MMj8Fi6nJcK1xBT/QUhw69iQcRAet/3OLZT1hP90FyeHwfXpIGVlWqH67dmMzOf2cy+74OahA3MBljRH/qcgRm3wLgs1abXs0yFn445Q3Zv+L4vDMiHzweA3xmYnKbCSXY1MGvQbdguGMzj5Ufos/EDTtk6kedqh3+VgeSKbAwWSHeDQSs2MS8QjHlq/T8fCK8NeBrnACMzw6+/uB+epqGjXs+5Ar6JAO8yVeGpsvZjX177Vz1/J0mZi55NN5sxmNUFLkfd1EVQT00An9cfJDB6POGR4zB7+4JmYK9TKTP7zu7oIQshhBBCCCFEtyGhIyGE6MH8zkBgEeT0BtcKdQK4cejIdX48BYm761ukJeUfIMK1abu0VHco+vAzHjiVR8GfFpHlAnHH4ERvSPVQLakC73mYvG2jSHWDwo1f88rmZ/nzRvi2Lyz+aAM/hsKA756j2gw2Y8excoQbWFvLleztoD3alFTExXHCQ913K1OVsOoY88Dkpe6fWwlDB3b5QkIUpHiok0leZ2FMFvSqUq06NgdBv5rB9c8JiopjGwnoY6vY++9HGB8Ry4CKXPqEDyd+2H2E9A5r03XtHJoLKXT+4ILo/nSLTrI7jE+Hu2fBqCw4aUrEOyi42bYXmkHjqDvcNwM+j1Yng9eFwsdBAR0w+ksXdfciChJHtdhmtLHGwZwVkVBa/+NouxZIrSUp/wCTg6awP3EZqS8sghnnVpiT/Y+4fBkladz55ii+/whCi+DUIKjJzifsp8NkfvM/zry6hIwD6wiaehu+0XGAane4vmA7s49A8eiRAO3eXkfawCkxuXCst/p9IfohOO4MW4PgpkeXE+oahh4SBppGeOz5Fd2u02tD65qG+eqp3M5UrP7vIC4Rg3Ab8SQA+vjJFL7yGnuOPky2MzjWqHZrsbnqqc0FcSwG1erNvxAGjbmZ6hOJRFq7EukayXNxn/LuUPjDZqgyqBCp3xmw7h/LoHlTeMTrKhWMsrElFDjy4wF+9/oaANIPrOU3H8WzLQRe+UZVb5qYCt6lUB7gy/8bvYSQARMu6XOoGyxsCwSfMvU9aGcBOx1Ci+GUk1qmLpCrGQzoLb9U+9F1tAwVQLXZuJ7q8RPr/58vhmw74vJZwErtb77tC/fvUhdZPZqYi+XoZ3zk9xkTMyDDFZZPD8Ynt4Tho2+R4KoQQgghhBBCtAIJHQkhRA+lW3SyXFWFmSIHOOGsptf9kb4lOaXHmjw2GyDD24bJvUfgVqiqy4BqTZDuqkJHAOll2dzxUTxffQbJt6hp+33hX6PU1cPf9AOfUih/+2FyN3iy/aoQPLJOMWzMra241uJc7dGmJL0sm1EPQXgB/GqHCgvVsa49z7408mlCeoc1aYuX5QrDciHZG3RNXYU+IRMCS1TFo32+6vNryG/4Q3FdSxGAmP77KLvlSRz/8TfKpj7ZpuvYmTTXxuhCrY2EaA+pZzNZeDMkL4ECR3USNfGFRZj7+LXY9sJiAL9SKHZQJ5Ey3SGn/AT9GNDOo7+AKzxh5b52PQazChzt84WQQjXdLjsHYlunAmBr0806GSVpFFYU8Mctvydxw3tc46nmLUhqCB3J/qfjdJeT96nu8Mw4eP9rVQWs2B6K7VQIiTsWURAMA//1JVueeZBsJwsLHn2Tf94AbqlQ8xWcsYUBtz7B4Dm/r9+W9OoqcpM2AbC+YDsT3UeqgEpYRKtsb80dX+nVVeTsW0taYgKzaosPdcr2r41CI381vc6fjL++pNBIY9F58Em0+n0hpXb/0G/GvfgPnox+gX1Dc62Sq+MmEO3ZaLqmYe7jB2nq2DDdDRIDVRvek45wMmU7fZr7P7WCHHcYO+tRbq+9oEKvKCd03Uiuy01mvfenRGkhlEwezKyA6fQZMIG7mgkLxcxaTG1xO4Ki4vjn3E84vW8TfZy3kG9fxARs6Pu7vxMXMhlb60sPvaWXZTPhTliwH/79PSy+Vv2+FFSkgkcAkacv+WXbjG7WyT2wntip8U0qGuZt3amqknHh/ZK0UBSXSzNopHjAjJug2gpeGgUDT8FhL1gbAr2q4R8/wh8mwVtvZNKvYBEFW0ag94vs6KELIYQQQgghRJcnoSMhhOih0suymXZbw+MUd3XbUrsb3axTWJ6P9bFsoGkVA3+nAKiwotxWnQhaEQnWFrA/93Lbcwo2DDmhqlYs3gEbQiC4CKalQVJBPlpePjMTd7Hv+yAIDb7i9RUdK7xABQ3yHGDpCAguUGG3M7bwn35PM33MIjSD1qQtXrVB/dE4uEA9Pu4My6LVyWxo+PydjeqHHS1r7qRVd6WbdbJKMpuZLu2NRMdrrt7NPl8Y00JLmLo2GR5l4F6mTij/agc4DTwO/m0TxLnckEZFUACRD0JQMfx1Pbw/CObfvgTPwIv7/nI+chSsYI+v+h7tp0O5Br1+9zC2p8qpuvfBZp+nm3UyClOwz8puUtmlrau66GadTdnrmb8qHizgUAVBVpDmBn7FjVvhiY7UHU7eH//0da4zwbbaTanUTgXa66omHnVVAaQ14XDtn9/g3UHwXTh8Gam2R4MFBpyCYY+9gHWORuXDj4GmkZu0idip8Rxzht7hsMsKPI6C87sJVMdNbJP9S27SJtxvWcBga/hqPETmq+OgH8Phi4Cn264ao95M/ZvmptVJMVF8/VWsCYe0vlD94PucWPJv/K+9rbZV8sW3cW3uXdzn3ndRYcSWWiWf+5kO7T+R7VYJuFoS+VvGu8zeXsg+X7g1CXzuWETRJz6YQ8PYnPX5L76fZu9A2Iy7CAPOvpzLpEffZ+oljFGzsSVi+Ewihs/EsfBvlD3+JEMuuJYXZjbAskFw1XHQzJDsAb8a/xSRTz7fZDlDVuZlh8NaS0ZJGgu/jicZ9f1e93tlTukx/FGho+6wXxKdl9kAR2sDjt9Ewo7Ry7GcOonLgZX0PngYUH/LiCiAZHdI2/8V5pM76p8/5KoF7VoVTwghhBBCCCG6CwkdCSFEDxUUFcd2EgDwT13Gql57gKPnLafXVJGzdy1ppRlUfvIu0ZvAuEBVRGpSxUBTlY0Oe8HpXuqEY5MAk66T4gFj7wDHalXqfJcf1BjgyfEw8gT0KYUPB8KAPNXK4O2hEH50Lw4Bfm3+8xBtx+zfECgw1N5muje0Vhs4bDa2dg7nP9Gq4Y/GscfhpBPsCFSfvbo2gMuGvIbLiIXNvm9d2Kilk1bdUUZJmgoBnEfaG4mOF9ErmNUfqZBAhaYCNp6lcGLLCrwDF6PZn7sfsOBTCr/eCRtC1dXqf9kArFZXpu/b+ikD73ymVcd42SdDNQ2zAdZ8DEle8JdNwKYLt1erCzkVVxZxdQ7s6aOqt7iVqzDwid7Qd+0XON91f7MnkjNK0li4dATJS2DFBAjdoKbv+z6hxepRrSGjJI2bvoonuEgFSCdkQJEtpLnCuCzIdWpYVkKP7WtV6ldEeagDtMKKAlKLVEkd49bD1My4viOHdtGqKsvZteMzvPYfoWbjN8QCh7xUqB1UkKXQHubPgRuOqKB7QDHcdb1qiRWZD7Y6lNmAayWcsVO3OUuep7z6NB87p+GTU8jjt8CzG1T1C/8SCDwDK/4cT9z/7b6otoiXo9oAs+dB0BnoXQHTk2H00LmMmbKoDauCNdem8fxpulkn9fQRMnd+gL2v2gcNyoUqDcqeXsyZH9fz7VQj/5+98w6Potzb8L076b2RQnovhBAIXXonVJFqOxzxYMNeD7ZPAc+xHiti70hRBEVEBJUaiHQCpJNKAgnppM/m++NN2SUJBEgg4HtfV67sTp/dmXdm5/e8z7MtbQtg2AFB1TWXF6kaOFB/v9Y3UzhWnbGE9r4naXS5jBiF+0tbmBpf2LQNgN3NMwCI8IMpfQzdpVprn8aHTm90MLoU2kvwbvB77cQKtDbZ9LnxURyNXAFD0dG5sdhXkj3uNHYA0OpgTYg4R8uM4JseMOCTZfw1KBYznZaUis38mlxCkH0IqosLWbbgXQg51Xnk7dhAXN1B1i/9GkuPALq4hWLfbySuPS4ulk4iASFAqvHzw7/XWLzH3Y7Vow8An/OfLaIjzMSbIfG+xQB8FQG3HYaDv7buvimRSCQSiUQikUgkktaRoiOJRCL5m6IfQ2XhEssgNwv0RUf/Hgn/2QI5KfsI++cCdkZBmCls9mvZwUD18cNm2WpGnM1h72cLCck/dyINOi3kWYNGBy8PgpuOwUiTMBz79OAO9Vs2fyGES8Y64YJ00BVG3beIdWtdOu6DaLYjF9kbXHJBfOwDWDVpDep700iybxpudJ46tOrjh/1PsewpF71Rv1z1EO95ZjSObygY+Vp4tlqkay+xkYqIegOwqxAFdqvayylFXXlkvJGkU+AbSMWTT2P18hJMVThjDv6F4PXsEvZVnqHbnYtRjE0aY4/yK06SYy3EqGcsxCJ0wB/ewJbPKNn+M4esrLD364FX5MhOE0GWb9GGierji44l/8nMdzeScSaF0HxRil8ZBuMSRezpNi9wPL6X6n9Nxmn2fdSNHNtsPzU6IeTKtBZ/Z42hMGYTrqE3NAq5OiJmy78A1n0LYQugfxa81h9cy6HSCOKd9KeUoscryc7sbfz0v1s56gRVRmDx4YcccYGP8wdj4x8gIo46ybnSGntjV/DklgeJXwo/B0CIKZSZNAmOM+zAtgrS7KFGgWeGwk/LYUyKOPb2uotr9e0e08jYuQYdUGICnmXwzrZlWCmwyRtO2sEOT3A8KyJcE+0h2woyjm3D1cu7XUUOqk4lwbaaR24X63U7K0Q4HiUwbtwTLYgu2xFF26ZhaSWp3LZsAOn2EDoMbooXn80+dzF+Vd4PlK+AVX3Ee7Na/cU1X16KA3zYC245Ir4v30L4r/e9+NtduijmQmIenYOwbm3o+JBhK2LI1oRASJ5hpwloWSwFl38P2V73oPq/10xGVpLmdJiZEaNQUpLaZfntRbkR5JZlwbGToBEOtg6VQtq20xOMEzZxx6pN3DUR9gRCv917MSmEGHdY2QOe2Q73TYDHDkBsFPQuh5CdWey0/5MHlrxPxaSJGM++47JcyNr7OthSRGNHuwxKzs+FXNgq7roX5evP2e4t3CRH1z/6eGWgePYA4FWgQ1U7Z6ytRCKRSCQSiUQikXRmWnj6JJFIJJK/I88F32/w/qdgUdzNyYhjuzfcHw2aOjCrEaKjkPxzFqAoBPQYy9CBc+ld3YXIXMPR25J/Ycpx0Su6TgvF5qKIPLHPHQT3m4JXEcybJJYb3wVCzsANGUKERM5JphzvyL3Xp229wSVtR9EquEcMZ+1Hz/JFpHjIq9WBkQqLfO5tOU5EUSAgBN+IUfhGjMLG0YM9g9awZ9Aabh7xJHd6zmTPoDV4hQ7p8O3PsBPOI75FkOgk/uek7Ovw9Uok1x2KQp2zMzUaqNUIgal5LeRaw8jnl1H483JQ1cbYo6B5C0ADCY5i9shcIWhZPARGPv8+9kkZjLpvEVHjp6OkpbbLJnaLSbzsZei7/LSEqlPJOLSZ/AlRVHzzIWsOfonXn/vY6Skc/yqM4bWBUGgO2TYiTipk/Xacbp3d4n66lUKOlXBpOWkDWbYw/P+WUfjN242i2bj8w5e9X4b7oKPUBJ4fDmiEGOSMNVhWw5C73uaO8H8x0msMMTfvuyyBgaRtqIj7payEGMryMhl+AjYuh7mHYVqCiGXy/2U7XYb0b7dzpcPRCKcc6ypx3+leKkQj+tQhHIocy+Ht/mJYSH69qEQDddNmMTUehqZDlo0QMG7yh1oFhp0Ac1WI6cengPNZ8XAk1wpsH32YuLVvtavoPK0kldkbZ3PSTsTGnrYUopwPohr2pJOgEe4gZSbCjfS/g8X5fdAVdnvAJL0mUr+tO1fc3CAef+Ufa4juPhN7rxD6e9zAxBtfvCwh9IXEPDpvX7F+DZQYw253GDcHPukF60LAtNZw+pbEUp2V6uiJhDt1jshgVQO/+kGWFXzRXcS+3bv9AcweWUCJKYxMgZ8D4bAzfBUprt03zIUV3SA0T1zrtMCoNLCpgoPO8MAuCDgDI5Ih082SSnsr7KrAphZcfliP3axpl9V+Hck7REpREvtX/Iff355P+j9GEPvCzeR89grZezeh1lxch4LcuG10HzsN21nTsH7lZWxnTSP11QfIPrD5ope1IXX9RU3/d+BiPxOTDetpuS3VH6ZhuzeMmgsJTqDUNTnojToh/jvMab97SolEIpFIJBKJRCL5OyGdjiQSiUTSiKqBNUEwI0EUGwrN4fWEZbxVCl5FgAY8i8WD4/MxJcce4/gTqBrR83WXB6Sv/4TIcr1iEOL/U6OHo2Skky46JpOg545gXwFWtVD5zEtEhhv2TO4w2tgbXHKRKApdvSMYec+77Fy9mN4OLkyx8OOOcUvaVHyK0Lk29vQmYhR2sS81vb+CVMg7J4nk8lAUjOtgUJNxGblWQmgaOv8BCmJuAMT1KNNGjHerN86bGi+uKdm27btJqk4lrUQUmBwS00gpSsLHxu+SC+NrQ2H2UcNh+g4LXxz9hA9+fgzlZhiSDr/5Q4yHEELoNEL8AEKA61BxjoipBRFEtQL/miLWWWEkxBUqoLy6hBxnZ3QenpTmppJ9YHOrLgz6MUnallzo9Nerqmgz06gwhtXhYlDDNsZ6whtd++NofpLbwoZLwdEVokEcy9wFOI4Xw7L0jpskh6uyWZeEWlONWleHWwksixKCo0RH0SbkW4hj+6CLOOaSHeCICyQ5gV8R/OIP04/DE97zuLH/3XgViPmyrGBDEOSbQ56FEPrcl+7K2MIacnqGkBc6GKPvv6U2O51M23qh8X2LKOg1tUOiqhrueXUa8fpKuBE2uDbaVcCqcBiQEIOuJL1Zm5BWL4rS1EG30yLaNt4e/IrBp1CIwN77CR4cDya1TZ91MwF5g3icECxcYomePFUM7mgXGK3oKJDiIJyrHKogzUGIWRaOhm9XG7Z315oTZHs71l0KlV4eDPkH5FlB32z4NUBEnxaZQ4q9cOk75gw1GnFts6wEHytPzO3KcbA35/GKvpR5xeGstcEqIZmIgjJ8TRw56WrE8JDxDAsIxHbmfGyffhLzTz68rG1VdSr7t31FScYxVp5dyev7XqZPJmRbw4PFELAFcqrXE5YHqQ/djb1POC4WrqjDLuyeWOnlwS03woofoGcOxHSF4m3LGf3ZctKnTcR0xtxWY+FUnUpaYRJmGcLRtfzH98iebPa3d0pSa6rJPvIH3538lez8RNz3HcfepzuKkVGzz6bhMzROT+e7k78yZsVO1uf5t7DUps5Dqn8A3b7cwbqEX3GNiufMma2QfpondultA3B661rqjrlgtf8QZb164BTSD/wCpPuRRCKRSCQSiUQikZwHWTqTSCQSSSMpDvDsKCE6AjCvgT984YFxoid5sj2MTxIP6s91MtKntnsE2oP7SXGAai08PA7GpYjexS1Fs3mFDmEPawBYlfMEVgnJBuM3+zXvmbxy4pqWHXIkF0W3mEToK153RPyOPgE9xhIA1O74nYU3f35R844PnY5+n+Er1dNb9fHDdtlqmD3DYLibX+8rsn6J5Hqj0s2FGTeDTzH0zG35mgDienTfBDCtAe9iw+nK6mtOF3IUgra1a2mFSdz+nmgI52XDxoeiuP31WPwdQ9qyS81oabvi8g8zNV44VSScOQ4aUZDNshGiql1eMD5ZXGsf3wkLooUb4LQEMDPQGTV33su1gXQ7+CocbkiHo13gT2/x+f1x/4OcsIfurrDBbBXeI2cT0mcq28oOMNyhH6cqTgKGkUNexc23/5f47xkT9DTVtdUcillBwPwFDBslYjJ/9QffAjCNGsi8/o80Co06Q3H878Imf7hrnyiWlpgKccjdE2FikhCl9c+Cw13AugYcfv+tQ4Q07UVu3DbC73qI7DnCDe3nQPgsCmYfgjxLKDWB6bOEGH52nDjeTWohyKc/s257B6ctW+kzfp4Qk9ipHPjiXR78fQG7fOCmo+BRCnu8wNJhAPeWBVM+fyEAVqn5HM77GMdyvY3p4HjdhC5X7n42zQ78i8TrRAe4a+4CAA7+ugb3nkLErep01GnrRVF1wplSp4WDXSGkULRRn/SCeQeg1gh+C4QXb2hbXNqVag/CrYNQgT1uog19OBpuPCbOCxDXkoZYuNVR78rfEpeCohDjBT4FsM8VxqaIK5NdJfTJhkkJws00vMaO0BtG8/SI3vR6aD53/m8eVcOm00vvWDDZsJ7wk99y553fsCF1PfZ642oDg1A14ppqViu+z6Kz6eiKaFEYfK6QR61T2VN0mLU/LeLR3RDVGx45AQtHgl8BJNkLB1/LahibCic/XUZotljWmeUrOF122qDjib7wRNWpZJzNYnV3iHOGJ3fC/q4QfhpMdaD+tp4NSevxGzaHkfctRdVAypl4SrauxyKvkMy6IhafXk78UrHsIm+IfG8nxz95F6foW/624pbcuG1Y3zKDD+fBez/DqKPb2OMOUdmGbRUI97i57/Tlh5Xw4TwYnApvnD3OS78JgWETek5HioISEsGAkAiYAo+lJOEwIAqA7R6iffiuG4R+vgi3UrAugdD3xKwFMfs69bVTIpFIJBKJRCKRSK42UnQkkUgkEmrD9QQc+s/ldKKosLn++Vq8M7yx6cLLq7j3fnJ/+hwV8SA2zV4UJqtaueooxiaNrjVRmr+3wQAAIABJREFUuwdivjUZVQOqFtaEwHdhMOOYYc9kdyvPa653cmckctsxeFC8jss/bFgUWrsWbhjZ7uucpAZRfuHJDDg3TuOKFbMVBbybF6QUY2M6thQpkVyfeIUP5ytlDZ8d+Yj47F/wLaqP0WyB5HrnO51GiAsaqK5v+uO76E3cijigWbvWAsapqfz6lbhOfdQLXvsVDvb+HPXO51HMzNu4Z81REXFXupJ0SnNTqfgzlVw3M87mZ6FDXG5r6+uZBeZwyhJS7eHfJb3YFTiXXS6H8dn6MVPj9RbagvNemp0QYJiq4FEiius1CgzMFK5QCuBeBiZ18ELBChInreCnYRD5J5g6AvXpqg3X2HQ7IUow1kGXMuFmsa3oAD3WfkpMdSIH1y/lQYRQKSQfvu8GhRbwwui38HcMvuTPS3Lp/BgM34fABz+DXRUcchXRfEmOMC0eHosRQrSIdDgVu5WNI72I9puIWlNNbtw2AP4o2MNwh35X32lD1eFfAOuXw143cSx/uwrKutiQYFzCDyFCCFNoDnUa+K7ebWvW7LcJcgiGGXrHoKLgMXI2rzk7kZd5lE0nvyCs1JzH+i/Cp/sI+N9rjZPWBgbT7zP4xaCm3L7xuvr3sQ142XhfkfvZU5ZNoqMzFs3HqzXVnDy2o2mABtYHwzL/hfTo14PM2Dsou2kSOcZxGCdnM8bCh3nDnm6TaMfgd0YHM67fPI5+bkbvxxawKgyMakWc16Z6A5RcqyZhqJd5V/lb4hKp08IJJ7Cogp1ecN9fYF8JKY7Coa9Wgee85mN/3zM0yPTHh06n+pzrcXX0RO5BDDv3Wl0zaAgpDhB8Pzz/B7wwHNgxDYAds2MJcmgSBldXVbBu57u8uWMRb/0CFtXi9+O7A0DrD2XG4FssOrEMtY3E38GVY+UbeWQPbPGFZ4eBTxF0zxHXv9j/zmbeEVgZCsmOQkTlXwDKiHFYdfEgwc+eh068ClrxW/n+CeLaO/MImKgQlSPctbSrv2Vf7D7yLeAZr0RGpMHkRBiTBr/XC2NUjdi+w07w3MYF9Nz0EjYV4FZUgxMWmDi4YOzpR1GoP87ePVCMmn5Q67fX+u15S+M7O2pNNfmJ+xhSCE9ug8Az8OBY6JcF6TZg9c5zVJm9SVF1MXaOnmT7u4IGTtiLeyiNDqwrwb0YZmTaM7PfPXgMu+m8bZTq40dBzD5MP/sEj1VL6VoCtpUiTrJSEULwponlLz+JRCKRSCQSiUQiOR9SdCSRSCQSqqMnoqQkiTf19RWPYiH6MaBORFMAxOvFoKk1NYbTNTyU04jpKowhrgv0FYYKLRZdGhg77H5sn/mS5eEQdAbuHw8nbUXPUf+CczZGcmmoKkqaiBKyzitCSUlC9Wn+QDZ+8wocWxAddbQjUmemNVcWiUTSNhpEpjY5GwHol31ukV9ElsyYAwPT4IgrZNjAgr2iENjlrHBTaE7L4gB9N7eW2JC6Hve040QVw9oQET9kocLAF5dy3DMEpylzL7hPqk7l+8RVzYZn2EFEvZuI8zCw2gF7jq8i3M+NPW7182qF2MlIBy5l8NeocHzyR1A1fi4BKUk4xH98wfXXaSHyFGz3EsXep3aIOK3gM8IVpuGTcS8RRbkTdlBoBn96QYkJJLwDjuVC5OtZAlOPw6TZsHG5EHx8HglFMZsIWrOJlyfDzYnw6gDhOhOSL5a9LhSeykoDKTq6YujHZQWegVXdoFIL33SHMclgXivuwTyKxXf+p494XXMmk5jDPxBeZExC3BZmPb6MXEs42xNsj8DxB+/Bvt/IVmOBOnSfdCrpFSeZeZ94/8w22OIHj05+m9WHP8dt934y6+O/SsygyEy8fuXW1a267SjGJgT0iiagVzTlyUcZufjzFqerGTK02TBtdiaq/6VF6jj89if0Xdh4z7U9Y1Wjo9j57oM7BFXFpT62UYcQHZUZwTc9oHdGGvuTXiavPI+hiz6ER8V0biWwNgyecO2Jf4+x9NJ0p/ieD9Gmricl+W2+ntuGXgj1nCsc71AUBefRs/lrmY4bP/qSj4xT8DYz5abI8bwTMB4HzT5m1iXyyqDb8AodcuW26zql3ETEHH4RAZHlNkS5BKErzSLormewGTnbYNqLPw40ZFqL61ZUNnz+PSyYAF1L4NdNb5DsGUV0/ztBUdi7bzX3xS9C6yC25/nh8N/fIDAfwvLE+RYDTHl6DZ97DAdV5UTYJjIDtzF4y3a+sk7BMbcSnRa6VIFnGTwxAozrIMsWwk9Bl3LI2boR60p4YwJMOSWW61QOCY7wqvXNDJo/hV1r/oPtioO4lcJRZ1gYlIhrCfQ6CdOOwk8hYHdWuDiOuQVGp4o42f9uAbTwi8VJzEzAxBo+WA/rgtIJPRjLg3XwzuuinT9tKYSEUSXmnHG0RrGxRamsZuamdD6OgC4VwjEyyr47Tj0GUzN0xFVp0y+G7CN/YPryEv7wBeqfQXzSC7rlic+3y5k4Ht8Nf7lBv5OH2NUHQnzhnmjofko8b6hUoOTpp5mcX8bQqU9deKWKguofSPkLS8i7aTiuc+9jpFswnzqcwCw3C49S/YnbV4QqkUgkEolEIpFIJNcbUnQkkUgkEgN09c/TRp1oPs66SljGg+glHJwnoiHyk/YS1CVMb0qxEKWuviCpqY9ncBXvZ8fpFVtUneFKFC0ZduBYCRUm0Ock7DASvVAn5Nvzqst0Bg2bj49dQHvu9t+L1GRsB/Uh0V58U/HTo3j7Xz2xK61CZz0ZbVAoKAq5Zbk4tjB7W5xDzseV7PHe3oScudpbIJFcP7QW06lqNCQ7NTkd/RwE9+wTBTbHc2zS1oYgnID0HID0e/s7HY4n+8DmVnv7x+UfJmDwRP4xaRG+pU3RbQBOgW2LUUwrSeW1vS9zruTBorphf4QThFWt6EFvmpgDbk3lq1qt+DPWQZT7AOrce513fetTfiTI0oeK7b+SVSsapchc2O4N5cZiGocKUdA87AI9TomoUxMV3EqhRitku2dNIMtOCAtGpAoR0fehED34XroeX4pXMRSZgm2FmP6/g+HrnjB/P+RYw8/Bht+hvhT4Wm7nrxUy7Jq+y8AzUKXAynDhOpVrLZyvSkxh+3N3MfuJD8i3AOtq6LIjjp7lcezXreb/hkNRbzjgAsPSwLcITn/8PpEvvG8QZXOlxMYpRclMPfQA3vWnc7K9iE47268PatEf3DzjPYxObgDgk9g3ifLszrO3vYG/Y3CbHGvO77TYvKBsN2vaRUXq6Lc9jseTydj/K6h1FN07k7+ioG+VEBzpxxleGTT41LsclZkIAZpVrYhQnvrgI1ibwz1z4N5uQsRlXQ3upfCS9734hg0HoOLeBwDhRvPKtMOMv5Kbf5Eoxib0HzIXi90nmRY5mFnefZoEL73GMeP8s0suBg0UWcCS4fBRSX+ch89l2g/fUTru9stetOofgMPzb/P27q853iWWx2Lgi54wOhlqD6/gE/8VaP/7PBm+Xag1UvB2EPPt9hAOVzZdvAjRneXBk1aUdLdgQehdDPQYLtoKrUJAn4nQZyImXuu5ddtqvBY+g+aVl+B0GoPijlMY4EBKFyPGVllSVHMUNOJ36Q13wJItEOsO04+AlaUdj/d4kd59Z2Fiao7W2BgP92kMTYGbjsOT2+HdvjDKpichfqZknN7NvyZBWD70yAVjFdK6eZBwGpx0+ajWdpgZmTGo92yy/Qo5+8cH7HcHyyp4rb8QLw3LhCVDoP+6CgILKoh3PI1pDXwSIRzK/r0L6hQoLD7C0I1H4OWlzeLJOhtZlaeYdgd4FMGQDCE4dy2BpIHdsEvPJqRQx2a/EuIdINtaOPl1LYEaa3NcscEqeggvDO3N9Ij5F+9gpij49hyL7pY78ADoEcrULz88Z5rmTpMXy9+5445EIpFIJBKJRCK5/pGiI4lEIpEAwl7c/qdYvkuMBRYQmdsU+6LPWb2CrGuZEB01Q9FSqYXJc+CrNWBaI+z3f6iPwFj8e9Ok2uzMZs4INVrRa/HtX6B3NvzqD4vC78Uu7SSjbnr9svf17052cRr5DnBvNHz6o3AROJN8gERz2DZ/IOFzn8Zl8FQoL29yQbqEXv6tcUV7vEskkk6LQWyYAYZOdikO4m/eFFj/rRDHnjEXf7s8hItB0dl0vHR+KFqF3LhtRI4VESxF3hA5dlqrxba6ujqyq0+zxxN8j4GR3qqNT+VSExzaavun6lTSCpM4GR9jMLzBEc1IJ1wMJiVCjEfTuCqtcG6wqxLDHMvBqloIc5/qOpbqyDHn/dzO/vAlz+Rs4o+vINERguvNJArMYf5EeO8XIdCyroKdnkJ05FwunI4qjGHizTA6RYiMDrpAt9Mi1s2yBt4d9BYRvWbwzFeQ4rCUjX7C/ejRcDiRLdaTbQOVRtClVLjszHIZzyOB/zJwDZHtfMdTqUCCPUTV1Mf5nAQvvSgYq2o46gLBXbpx3BFcS+GLHuK8cyyHOBcYkgY/BsIpa5h1VIj47CrqF6AnCr9csXHbqQMtpNeLB34NgFduX4O/YwhqUDBKYDfmBHYDwHnvUUY+8vllrc1AHHeZBWVVp7J/9wrG3rSADDvQ+ELSIzO4ZTpM7Q1owUwVwnt9t9ArgeofQPGOWDSxu6lb+AA2FbAyDMqN4LAzeJdCmoOIxAIhijplCYGjbmsUa+qf0+FO146o8NkBL1B9tTfib8K4ap/2bfsVBY8Jc+nZty+fPdWfMhOwqIHRJ+DbcOHaVayWk1KeLsR8vUQU18L62DLPt7/jE4cQTDasZ+V5tqs6eiK+QLV/IOUffIYJYPyvuYz+6HNGAycObGLAzukE5MOaleLabqIDy96DeLyuP7Z3PWUgavYKHcIe1sAgcP9iBZkl6bz/yLv42AeAqtLvyB+8VnmK3UWHcF3/G+MGzWT2/CdQnjJh8LmilOEqyg3Dycs8ilPKZ3QztcQpehLOdn1YYazgYL+HEwc2oQnyIHBPCnleXfBzPUu/1fsB0aY34G7l2W5fTUfgFBiFp94zgvVBwsVuiNcoFK1C4XuLCda8AsCtB6HUVIg37zTrx0t3/AhAz3bYjtrwCEIs0tjiLRwDPUuEE5XVtjU4uz+AYmYuouB+Wc6ZzGOYF5SQnX6AkP434eIdgTpitMF9Y3VVBXtjV2KZm8eWs1tx33cce5/uuEeO6NTOUxKJRCKRSCQSiURysUjRkUQikUgEigIBIXhoxEOyqfGioHvJERBa4VKRZg9VxrC/qxi8LtRQdHQuqo8f9utjWV2ehXvhCrJsspnp58yN41/E/LdNHV84aIiG00Obkd7uwpurzUlr8b9WC5o6cD4LmbbQ/TQE/nsJJ+yWUOQMb/w7igkWvcDCEtOxN+IZPBDq6rBY9Dzcf+vV3YkriH6MzapwGLt8GSldLcga3s+gOCB7sEokF8+5jkct9VD3L4BP1onXtpXwbh9Y3h36ZsGb/WDz2ml86R6Lv6OosDWcsxVG8PwwGJx8oEW3o6KqQmatn0ZwfRxoQ1wYXNjlJK0kldvf68u6FcACGJkKS3uLmLSvw2FgprgG/uXeFFdahxAbpTkJB6FxyUJQ5VQuro8LtS0LH3RAuh2UJsTgejSVdF8IuVeIR1zLmlwFf/eHCTfDhhNDsDS25DevdMyPHAPA5Szs7Sri0/a7QWi+iKgyVeGnYBFbd0P4IEwsrIgYejuFby5FpxEOOmiEKCk6QRTfupo68dL4D+la+Qu2kUPx9e+87gnXI6qPH6Ur12AdsxmrxUsxrwE0wgEjOM8wCjSzNo+HbhZivbB8cX/nchZq64/1Pe4ijmjUCVjRTRyLANrThiemyYb1HSYmqy4vI+7Hd0g6dYQpyWLYulCI9QQvG28UrdJM6HJ+16I2rreF/WnNge1CpJWk8siWBfxiB171rkK1WuH0ubnenFPVCtHRFUdRUINCSKlIJ80fbKvguLMQIpabgGW1iGn0KRJRjaWm8FsgvNhKQfxauc+Rjmsdg6rTtTj8bGgQprS/6NTfMZgh1hEk3RFMfs1qPu0hBHIlxsLlbYufiN8anyRc/QLz4NURbzVGLrZle86dpurG6Y2vvcKHEaOsAcD12OuM6eZMyPyFjLMPaPF+pSFGFsDCJRaT1/ViUrUKXr3G4gUMBIg2nLfZuaUojfGQhamhzcdHjsGeZ5u2FeibkgSvRwGG4m5Fq6X5r9xLp0F4bZaRBcAfBXsY7tCvVWfJC6EYmzQKTiNPCfGpl51f42dsM/8J9hzvD8CRnNfpPuNRnnL3FGKudqQ6eiKO617lnkmQ+K64RipAt6eW8KOtjtNmtRTs2shN3x9hyTh4eDeUWYDN5sWkWIPWywdjTx8sPYNQHZ3YalfIq4nv884G6O0EGZXbyAD2Rk+kt+rKqf6R9Oo/WwqQJBKJRCKRSCQSyTWPFB1JJBKJxJBzRDf6ERClpk3DXctExBqAi4Wr4SJ8/HD6MZY95Vm4p6zgdo8abnIPZ0r2IgDinM+z/nrxky8hmIysJM3pMK/1XQhcKeeEy4/X6PQoCl1LIcMaCs2ERX3/LBFhstMbTOtgsz/0yYaDXeHHqv2EZMGQ37ZTqYOjj4fBr9Voe/te7T25Iqh1Krs8YXCmKPzbl4Py+UcUhtlScGwT2yfl4ldmBK5d2bXp/3APPM4h2wpGdhkI1Pcs9gu4rkRrEkl70rrjkSDFAY5sXEM3MzfS/tqAy4FFOJbDPw+AooPup+DxXVDZMxaiAw3O2XRb8ffCfYvY59cDryhDFyFdnbA20mnENe1SBAFKvTtScD581hMmJAnR7dgUMdy6Sog7QTgNnaq/dhabCRFS/zH3cvrQn7wyaLGBW1ADqgayrET01dr/LsCiFtKiYHgKvL8RnhsmxAMgBA7JTqALnYztiXwGVKr0yxaiozPmoDOCfe5iG3rmCHckh3JQrGx4/IlN+Nj4iX0yNm7cRurAqhIUVaxn0OA7cPO0xjdiFBYbY5noP/niPzTJ5aEo+EaMIifrJLZVQhCm6EQslmuZcKIyQCNEeH2zxV2OqhXTrQgXwrx/VnQDjuJaJhySANz8DOMFjeIOA22/F7sYkdLxn9/H//n/gD3s6ClcLuOdhJumWlMDNC/Gd5Sg5ELt0XnRCLfOW26Ee/dBghM8th2WR4jvpuF++lKFTZdLHeJzdatvL4x0cMANfvNrmsa6Cr6OvCqb1+5Ix7WOIbsss8XhhaOH49AB61O0ClPGPEXF6DG8fXwOAEdWvMyds5/ETbeGJ2dPRavV4v7FCv5vGHw58HF8WhEEtRX9Y0dfRGTWO5bXJi9s83Las53qbGK/tJJU5r7Tl/il4n18N+h+FPY8ezf2PuFY7T9EWa8eOIX0u+jfQS11eNL/HoKzKqmO6Dixc9Toe3g/9wyJDks56iQctF7rD+8f+w8uZbDXA36ZCBMS4Q9vCCoEM53oZGVRlUZObhpPrPmTREe46z7wAd7pDUMz4IAPTEmEqf9dz2ZfiH4VUhblYnPno/K3okQikUgkEolEIrmmkaIjiUQikRigzc5qfaSeHickv0l0pD3XmeEc4dBr0RM5cXgz1EeztDVWojp6IuGpbd/2duEy4zWuBSq9PJgxRxQdd3iJeKJndsBrA4TTgVm1KF7aVorvKtcKAs7AlxHw/HYoTz2GZSLYPfIA3H8ZbljXCCfKsxj2T7j1ACzcAX5FsLQvjEkuprSymKdsH2HOEeEUkOcJZRsXUeoKi5zh+1ViGQU7YlGDQs6/ootFVeFEEidK0+n69SrKuoVQqDvTvuuQSDqIcOugNk+r00KlrzecAav/LMJ9oBDg5Ndfg4zqxHvmLaAgZgApDvDcJPhlOWzxFSKAUxaQcux3vCJHnlPUMYxyayY4aMH9rnGUTkcdcMJOvNcA9hVNSy0yE6+1NMWVZtsIoWfDDKu6w8OD55GWmNtYTDuXFAfY5AcL/hIRbLccgskJQixkWS2ux+o5l67C0cPx+HA10R5jgE0G4zLsRBzXhkAILAA7C3us+g0lqEtYs3XXaaDIAsrM4PcAiNwJmjvvY6zddSLCvcZxHjGDghErOV20nTqEeM5EhRxLCLL1J2bgy6DToTsinGxKTYWjVa1W/BWawZQEmPvQ/wEzgCbRkWJsTHVNNYUbllN5cid/7T2J//b1FB3bTl1wKDq3rrj2GNaqO4NR3OE2iz7MB4/lkdGLOOwKPsXgVNEU4ZuftLfFY/NqCUo2pK4HWhYAJDkKp7Eq4PEYeHUAvBhjgpLvzD7rYh61v5nu/xyJ5zffke0J8wY+3ij0uxIEWHrjtR9uPgKf9hSC8yRHcZ4b18KaEPDyjuQx3970CR13RbdNcu3gbuXRbNjKiWs69Hipjp6IAo3XycbrZcQo/OunMRlZyaAQ4YzUUVysiKhTCd/Ocz9zPs7r4qoRMa9rgmBIBvzqB9GLlvFJpBBi79kLw06ATURfuvr1puqf81p0D1Z1KrtPxrS8jhboqM+14fs1sbAi4s4l5Jo4wvJFuJ0FbR3ctQ9eHggfroNvIsC/EBIn3ICd7QAO5RYSun0r6UXJVCoQ7yAEnZMTxO9knRZ2+Ip7NkUHk+KFi9KATDB5ZTFntHU4DpsqO6pIJBKJRCKRSCSSaxYpOpJIJBKJATp3T4P3+gKhAnOYMAfWRr5L75RteJpl88qgR1t0Zmig4aGgV+gQ9iCs6d1TVpDtCf/ynn3eeeHq9OrUj9I65ALeJWBV2+HBblcORSG5/nt9dLyIYjlr0lQUt6iF7V7CPeQ3X5i/H7qWglup+GwqFfH/u3oNjb4b1vWIV+gQYlhDrucBNuUsIioHYjxhbLJwiLjjALwfJQRJiY7wdXchgkgwENc1d9C6bFKTKZzcl6n/gN83QOBXcNoTmCdGB+eJgq1E0hmZ4DK81XFbM/8477zdTzVFQIFhlBSAu403aIQQKdMWqozApRxmPrqUgoHzGl3rNqSuR6vRMuW4iBfLs2hpbec7d+uo0cL4W8Q7v0Ih+ojMFYWkb/Rqk8b1aTSHXUQk2rmMD53eanyoCvgWiv8FZsKVLjIXLGpgs68QIg1La37O14ZHoAY3FV8bAnHqtFClFdElZipkhXoxLWhmi+s96GroymJ9HV0KrwcUM3PMew7EbPAkwn7/HC/j0/Ry92fa6CdZVR6Df+QYIfquJ9MWYt2F0CTREcIixzP37sVQLdyEzGuF4AdArarg8A//Y+SCJUT0gl0WUFQMe/bFMfUb6JcNB39dg3tPUfxXa6rJjdvWuC7X3FRyD2xuU9SOYmbO+hDwLhCOWmY1EGbhy8PdH6Z31Ix2/tQujYb9i8lci66uDrvsfDwKaimsLACthhOx69H50nh/leQISV2g57yXGDljPptWP8+YGS8AYLF5P3YuHSuOaBHfQMw37cMc6Pnh/QQd3UWSI3QphxojWN0ddsz+iCCHK7xdkmuKlhyEGmIQrybV0RPPTSvrkHV0dlQfP4pWrsFu1rRzxlzab5G4/MPNfo+rOpWMknSSHGHMLeI+YWgGfNwbvgsX9xs6wL8YPMogPS6WQ5mxbE1fypzqMMqC/egaOQK0Wk6fjGdD+T5et/jLoCPL/4a9e8WFjwbfr6LgevsjhLs5cfjZB9npBf84CNVGUGYC/XpPp3vffgyacWfTsb9AJTwliYpXn8O1cCNba2FQutinyFwRbetYBubWdhSbFmFfKWbLtIU/f1nC4GVL6PbqatSho6TwSCKRSCQSiUQikVxzSNGRRCKRSAw5x+mnwc2o4SFgshO4hA3AqsiB2XGHKW+jtbm+JbqFSyx2LrTq6nC1ybCtd81AFN98iyB+5wYcA0KuyweASY6QuPgZzI8uptxYOHQ0uCHYm9mxeEsR6baQbwkfR4GpKpw7wk+L+fWFaapO19Iqrmkajl2v0CFEbUvgePUvVCilWFcJR4gUByEyyrQRrhF2lXDaEganQ4UCudZQmrwHZ1/fCxZeL4YUhzoemSQEFTlWsNVbCDEahAdG9V/Fc373SrcCyTVFUmHiecdv9YGSc+I+9VG0Crr62lqZiXDz0UdfPBBfmsyoeuGkf2ELKzuP+52iVdDWgVeREPB0OSuGT42Hv7qK1xodFJs2OSAZt2I00FIhU61TOe4Em3wh8hQM+Qe4nxUFL6sq8CkSYql1ofDQ7qZzXn+ZSkpS4/s6mhM99gmMu0S0LPDVNBXKGujdd4ZBe9JREVeSi0CjIXrg3ZjG7Eax1/Hoo7+JwbGxAOjqmg66MhP4yx1eqNf8vdI1AtU/ECUxARBCogZyUvbj+fwSRt0mXHs2+4pjr0F0Cxg4Z+TGbSNyrChyrw2ByHhw/XqVgTDpfNRpIc1J/FnXwFMPf4d/Oztqnfd4bc0FRFVRdSr7d68g+qYFOA8T4sLHuq3m6a0w94gQGVrYA3qpsyvCxf+GyKkGwVED4U5X4dxRlEbRZU+fwQTfvYspx8+Ne2uppZBIJNcMioLOy7uF4W1z81V1KmmFSZhlCPfj0txUsg9sxmH4hMZpUoqSmbV+Gl1LxP1YuQm8PAgOusDDMUJc88wI+CLoWWp++Qvv3zZSpwgBdmnaMcb+cYxEh/UcdYK+OXDrPJiRIhyAzKpgqPtgZofcctWFbCgKXiNvwfjTVSyc/yjuX6zghUhfBozsh1doC4JaRUENCsH8qSUk7tjIfwbD09vFqNlHYV0YZNrDf29YSEqvYt4+sYR794JNlXApHJwJzJ7RMQ65EolEIpFIJBKJRNLBtKvoKDg42AToD4QC9oBJQkLCi+25DolEIpFcGVQNFNYXdYPzYHacoZtNdfREjOIOX/Lyr0qx5RJoiBkJeWoRBYMmtesDwPPa1V9BdFqodnXmRA6sCYV0W/EA2XLgYJ7uEc0uz39TbiJcj0xVsK4SDj829Z9NrcEz7Ou3WKUYm2Dt4kfC4Ajsi3YybSbcdgSOOIvj5JAr1Gqgx1lrNliX8sRO+DEIhqUDDy0g/zVsDJatAAAgAElEQVQVlwm3t4twrbqqgv0HfiTbRjiQfR8KZaZQVwdRJ8G9WLz/MOhZogcvuPoP7SWSNqACWQkxlFVknje2cW0YVBpBv5Pifch5UgWN6uA/W+rnC4GRW//gC+88Hp7zMq7DYH9A07SGhfe2UadnHFBp1Fz407UUbOsFimtDmo8/HyfKs+h/r3i9fxm4lUOhuViey1lwKxNuRyAEwqctxesVvd5qUWjYksfBTUHTCXJo+bqmtNCcO4+dY9CeXAuuD38XJqlB6BxONb5vuM+qQ7g3eheAfaVwcZxk3puFPZ/Cp9swMXFLxWhFiwJs84VxKbDLE0LPiCiYgAJxPA8p1tCSVOegq15U4QUifdSaak4dM4zVWRcKT6ntL2I+//HamguIhrSSVB7ZsoBoRDF9crxwHys2h3+PFDGHLmWGcbMXcoC82vd/Nnc+zp7j/WAQuH+xoinuzS7gwjNLJJLrlrSSVOa+05fD7wvn2wgnqMlaxaO3RjDFagCWfYZzoPQIACfr42WLTSHRAd4Y9hbhjiepDoH7HOuFOVMUSI7HducGIs4cIKtkE4c0JiS7WWB26jQ/BcLEJCGK3ewH3/o+Tf8JD3ea3y6KsQlGc+/DN2IUJiMrmTu8bW33CXtx7dXqRHR5tQYetBjH7Ig78Ok+GsJUVm10RtU8SIWxcNt8tb8Qtbp++Rj+Lt1w9AwFRYuLhSvqsHPjgSUSiUQikUgkEomkc9EuoqPg4GAz4DngHsDmnNEvnjPty8CNQGZCQsLI9li/RCKRSNoXFVgZBn/4QL6FcJFIdtAbX+9mc6kOB7XhrbgqdBJqFGEVv+kb8QC0ifaNyGrJrv5q4RLUhxjrNTAEjqx+nckzHqXrkAl02/YzA/4JUVnQpQJuOioKbo+OganHwa5cxKCM04Tw/Myv/hbFqvIhgyjctBPXMtjhJYr9rmWi4H/aBvr2nsmXBZ/gWwRfRIJPSb17xJ0PUhAzqNFloCVMNqw/b1G0Qai2d99q/rdrMY/tgVNWwm1qaBrYTpjNz6d+5z7zG+j6r4X42Ad0mof2Esm5qBpIsRc933d4CmHOjXMX0GV8UwTZ5UY3BuVDoj04n4WfA2Dgp29zdKhQTB5zahLqXCo6oMJYvN7hDaqediMkH7Z6Nb0/4CqESQ1CoQZac4jzCh3Cur/uZXLVUorMwEgFx7Pw/DAYmCkcAYzqhUHxTmBWK177Wni2eN635HEg24frC52zS+PrhvsL37Dh7NaIeNsVPz7DjOBwbAdNxD9wzHmXVenmwk1zwLNIxALalwthXoOY6GNXGOLZ5KbxqzaZJ+rvnXSIAusffrD7+EqmKEqrMWu5cdsInbcA7jcU7WizM+FKxo+15gLSMFwj2qwT9uI+se9JqFaE89OoFDHsXIF+a3QGh7BzHUgHdYu48nFvEomkw1kboicCbSsa+C4M/m84rFkJMe7gs+MwtacPs2rnBzhWAKObJo/1hJUT1zDQYzjKIIW55y4vuBuOwd2YAGzyeR4fyz50HTseTiQR+Nv3jADWhcBDjq04CF1lGn6btVVorfr4Yf/+at4sOkz48a242aZS8PYTPBV2W9N9l1bBI2wQKQ6wZLBwiZp5DI52gd7x2zi7bxsKMOsIFFpA6Zvv4jx6dqf7bCQSiUQikUgkEomkgcsWHQUHB7sAm4EwmldjW7I7+A54HPAPDg7um5CQEHu52yCRSCSS9iXDDnrnwtMjRNyFU7mh6Kiheb9Uh4NO74yggTR78TLfQm94G23pr0X0i0/BWZVUR4xqfKip08JfXjD0BJSbgkcJLOsrnDaUOhHP9ma/F/42xaqhjv14wlO4RvgUiygz1zLxwB2g9h930mtTNrCRyFzhCtVWjOIOn/f8iMs/zFif8ZS7diHVAWI9IDhfHKfv9IMvZz1CXfFkBncSMZtEcj5SHGDiHDj+LvzVX7im1WkgyV6IjgwK+KoO0KLVwebPYX1Q29ZRaA4LomHFd+BeBs6JGRAMD42BBCfIsYZSE+HodzE0uLNoEJFTwXmG18mGeLcbMqC4/jpSYSTEG8PSDJeVXZZJkEPz9lMxNqHL1H/CyqXkWoOZCpE58GZ/eNB6PKklqfjcMokY5/44aP6i5MxPzB60GK/QIRe3M5LrgtaELPrXd7PfX8eq11QmBrbhGqEoJNfHp6Y7QGC+KFyrGigyBY9iyEreg+5sJgAJxQmk2Qu3ixgPMKkD01oI/vQ7Io9+12rMWqWXBzPmwM2HYEg67PKAjwa/26mOY1WnI8lRRBwe6wLLw+FfB0Qxv1KB0alQZgQu9WLJvplN9wQt0RnvgzuLCF4ikbQvDc5z1TUV7Nn+OZa5eeysiucG0xDsfbrjHjmimZBFp4GIU3B3LPwUKMTV4cXGrOmhId1RYeF2DW8keZDaxQg1rBu3D3sKHxu/NgmZx8x4geqGNwEh2Ac8DdBcqHQtoygE9BhLAGOx2FPD80PvbrGNVX38sP8plhHZP2Gb+icHCrZTYAG1ChSbwSE3Ed17QwYY3b+AneM+JmzcndL5SCKRSCQSiUQikXRKLkt0FBwcrAHWAd3qB20HvgbcEc5HzUhISPgrODg4BfADogEpOpJIJJJOikYjIiPO5e/kjJBr1bHLv5CzzdVAf3u8Qoewh3qHhIJnGBM9gQF9ezPPWMEzZRX7dbt4Zs7bnao42JHoF3Uz7ESsU5dS6FvlxCuDPkTn7omPfQB2TsLeZGo8/Ond2tIujZQzCdy8cRZowb8A9naFrb6ih7GPfSD+ju0XASiRdDRanTiXTGvh9jhY3U1EA4bkCzFf43QZaagRoyhYvQZroMeXi0nL2N+mSLQsGxq7RtQh4iPzLWBMshABFZtBzxzwKmr7dje6s9wi5u+fJaLTNPWmRWF5QpAwIAPWh4jIwzqarinBeUKwCKDqWo+f8rEPIObmfXjkf8CZ+FWM+scz9B89HI8PVrFnxm3c3lDEihxD39eTGsUlrXG+2Dp9Ggphe8qzcE9ZwY82cSyLkIKmzkxbYm8jVJfLuueo1sC34VBqCt3ywPqhBSQ6QpodFEyPIsUB7pogBMog3LhC8oQQSXtwP1/n72Zqoobigf1wDR8CisL+Qz+R7AS3HIFMW8izBpewAZ3MzaEOnRay69uSGC+4ex/85gfz9kPvk7A2qEl0NDr1/KKjzkZncF6SSCTth1pbTbIdlJhAlRZe7QfGyx9imXYvR5fCpzfCrK3iPsV3yE1UmJuQWJDAyAo3spSzpHSBabPFsrqWQqIj/PnkISpOHKQ/EPyfifw9upq0D62KOhUFAkKYExDCzIEPsuiFXjh4hOIZt5VYh0p0wAdR4FAOwzJgZdZBbpq3AICilWuoGTJcCo8kEolEIpFIJBJJp+FynY7mAH0Rz9BfSkhIeBYgODh4ygXm2wL4AwMuc/0SiUQi6UB0CJejvxMNhdbvEmOBBZi1Xgu+bLrFJGIal9jpREf66DskmBz5GvtbnqXeBAqLTXsJc6+9YJH7eqI6eiJeNdVNQqyiZ3hx/GKKPn7N4HMIt26yYdEXTrQH+Ul7Dd43CAi8bLz/VoJAyXWCBmq0cMQFHtot3Hxcy5rOmyZxjgYUpfE8Cw1L5fWM/W2KDNFpYUOAuKaVGsMZc9GLP9cKrKqgey7YmtowTBsI7DOcWW39ItA4RiOETa5lIhYjwR5CTsMnPaHIXFxHVaDKqElo5FrW9FpznuRORavgbxeISe9hjPvzF2xmzMcBULv3aFbEGh86nRZ0wlRr4U8vMK4T8Vj6oqPWot0aCmG+hGDhEouZZfbfqq2/XmntGGkr273hueHweIyICsy1BKezkGEDXbft44lKcHTx4zWfHKCCLuVw1hgmz4b4JxezZhj4/imW9b9vHmdAn9m8vGsRfcvApBay7eHDoGfxsfG7/J29BFQNbPYVEYhexfCXOwTE70DpPxAQAknbCrCrgD5h47k5wJqHFR9S9r7Co2PhzgNiOd4XIWDsDHTm+1CJRHLx5KTswxrodRq+r4OgQpjqvJcRKfDyIDFNSAFs9wGHjd9z11RwNgLvvcLFblLvpnuFpHrHOxRFOqJ1IIqxCdahvXngls8xP/Us7qGWxH73Ej8GiQfu8Y4izpMYMb3drGkUxOw7b2y3RCKRSCQSiUQikVxJLjcnZlb9/70NgqM2cqT+v+yKL5FIJJ2QGi3MndT0vkqBss7U4bwjqS+0egQLXWxbCtoXg1pTzam1n3Ls/aew2xHD0cQ/yPnsFdTKivZdURuYcvziplcDDfOMasMjCB0wvR236NqgQYjlGzGKvuYh+EaMwtnS1WCaCS7DG1+HnGl5ORtS11/0urWJ8ai1tXgXwO37IclBOC2tHLvqqhVpJZLLQdXACXshYKjRwmFnCCwQ42I89ER758Rb1gwd3iaXIxARkN+HCbFRjrVwK6nTCFeVMjPhTjIydCoufpEG860NAW1GRuvCo3PEQmUmEHQGsmzhwygxrGup2Lds25ZzpwG0mguLBaujJ6J1cTd439I056J6evPTh88yfzJs9RECKMO2v7WtklyPXK64pGspuJSJoybLBjYEgokq/vplw+9+4HEklYK6ClTAvkKcF2fr7yF1iBiyZDvYfegH/vzpNTIcwO2siAvNs4SwXpOvmoA2xQHuj4bBmXCgq4h5tHj0QXK3rwNE5HCxuYibqxs8AjsXP6yip3PCTsx/0FUIJbNtrsrmSyQSCQDOI2ZQ9PqbbH9wNrVasKmEUSmQag9fdYfqrq4cCnOiwM6MGlMjNnxngWOdGapWtO39skRM5MX+VpQ052Kc5Bp+a1c8v4guIb15cZi4vsa5iFjh285vZiiRSCQSiUQikUgkV5XLFR1FIZ45rrzI+fLr/zuddyqJRCKRXHFUHz/s18fy+MCnybADs1oRsVZiAh853cuOGbuluOEyyI3bhuXjDzHo+aWYZuVQUFmI17OLSXjzYYg/xobkHzt0/WpNNaeOiS6SbS3Yt0Z19MS/fY/XSap4OOw7+OLFV0fyDpFyJp7sA5vJPrCZr7csoTQ3FbVG+FA0iJJUndo4TeXx/Qy99SHSHcC3GJb3EFE0PmeNpMuR5JqkRgvjbgO3UuEE5HxWRJPlWsHC0eef90Ki0GoNZNoIp6NKIygwhwOuYphZLWjrINDIjYFD52G86C1qgwz7Qxx0hT9fnI6Sltps2ZVeHkyeLeLUuhbDkDS4wcifp/3vAuCTKLEO81rx370Yok5C1yKwrhSxU1aV8FbI09zQtW2RZQ63PdCm6fRRMtMJe2pR4/tcK8O2X7Yb1xcdHZOlAKetxLm0aAgccBPRiCfsxblbpwH3EnAphR8WzsSlXJzPs+KEwHCnF1jViuWExySzO/ZbQESFrgttcNboHEK4FeFQbgwTb4bghYuZctywAF8waijhThGk2GsYd5sQY+VbXP69lURyKfx7ZMcs91IE8pKrj2JmjsekOzCdNBMjFb7tLtrdwEI4YwEP3/8jPk+8zd23f8rMnwoYMvwutj6ew4y3Y3G762n2eIjl9Mu6qrtxXXCpYl+v0CHsGbSGd+asYVK/O9nr3sJ973ncOCUSiUQikUgkEonkSnO58WoNoqH0i5yv4Uni5YqeJBKJRNLe1Dv9DPD2Y/fxKFYUPYNRSSnTb30Lr9AhKMZ/F8ujjqHSy4MnJ8CyDVBsJlw8/vSDqW8shzeWc+yr+UQHTDaYZ0Pq+nYT9+TGbSN03gK4/+LnDXfq2GLmtUhDgbctD5RVDSSfTUdXH7vi/PsObvv1ZX7+RhQqjd0gIxuylhpR2qsHcSYFjPUcw94f3+SxI4uZcRT+8ocSUxiYJgq9N8bBHSOewSu0baIFiaSzkWEH3gWQZwGFZhCaByNOwEe9Ln/Z271hXb2OaEAmHHWB+C5Qbip68oefhiprN2z7jqRaq1AzfASqBhIdRNtcaAo5FrAjbi1RHgswMTVvXLaq0ZCs133ipA3cf8PdlAb6cOvpD+iTBcYqaHXCYWnR8NfpufZR/mkHpWbCCaXMDPo7RWFi1Lbr6qUWrpQ68TnbVcDGQCEI+bfDDCaPfqJNIuLa8AiclcRLWrfkynIlYrIy7KBXDrwxAMxqhNjooCsMS4PTluLYfn3kWwy0603islWUG8GQdDhpJc7zOuDWG2F8MtwTC5v9oNQUfPPhgWlv4W939aJiVMQ5C5BjBeY14FEotr1BTNQQOaTUaYj2m4iqU/l/9u48vqr6TPz4J/cmYQuQhABhC1kIJ0iMqKhVATfcKBa14tZWnVE7M5ZOZ+bX6W47Tp22M21namt325m2at1K3Upbl7q0iuBuUTgi+yIKJOxLyE1+f5wbSCBAQpZ7Qz7v1yuvc873bE8g597cnOc8z9yrX+a9t+byP7+dxa72/oVFaqVEBizJg8Hb4U8lsCwXtoZzGVI0usXPa639PJGoT7Bk4yI2LHqRJ5c8QNUdv+HtwiwaaGBAYRlr6Wb9A3uwonFTuGnU5ay59kr+ev+3mTx8EtWXX0Zx7hhqp1UwLbndjptviWbGVFC4YzUPJV/vLnwnJWH3WE0/azdtcR7vPYorb7ijhT0O0Z9XkiRJkrpYe/8kth3IBfq1cb/kczNUt/P8kqRO0viHrt5/+jbk5O39o5cOLnvOowfc8DvgD/zxOE+Mgd8EsKVPdIP90bFw4hp4aTgMffzPvNj3l5y6JZe6D0bJRws2vNFhSUeJhsTeNiCLmtwwT9TXH3bfnl7VqCVtucG7JB9OffZSxmyIWtQUb4azEjBrGjx2F9x+MlSuh0v/426uvOxuRs/4OOsWPEvZzbdy9slw9nKYMzZqUzN4J3ufQs47+0MmA6pbShC1K1qRD7m7YVcWPF0Ck//9fq6e9xLTTj+Fe6q/xH9NuvWIE+sG7oraIRVtidpTvNakE+KuTAiGHU/tmfuu4yX58MGr4Ht/iFo9nbQGPv36V/lBLRx36b9APE6iPsGqrcubneehcfAvZ09m7MAx3BmfDcA9D3+JISPqOfbsU5g4+Vrif5zMvB2ryc2Yx3P5f2Fy3xGdnjCYKC4l75H5vLBjNSOW3cPKvAVc+Te3timJuHbadC45sNiTeqDGa7Z/bfQ7zBuFsCce/fw3VsS4pxI+22c4q2vf45or4ZFfQ0YDvD40So7YmgUvjIRzlwIZsL0X7MyE//jofZxVfG5qq29lRF+JjCih6v0ceGdQ1Cb1e6fApCaPWsXWrIJBAfFYnLLccmI5K1iXA8+UWO1IXePtfJhxFbx9e1RVr2QTcN0sHv6XJzn1c78AYMmmxXu33zr7/1hyQ3DYxL7lW5bykR+fSu86uPwteHEzvDAKfv4w/KoKarMBPxJ0C/GsbPoPLSW7airB6l3UTptOXqqD0kEd9LN2PNZydc+4z/FKkiRJSh/tTTpaSZR0dDzwyzbs11j8OWzn+SVJShuZC944IAmlpYSh+hj0qodNvaMbdw0N8OYQ+Jfz4bu/X8h3ErOoGnA9fSuix+ljNdXElywmUVwaVaJqh9W73uPij0Xz63KarkmPdiZHu7JquPVJmPE2nPE38Jnn4Hfl8GAFLB4UtTJ8Jze6kTThkTks6PUqJzdErZvuPDZqifDI2Oh/6+FxcNv4m1NaFUI6UoniUjbdcz88NxOA/J3ReNZFMxkxYSrxE84nD+j9p28fcdLr8K1AA5y8ErLroHwD9PnQlVxx2qXM/8032HrORHJ7Nb/9lgBKauCD78Dvy2Hk1uiGLnyV6uMuIjG2guVblnLV72YecL54LNbsyfTef/o2J139CY47O/keMKaCEiqgaioT5n+NyoKqzk8YTFYvLKGCvkPn0zt7zRH9e5p0KuCAogpL8qH2kg9zw6g459xyJQ8//nG+cONPKBo3hZULn4UMyN0F4zZCbQyyE/DS2cdQsuktXivcl5xz5wS4aWtGShOOEsWlFDw8n1+HL/BE6T8ycktU8WxVHmzsDS8Oh4tCmNF7Ip+b8JkWEwbDwSkIXD1XBmTWQT1R286fHQejamDXn+bw37s+QK9+ufQZMoqTNuXwx/qFnPDsm7y/4h/409hcLulzMkNHV5E442zIbv4+lKivZ2UuXPxm1BLx2lfhE/Pgn86P2icO33JgKK15eEGp1doHJYrGTWEeUfJ0bsY81oxcxvWn/StleWVUb9zRmSFKkiRJkrqx9iYd/Qk4DrgqCIKbwzDcdrgdgiA4EbiA6H7Zk+08vySpk1UlhpIoGp3qMLq1xgpIiT21vPfWXACq+8BvK+B7H4jai7xZEN3LK6uGCxfDVp5l5A9/BsDx4yH/zZ+w/rkXoTzolBhTWlmgB1mSD989GfJ3R+1kVg6AySujJKNh2+C9flBcA7szofyN1Xzh7NUMng6fngu/HQejdmVyzDWfY/1TP2TepJ9G1Ur8v1N3FI9TcuxU5mVEN7Z+u/DjlJ86mdEDSzvsZzoObO4L84ug9uWovdoXqi6npHQqf826jQkjz2TBhjea7bO2f9QqDWBb9v7JmYduY7F/3PWDhx70Jl9lQVVKEnmqEkO7/Jw6OizJh8Q3vsuL2TGC3t/hxtxybhh3PX1LdpE7eAElVVM57ckxzZLaFg+Cr5wVVXUcsRX+Mhpu+eiXqVxxB1+YcRO7Pn0jN4w6hxtHX5n6NqHJBL09O1Zzwcfg3/4EdRkQr4ecWjhj2GTyzy5gxhkfpqzsgtTGKgE0wKitsLlX9EDD3KKo2lH9nt0se/8tijZBYTVkrYcnL4BZb8Jb789naAiP9HmMixfBT64+homjJ1NRMJ6BS1ezefIHgD00xOCh8VHFrwlr4Jheo6hnFYvzo4qbX/lT1NKtdx28PSgZjI4KTZOnqZpK7vyvUZas6qbUSWTA00VRVbPx6+HNwZDz7GyGFX+63Q8lSZIkSVJHaG/S0c+ATwGDgf8LguDKMAzrDrZxEATjgAeI/mK/C2ipKbUkKY1clBjLjplfSHUYKfdgBRzudtjimrcZAST21LJuwbMAbF23lJ1PL2XdsN4k6uoYd/0s+CQ0ZERJJwA/ngiXvhU98T9sW9Q6a06/xYxLHrcwmdK7ZtsqRtA5SUfqYIlEi8P1MXi+BP6hP5y+Gu4+Fr78ZgH9qzewPRseDuCxMuhbC8+PhDNXRLdx5o+AzHrIHjKK0y75DFMXbGeHLQ/VzcVj8b03tjKz+pD937/g2KWPdsixG9ukDdwJuTthSHYeX7jxZ3sTG6oSQzmndPoBSUfDt+57zQVY1KxyyYE3VWcsjFpLtSRRPvag8aUi4aiusoqLFoB1Co4udZVVHXq8eqKWYit3rm0+HoNtU06nLLecXj/8Nad/4GOUlJ5H3fFQuTRq8fLve85s9vNVH4MfngxfeQqeLIVtvYDsbMpHTaSkaioD+1SwbPzFlJSm3/tZQ0aUJJWIw72VcNyJM5h07MdTHZa0TwYszosqYL7fF/rsgSdKo1ZoJ62JfobPWg4XXR1d1+EgeGMI9N8DL4+Af3gJer31Fld+/y1+eCK83w/G3x8lEv1g5EA25Gdx74l9GHXzZxlZfiXXPHkPJ78zi//+Q5Tc9EQZFG+Cv/nkvVbdlDrZkny4dQo89StYNChKrK/67H9QPeVSEmVef5IkSZJSr10NoMMwfAv4PlES0SXA60EQ/B0wpnGbIAhGBkFwQRAEPwZeAUYT/cX+1jAM32vP+SVJ6iqvFULWM08dcpv3d0Rva+sWPMuE8y9lwvmXUnjnfRTeeR8Tzr+UmuV/bXG/+hjsicO3H4MBu6P2I693UjGKgvITGV0No6ujJJbR1XDvtPspHlDaOSfssTJIAMtyoboXvN8HfnBilKBQH4PFQ6CmT1SB5ZgLrmfcevj3M+GOE2HuKAgLYM3AqJ1a/1r4+hnwbyd+kawhwwHYcfMtqfzmpE5zQDvKwUf2Ylgfg3cKYHMfWJEP60bmUVI1dW87s4sSUUJQZcG+hI1EcSkFj8znPz96P4u+cTNjqvc/alTpqGkbmcb2UN1Ba1urqHvpkP/XJomyNb3hO6fAYz+axYyFLW9eP2Ros2u1cf5QCVBNk/Mar7v9j5MOisZNYd6k2dxYdDk3Fl3ONSMv4aw7XuTa8denOjRpr8Z2gHdNv4dJBRMp2AEb+ka/L64aCLPmw8vDYE8sSkja0guWD4StQ3LJIBpf3y+qQHb7RPjBSTCnHF4eDln10LBtM4XLNjCkLpvhOcOJZ2VTP3w4DTF4ugR2ZsFzo+GnJ0FJ/hir4KSx9iamNv09SamRKC4l75H53HbO7UD0d4md7X2EWJIkSZI6WEd8TPkXYBRwMVAB/CA53vgo8Iom2zb2JPhlGIZf64BzS5LUaRLAytyoSkZNb9gx90lik8+A0jEQj5OoT7C8ZjG9V64GoHZbDWtefYJEXR2JDFiSF+13ZyVs7wWD1yw+6Ll2xeHGD8LXn4xaeazrD7efBCO3Ruc/lMb2ba0Rz8pmRX40P3R7dDO+KLfj2hkpKR5jZS4UbYa3BkE4GH51HJy7lL03cRtvwG4+7RR6fT+ab0jeBKqNwz+tL+elokyWDl7Pg8d+mYknX8Gdc55OybcjdbaGfv1aHD9UtaC2eOXUMi5qYbxZwkOyvVIJFcQHlDLph19lU58mG8djJOoTrNq6nNHJhKSsBPTaA/8744EDkjfT8UZdR1fF0dFiX+vAWAP8YA78qir6PaalSl4Huy6b/i5SNG4K84jaJ45Ycg9rRsHYnBKKxk2hJJn811HXd0dqbC3Ud+h86iqr+JbJekpHyferMVTQ94RXqTxuAomXnue/Jt3KV5/8NJt7LeVPZbBgaNRmFGDsRz7D9I98hvjSxTT85otsHbeKzQPepc+uOhoGZDG/71bGbozatL1WGO3zjUnfpKQoqkS295qeBCN+cQ83jILrT/tXH1xIc+1NTE23xNAeKXm9j0zmvPdONKnKeZDqupIkSZLU1dqddBSGYQK4NAiCTwGfB4YcYvMNwDpSSr8AACAASURBVC1hGH6/veeVJKmzrcyN2gcA5O2CoX/4PTz0e6r/Mp/E2AqWb1nKdd87mUXJdNtNo2HC+Zfy0H3/wz9eC+tz4OoFUbWNivWw/o/3NDv+5t5RpaHvHnszT218gAmDj+ejuXfz9SeixKOXhsOGzXDmsmj7ETmjWowzc8EbR/QH5fktH04dZE8MplwLl78FA3dHfxyui0VtKy5e1PxGbny/rk27syD/nEv52Ojj+P3CBzht8nUADOnbSSWwpBSrHzSoU4+/q7Sk2XJrkm/61MGZi5qPLd+ylKt+NxOSyZt74tH1Go/FDkjeTMcbdVY7UovisShZOh8a6uEPZbAlygvi5FUH/r7QmuunMXkHoO/Q+eQOhetObt6uN52T4Ooqq7xe1D1kZEB+ASf3qaCkaioVO2ey9eyJ8NxMFhXs2yz+ocuian/BeD78hQfJnvMowysg8+UXeeLiL7Jy4bMwCXKfm0e/Cjhj0Cl7W5JCy9d02SDbPktdJ0oQvnjRgWOSJEmSlGodVpA1DMPbgiD4EXA+MBkoBgYC24A1wDPAnDAMd3TUOSVJ6kx7YnDeR+Cml/dfk9HibEHjO1w8xtwiOH0F1AOJDMiug6dHQyLW/DAr8qGw5Hgm1m7jnIu/yLgFl1C86LvMe+/P1MWi1j2NTzLGGxpofJZxztJH997QfiT+Nud02HetjpAoLiXv0fl8a/sKMn5zD6+Gj1O2dQejN9Xxu7Hwifn7tt1VNJIRj8zn/o3R4M+eupXLyy5iwNn/Sm1WNhcCtcltLym/rMu/FymV2lwtKJEADl+5rTXJBKesaf1pR+SMbP3GUppJFJfy+jdv5sRtX+Xu++D5IjhtVdSeKXcXnLAarp96896KJkeSjNPStZzOST3pHJvUkosSY9kBkJFBxuhSeK75+v0TY2unTWcaQPLzRGNCEVVTua6TY5V0BOKx1o1JkiRJUgp0aBfoMAx3Aw8nvyRJ6t4yYHle1PqsmaZ/3GtSoab/7miavX4DDTF4vx+sGgDDtsELIyGzAX5XDsH6A0913sxbACg5/nz6TniJeFaCUx98/oAnGRN7alnz2hM8ueCHvDvnl+SseY8V9Rs57/E/kDjjbMjO7ojvXO3VpO0Fx53Pw9+5kCvfeJf78pcSDoY1A/bftpwzxlQA8MrcX/PP53977+qmNz7TsXKK1JkO9jOfKC5l072zyb3iUgAerGh88rtrn/hubEFji0p1a/E4wy+fxYtPD6Ww/BEW7P4TA3MH0beoHx8qqGJqwWkMPPOGdv2c+/4ldZ7KgirqKvctr9yyolPPV1dZRWXB4beTJEmSJEk9Q4cmHUmSdLSo3bOTV5KdrAq3wRPRw/08WAGNjQbyHn+q2f3thuR82Re/Cp+EPZnwSAC3/w4eGA8nrYE7ToQRWw597rpjjyMRr+HibzzffEU8xroFz/LSl6+ktgR2bYBdwIeWQP7/Xs6W/7md3Vd+JEpiUdr5UMmHKP3kx/gcMHLDj7m+Em6o+ru9lSMa1Q+2hZp6njb/3Mfj1BeN3rv4WmEy6SiZFDpjYfMWhp2lK84hdYV47z6MvuAa+r6xmhNeWcDpN36Tmu0v7k2Kbo90bqPWUUr6jiT8XjQ/aAds7Asf+3+zKdrvPV7qDNNKp1Pb5EdtRM5I7p0+m/Fr7uGxYWv4pxP/3wG/b7bH3ipJkiRJkiRJmHQkSVKL5od/5HNTIbs+Wq5LFjdqWvWo38K3qU8mGj1YARPebX6M5bkwugamLoUfnQS9ElFhpJ37vfvWNySaLddOmw5/fHrvcgOwOB+2L3qO97e+yx8nDefpXmup2BCtH7cBEsCv75zFqQMS1I8cBcCInFFQOsYkpDQwfsTJ7Jx5C2XJ5eyJZ5LX+w3KcssP2DZRPrZrg5PSwJH83CfqalmWC7k7YWccanrB6nAuiZMm0ruu+bbleV5XUmtdtLOYzdOmcx4dU52oR7QqKymn4NGoH2+fO35M3zOhZPxZYBU0dbHKgirG5lcwNr+C7NN3cXrBG5xVNDXVYUmSJEmSpKNYu5KOgiAYDNxDVOfh62EYPt6Kfc4FPk90f3RmGIab2hODJKlz9YSn01syeNR4En+N5huAPTHYnB3d3N52+9fYOL6chrdfguR97NcKYczG5sdoiMHyfDj1BiirgQkDj6F841v8YSxc+E6T7Q4Ty85M+M4H4JOf/kc+eRWcvRTix8D7feDUVZBVB38dAguGwIc/8SleHQYrcmHQO9Dvp/eTOGOqiUcptn+liNpp02H+GymKRjo6vLvkZaqSnyT6JOCZErj4ulm8/PczWZfTfNszRp3VIed8ZtVTHXIcSUeZeJxEWZRIXJ+XT30e/u6llGjaytDfNyVJkiRJUleItXP/q4GzgBOAP7dynz8DxwNnA1e18/ySpE7WI55Ob0E8M5vV+dF8XQz67IGBtdA7AXn3/oYB//UNti56hZPXwOfPgYr1sKFvCwfKgHcKIHcXjD71Ii5a3MK5Mg68KVXZf19VjgZg/HvRsfJ2wpkrYEMOrO8Lp7wLbw6BH02E50bChn6wuTcEG2DUVsi/cibxJS2cVGmrsqBnJvpJR6KxTtyiAvh1JeyMQa8H7mdD36jFWkcLq8MWj5uor+/4k0kpUj/ENp/S0cLfKyVJkiRJUmdrb9LRuUT3Qn8XhuGu1uyQ3O4RoupI57fz/JIkdYqicVOYN2k2D0y8nSHbYWx1NN5A1HKtNg6vD4WqdTB3FBRui74OZlcmvHflh5l523zmTZrNjUWXc8Ooy5k3aTZF46YcsP0Hh0ZVORIZMHtclPAUb4A+dVD5frTNS8Pgg1fBQ2PhiTI4Z2lUcem1Qhi6vcnBEt4M706aPqEu9RRHelN0eW40fTcHVveHzAb47TjYlh21tuwI9cDb+VHrtq3rVzJhXUtbHa5mndR97L7kslSHIKmD+HulJEmSJEnqbO1qrwY03h2Y18b9XgQ+2mR/SZLSSjwrm5KqqcT7LSZzEyzKj248vz4URmyB/5gME9+FHdmwoXe0bug2uLMShrWQfPTQOPhcPA5jyimhgr5D5zNpfBUlpVNbPH+iIcHb+bCuLzxUESU3vTF43/rhm2FFPjw4/EsMnl7JX+fMYubYM1kcf4F3BqzemyQVfTO295CU3o70pmhtPHrdrcuIlhMZ8Mow6F0Hw3bGqcocwWfP/DrFA0qPOLaaPjD9anj7ulkMmXbg+nunz6Yst/yIjy+lm55a5bIjWV1GktShEokDhmIrV5AoLvXzviRJkqSUa2+loyHJ6do27tf4fHBhO88vSVKn2xOH50fD5l7w+BhYOwBWD4RYA2TWw6wNZZy9AvJ2R1U2Rm1t3XEPdZN92Y7VTL8a9mRGFTvOWg75u6N1C4ZAeTU0xKBwzAmMOWEa1/SZQsktP+dDZ/8TFRv2O1i8vW/3kpR+hpRO4NXCqNocGfBeTpSE1H83rMiFokFjOG/C1Zw79iLisSO/GdO0VlysSUGjQcmKckUDRrfr+JKOLnWVVVaXkSR1sIwDRnKvuJT48g4q7SlJkiRJ7dDeu5B1yWmvNu6XnZwe+IlJkqQ0VJ98x1rfd9/YO/nw0nC4ZM/YvWMtt905UF3loZ+ALxo3hXtP/C5Dt0FJTXTc9/rBzkxYVHDg9heOi1qh7Jl0YKu2lp6KlKTubmXt+3xkJvzopH2vjzV9YEtv2JUFAy67oUPPl8iAmt77lnNqk+P1trCUtI+VoiRJHc4HiSRJkiSlsfZ+YlmfnI5r436N2+9fi0GSpLSSaEhQ0wuW5MNvA9iVCW8VwLCtsD0Ljjl1Jjm5w/ZuX7ER+tUe/riHuyEVz8pmz6iRHDsLFg6G1wrhO6dGN9anjZ/Jx3qfzrxJsykaN2W/47WUz2uOr6SjV30M6mKwdiD0LRpDwcyPc07RuQyc2TFJR40fmJYkE01zd0KvPZC3E0ZXAzQcYm9JkiRJkiRJko5eme3c/0VgNHB5EARfDsPwsI/5BkEQB64g+uv8q609URAEucAdQGVy378FQuBeoBhYDlwehmFNEAQZwG3ANGAHcF0Yhq8kj3Mt8KXkYW8Nw/AXrY1BktTzLNu6gufHRje1t/SG/J3wiYvgw2/Cxiz4u8qrqN+xpNk+vesOcrA2Kho3hXnM5ld8m9IzR3BDEdw4+UqKxk1h/P98ix1VUw/cKR47sNqST0WmpcqCQ1e7knRoja+RAL98+AtcM+lrDPzDt8jrnc/kkWcSj8U79Dr75qlQuA1eGAW7syDYCPcei63VdFQ5XCVGSZIkSZIkSWqqvXchH0lOy4BbW7nPrcntAR5qw7luA/4QhmEFcBywEPgc8GQYhuXAk8llgAuB8uTXx4EfAgRBkA98BTgFOBn4ShAEeW2IQZLU42TwTHFUzeKY9/eNbugLDyXr9u056+xOOXM8K5uSqqlMvOAT5JxzMZPGX0xJ1VTiWdmH3O/iRZ0SjjrYtFLbr0jt0fgaWVI1lf/Mjl4f64cWUllQtff6au91lgD2JIvFPVUSTdflRNOKDXDv9NkUDyht1zmkdGJrMEmSJEmSJElt0d6ko7uBpcn5zwZB8KsgCIpb2jAIgtFBENwJfIaoUtEKoFVVhoIgGABMAX4GEIZhbRiGm4AZTY7xC+Di5PwM4JdhGDaEYfgCkBsEwTDgfODxMAyrwzCsAR4HLmjLNyxJ6mHiMR48BlbkQ3Y9jNocJSBdlnlCs/ZmnWla6XRqp003SUWSDiNRPrZDXytX5sKA2ujDS02f5uteK4SiAaOtdCRJkiRJkiRJ6rHa1V4tDMNEEARXAs8AvYGrgSuDIFhAVIloG5ADjCNqixYDMoCdwBVhGLa2AU0psB743yAIjgNeBj4FDA3D8N1kLO8GQTAkuf0IYFWT/Vcnxw42flB5eX0BGDy4fytDldTZvB7VlWoG9t23kAFlNXDnBLiq12kMOueSaHzbxlYdKz8/h8GDOujnt18v+rV0LdTktHhektvWxFpef7C4vN6k9OC1eBiNr4kHe21sq+Rr6a4YLBoEe2JQ3RcKdkSV7gDGXHQtJ5UdZ9JRD+T1KHUdr7fD6Kj3PekwvBZTrIXP+dD8s76OHl5vUvrwepTSg9eilP7alXQEEIbhS0EQnA/cCwwD4kBV8qupZGMC1hIlHL3YxjhPAD4ZhuG8IAhuY18rtZZktDDWcIjxg6qp2cHgwf1Zv35rq4OV1Hm8HtXVBgyfyLxJswGomP0l3qzMY+4V36HXHQ/s/VmMV28jvxXHqq7exvr6jvn57bt9NztauBZaiqW6ehuJ5LbVm7a1Oi6vNyk9eC0eXuNr4sFeG9sqvn5z9Foag9o4HL8OVg+E3F2wLRuy98Alx/891Rt3tPtc6l68HqWu4/V2eB31vicditdi6h3sbw5NP+vr6OD1JqUPr0cpPXgtSm2XikS99rZXAyAMw78QVTP6EvAWUXJP0y+AN4HPA8eEYfhcG0+xGlgdhuG85PIDRElI7yXbppGcvt9k+1FN9h9JlOx0sHFJkloUz8qmpGoqJVVT6d0vj+UXTqZsUEDi2ONSGldd5f65vZKkjhN9hIknH0847j1IxKEuBrsyoTYren+QJEmSJEmSJKkna3elo0ZhGG4BvgZ8LQiCPKK2ZQOALcCaMAxr2nHsdUEQrAqCIAjDMATOIUpuegu4FvhGcvpQcpeHgVlBENwDnAJsTrZf+2OT+ADOI0qEkiSpTWqnTe/R55ekdNRhCZnxfc9m7MqE3J1RdaPdcRgz6gTGjD+R4gGlHXMuSZIkSZIkSZK6qQ5LOmoqmWB0xElGB/FJ4K4gCLKBpcDfEFVqui8IguuBlcDM5LZzgGnAO8CO5LaEYVgdBMFXgcbWbv8ehmF1B8cpSTpK1Q8ZmuoQDivRkODtfMiqj26S31cJp4Zzebn+TaaXX5zq8CSpUzQmG3VUQmbja+m7/WBdfyjcHlU3asgAJkxk8sgzicfiHXIuSZIkSZIkSZK6q05JOuoMYRi+BkxsYdU5LWzbAHziIMf5OfDzjo1OktQTJMrHpjqEw1q2YzUfvRrevj1aHrgLqq6bxQ/uuNykI0lHrY6u/tb4Wvq938OiAsisj8YrNkCfvLFMK7XanCRJkiRJkiRJscNvIkmSGlUWHLp1TyIDanp1UTCtULht33z2nEf3zs9YmIJgJKkbWZIPH/8g9N8FbwyFvO1w4jnXc+3461MdmiRJkiRJkiRJaaFVlY6CIJjSOB+G4bMtjR+ppseTJCndHaq6RSIDniiFhYP2jQXrIRzcBYElFY2bwgOrbwdmAdAAvJMHm2rW8vOXb+bPa/OYsRAmrIOHxiXjrq/vugAlqZuoj8HKfNjaO0o6qukHg6+8ybZqkiRJkiRJkiQltba92tNE9y0b9tuncfxI7X88SZK6rSX5cMHH4DtzouVgfVRpqCuTjuJZ2YwMTiWRAdW9oboPjNgGWc/9hf7L4bcVcEXd/nu1561cko4+ReOmMI/ZAIxYcg8Ply1g7oW/oHhAaYojkyRJkiRJkiQpfbQl4SejjeOSJPVIFe9H08x6KNiRmhiW5MOcsiiGY9dDdgJGbYkSodblwDlL921r1Q5Jai6elU1J1VQA+g6dT9HgOsoGBSmOSpIkSZIkSZKk9NLapKNb2jguSVKPNbA2mm7LTs35E3W1rBgAzxTDhxdGY0vyYUkefGA1xBOwYiD8bfYk/nbGt6zcIUmHUZ43NtUhSJJ0gLrKqlSHIEmSJEmSerhWJR2FYdhictHBxiVJ6kkSxaVsunc23HRps/E9MdjQt+vjeXfJy9RnwIPHwIwQZifvlT82BoZvhbX94ecTYe5lt1GWW971AUqSJElqt9pp01MdgiRJkiRJ6uFiqQ5AkqRuLx6nfsRIEk2GTl4FawemJpxdw4byoxP2LRfugMwErO8DZ6zrzZc+eDtzr3jRCkeS1EqVBVaSkCRJkiRJkiRpf61tr9aiIAi+nJxdEobhXR0QjyRJaevQ7QsyICOaizfAqC0wv0uiOlB9UTGPVMBpyyErAbvjMLRqMp867lMc//wX2XTBNSmKTJK6p2mlVpKQJEmSJEmSJGl/7Uo6Av4NaAA+3/5QJElKb4dsXxCPEW+IZhMZkFPbNTG1pDhvDH+55mUAtn76eraeOIFh44ZScvx5JMbdnbrAJEmSJEmSJEmSJB012ttebVNyuqy9gUiS1J0likvJe2Q+L5bezphewxhTnbpY4rE4ZbnllOWWc9rYC5j8D98lIyMqw5QoH5u6wCRJkiRJkiRJkiQdNdqbdLQqOR3Q3kAkSerW4nEYU8HoC64hu39eSpOODuXQLeIkSfvzdVOSJEmSJEmSpJa1N+noUSADOLsDYpEk6aiwJz+PRQWpjqJlh2wRJ0k6gK+bkiRJkiRJkiS1rL1JR98narF2eRAEp3dAPJIkdXu7Ro1IdQh7WaFDkiRJkiRJkiRJUmdoV9JRGIZrgSuB7cCcIAg+EQRBnw6JTJKkbuy1wlRHEGms0FFZYPKRJEmSJEmSJEmSpI6T2Z6dgyD4eXL2r8DpwHeBbwRB8CqwBth5mEM0hGF4fXtikCQp3eQcM5H/+tZ9/NcTcMfx8JNHYdO9sykaUJqymKaV2h5IkiRJkiRJkiRJUsdpV9IRcB3QkJxvnPYjSkBqLZOOJElHldrrbqTgzHMAOPGuz1Pw1a+TV1wKsXiKI5MkSZIkSZIkSZKkjtHepCOAjFaOtaTh8JtIktTNxOMkysoBmN77BHYk5yVJkiRJkiRJkiTpaNHepKOSDolCkiRJkiRJkiRJkiRJUrfRrqSjMAxXdFQgkiQdjeoqq1IdgiRJkiRJkiRJkiR1uFiqA5Ak6WhWO216qkOQJEmSJEmSJEmSpA7XrkpHQRD0BnKBLWEY7uiYkCRJkiRJkiRJkiRJkiSlszYnHQVBkAt8FrgMKG0yvhy4H/hmGIYbOyg+SZIkSZIkSZIkSZIkSWmmTe3VgiAoB14FPkOUcJTR5KsY+Ffg1SAIKjo2TEmSJEmSJEmSJEmSJEnpotVJR0EQZAIPAKOTQxn7bdKYfDQSuD8IgqwOiVCSJEmSJEmSJEmSJElSWmlLpaMPA8cCDcBG4OPACCA7Of07YH1y22OAmR0XpiRJkiRJkiRJkiRJkqR0kdmGbS9NTncCZ4RhuLDJuneBnwZB8GfgJaAPcAlwd4dEKUmSJEmSJEmSJEmSJClttKXS0QlEVY7u2i/haK8wDBcBdxG1WTu+/eFJkiRJkiRJkiRJkiRJSjdtSToampw+f5jtGtcPaXs4kiRJkiRJkiRJkiRJktJdW5KOcpLTmsNstyk57df2cCRJkiRJkiRJkiRJkiSlu7YkHUmSJEmSJEmSpBRZNCg1552z9NHUnFiSJElSWjPpSJIkSZIkSZKkbmBdsh9B1jNPdel5F2x4o0vPJ0mSJKl7OJKko4YOj0KSJEmSJEmSJLVK5uK3Ux2CJEmSJJF5BPs8GARBa7bLCIIgcZhtGsIwPJIYJEmSJEmSJEk66iWAlbnR/J4YLMuFIfXN//SeqE+wfMtSAJ5Z9RRnjDqL4gGlxGPxLo5WkiRJUk9ypAk/GYdY18C+akiH2k6SJEmSJEmSJB3Cylwo2gxL8vaNvbTsaQa++gQbX3mGquu/yvItSzn17hOb7Tf36pcpyy0ne86j1E6b3ubzJvbUsm7BswBsXbeUNa8+QWHlFOJZ2e36fiRJkiQdPdqadNSaJCITjSRJkiRJkiRJ6iBL8mH6VfCbe+HRMbA2toRJN13Ku4V9Wf3KYww4awYZ9VC4Dc5ZBk+WQPVf51JWWE/mX19vc9JRoj7BKy/cw/kfnsXKXJhYAgOX3ccbt36J44+fAaVjIG4VJUmSJKmna3XSURiGsc4MRJIkSZIkSZIktSxWD73r4Nunwemr4INL4L5eOxi8eiG1Ly+kaDp87UnI2wVr+8GJH53F9yfC8JxCTvvk6wy+6cvExo6DeDxqx1azmN4rVwOw4vf/R+/S8WRkZDB3z2JGxwfztcU/4GcjYWMOTFoJ7/eD82bdCtxK9V/mkxhbkdp/EEmSJEkpd6Tt1SRJkiRJkiRJUlfJgFhD86HsBOzMgm+fAvk7o8SggbthY1+o7hslDO2uXUefhX/g7Ol/IP7wM6yr3ciKnWt56Oez+PnDkABWjIW+Ox/mtNXwwiR4Jw5LpsBN0+DMVdG5cnbvF4wkSZKkHs/qRZIkSZIkSZIkpbn6Jnk+W3tF0wagNgZ3PArv9Y/G3u8XVTtakgd/GQXxBDw3Ejb0hl/+6iYmnH8p466fRbABZlfAvBGQiME1M+ArU6KbBv32wKwXoGgLbMuC1wphQ98mwcS9tSBJkiTJpCNJkiRJkiRJktLXftWNjl8Hrw+BBytgyHZYkg+74vBev2j9rkxoyIiqHQ3fCrc8DYU74Lj1sGbNmySAucOjbVcPgLuPhXAQnL4aluXDS8Mgsx7ez4mqKD01GmJTzuO9j8zkrvNHsuKamSR274ZEoiv/FSRJkiSlIdurSZIkSZIkSZKUxhJEyUXbs2DyClicH1Uf+ufn4ZVhQAwScdidCcvzYGcmLMuLlp8ogUV5UVWjdTnR2A9Ogs88H1UvGrEVfjcWRm6Be8fD6E3w2ZLr6denmomTPsaWha8w9ZO3AvBvZ8JHfnk//PJ+qv8yn8TYilT+s0iSJElKMZOOJEmSJEmSJElKVxmwtj/Ux2BDP8iuh3cHRKtq49E0nqyGlFkPT5XAG4Vw4TtQF4MvnwWb+0Du7mj8+ZEwbBusGBglMU18F+47sRc52YP5zXGfZmjFBygZFDAmFh18WSLBeR+Bx+5qITBJkiRJPZpJR5IkSZIkSZIkpak9MfjvU6L5lQMhp3bful2ZUN0HPnEBxOphyFboPWQko6tXk7szSkIiDosHwfq+cNoqeKwEijbDwnMnUrW2jtJzzuMfz6tkevnFLZ6/qPIsvnXu7XDXLCasa7IiHuu071mSJElS92DSkSRJkiRJkiRJ6SoD3hoMo6uTSUTAsM3QAPx1KDRkwBPl0fiSAhgx9gPMf+cBNvWBgh3wzoioSlJ1P9jaC755BsxYCJ+75seMez6kdtp0ph/i9PGsbEYGpwJw8aJO/U4lSZIkdTM+iiBJkiRJkiRJUhpriMGK/KhdWl0MarNgazZ88KPR+hkL92174tCJzL36Za66/FtcHTuB2864be+6gh3R9KFx0bR22qHSjSRJkiTp0Kx0JEmSJEmSJElSN7Mnvm9+wrp9iUTnjD6XstxymFlOzrY15OSM2Ltd09ZskiRJktReJh1JkiRJkiRJktRNvJPffHlRAVRsaHnbY//mFhJ7apkXnw3Abxd+nHmTfkL9iFEUDyht/UkTiQOGYitXkCguhXi8hR0kSZIk9QQmHUmSJEmSJEmS1E38pSiajksmGq3L2bfutUK4YL/t41nZlFRNBeCEXQV759sm44CR3CsupXruyyTKyo/geJIkSZKOBrFUByBJkiRJkiRJkg4uqx7C78GILXDyGphzF5Sv37e+MfGoscXawUwruvDIAogf5FZCCxWQJEmSJPUcJh1JkiRJkiRJkpTGlubD9KvgvX7w1yGw+F9v4ktn71s/aWXrjrPj5luO6PyJ4lI23Tu7hTUHVkCSJEmS1HOYdCRJkiRJkiRJUhqrj8HiAqiLw84syD1hCp//wBf3rh9T3ckBxOPUF41uYdxbDJIkSVJPlpnqACRJkiRJkiRJUsvKqqPWagArBkTt1cYMKCVemg1ro/E95v5IkiRJSgGTjiRJkiRJkiRJSkOJ4lI2P/8yBcnlVf/8QbKOHQ4l5fDm6r3brRmQmvgkSZIk9WwmHUmSJEmSJEmSlI7icRJl5fuWM7M4NrsY4vGUhSRJkiRJjSy6KkmSJEmSJElSN3FRYmyz5Z0peLT4wYquP6ckSZKk9GPSkSRJkiRJkiRJ3dT8UV1/ztcKu/6ckiRJktKP7z25ywAAIABJREFUSUeSJEmSJEmSJHUDa4f2S9m5E3W1LMuF9/rCzng0XR3OJbGnNmUxSZIkSUotk44kSZIkSZIkSeoGFgaDUnbud9+eT8kmGLoD+iSiadV1s1i34NmUxSRJkiQptUw6kiRJkiRJkiRJh5GR6gAkSZIkpRmTjiRJkiRJkiRJ0qHFvZ0gSZIkqTk/JUiSJEmSJEmSpEPaNWwoFTfBeR+Bdf3g9SHR/K4Rw1IdmiRJkqQUMelIkiRJkiRJkiQdWjwOwGN3QeF2OO79aL73ytUpDkySJElSqph0JEmSJEmSJElSN1FXWZW6k2ek7tSSJEmS0o9JR5IkSZIkSZIkdRO106an7Nz1LSUdJSsgSZIkSep5TDqSJEmSJEmSJEmHVDRuCg9MvB2ACev2jY/IGZWiiCRJkiSlWmaqA5AkSZIkSZIkSW1TNG4K85gNwIgl99BvXAmTqy6jeEBpp5wvnpXNyOBUAC5e1GQ8FiPRKWeUJEmSlO5MOpIkSZIkSZIkqZuJZ2VTUjUVgL5D53PdWV9IcUSSJEmSehrbq0mSJEmSJEmS1I3VVValOgRJkiRJPZBJR5IkSZIkSZIkdWO106an5LwPVqTktJIkSZLShElHkiRJkiRJkiSpzV4rTHUEkiRJklLJpCNJkiRJkiRJknR4iUSzxYr1EFu54oBxSZIkST2DSUeSJEmSJEmSJKkVMpotFW6D3CsuJb58aYrikSRJkpRKJh1JkiRJkiRJkqTDi8dIAMtyoaYX7IlF84m62lRHJkmSJCkFTDqSJEmSJEmSJEmtsjIXSjZB3m7Iqo/m313ycqrDkiRJkpQCJh1JkiRJkiRJkqTDShSXMvBH9x8wPqx0YgqikSRJkpRqJh1JkiRJkiRJkqTDi8dhdOmBw1lZKQhGkiRJUqqZdCRJkiRJkiRJklonkdg7W7gtmsZWrmg2LkmSJKlnMOlIkiRJkiRJkiS1UsbeuYqN0TT3ikuJL1+aongkSZIkpUpmqgNorSAIlgNbgQRQF4bhxCAI8oF7gWJgOXB5GIY1QRBkALcB04AdwHVhGL6SPM61wJeSh701DMNfdOG3IUmSJEmSJElS9xU/yLPMVjqSJEmSepzuVunorDAMJ4RhODG5/DngyTAMy4Enk8sAFwLlya+PAz8ESCYpfQU4BTgZ+EoQBHldGL8kSZIkSZIkSUekKjE01SGQKC5l072zW1iT0cKYJEmSpKNZd0s62t8MoLFS0S+Ai5uM/zIMw4YwDF8AcoMgGAacDzwehmF1GIY1wOPABV0dtCRJkiRJkiRJbXVRYmyqQ4B4nPqi0S2Md/fbDZIkSZLaqtu0VwMagMeCIGgAfhyG4U+AoWEYvgsQhuG7QRAMSW47AljVZN/VybGDjR9UXl5fAAYP7t8R34OkDuD1KHUdrzcpPXgtSunD61HqOl5vUnrwWkwz/XrRLx3+T2pyDhjKz8+BdIitG/N6k9KH16OUHrwWpfTXnZKOTg/DcG0ysejxIAgWHWLbluq4Nhxi/KBqanYweHB/1q/f2oZQJXUWr0ep63i9SenBa1FKH16PUtfxepPSg9di+um7fTc70uD/JF69jfz9xqqrt5FIg9i6K683KX14PUrpwWtRartUJOp1m3qnYRiuTU7fB34LnAy8l2ybRnL6fnLz1cCoJruPBNYeYlySJEmSJEmSJEmSJElSK3WLpKMgCPoFQdC/cR44D1gAPAxcm9zsWuCh5PzDwDVBEGQEQfABYHOyDdsfgfOCIMgLgiAveZw/duG3IkmSJEmSJEmSJEmSJHV73SLpCBgK/CUIgteB+cDvwjD8A/AN4NwgCBYD5yaXAeYAS4F3gJ8CNwGEYVgNfBV4Mfn178kxSZIkSZIkSZLUGonEAUOxlStaHJckSZJ09MpMdQCtEYbhUuC4FsY3Aue0MN4AfOIgx/o58POOjlGSJEmSJEmSpJ4h44CR3CsupXruyyTKylMQjyRJkqRU6C6VjiRJkiRJkiRJUjqIe2tBkiRJkklHkiRJkiRJkiRJkiRJktrIpCNJkiRJkiRJkiRJkiRJbWLSkSRJkiRJkiRJkiRJkqQ2MelIkiRJkiRJkiS1y4MVQCKR6jAkSZIkdSGTjiRJkiRJkiRJ6gbqKqtSHQIAieJSNt07u9nYa4UAGSmJR5IkSVJqmHQkSZIkSZIkSVI3UDtteqpDiMTj1BeNbmHcWw6SJElST+InAEmSJEmSJEmS1GYJoKYX3FkJLw2DLXf/CBaHtlmTJEmSegiTjiRJkiRJkiRJUpskGhI8PxLydkNmA2zrBcXf+ymDTz+J+PKlqQ5PkiRJUhcw6UiSJEmSJEmSJLXJsh2r+fJZ0XzhNijYntp4JEmSJHU9k44kSZIkSZIkSVKb1Dc0b6GWU9tkwfZqkiRJUo9g0pEkSZIkSZIkSWqT1dvX8ufR8LEZ0fKY6qZrM1IRkiRJkqQuZtKRJEmSJEmSJElqk+z1G0hkwrxR0XKzpKO4tx4kSZKknsDf/CVJkiRJkiRJUpsMGXVss+VFg1MUiCRJkqSUMelIkiRJkiRJkiS1SSwzM9UhSJIkSUoxPxVIkiRJkiRJkqR2qwdW5MLWcC71W1Yw8Pl55Jx3GZSOgXg81eFJkiRJ6mAmHUmSJEmSJEmSpHbb3AtKNgHXzeLBCrh4EXDLf1I992USZeWpDk+SJElSB7O9miRJkiRJkiRJapOicVOYN2k2D0y8nT51MGFd8/WvFaYmLkmSJEldx0pHkiRJkiRJkiSpTeJZ2ZRUTSXebzH5a6Kxml6pjUmSJElS17LSkSRJkiRJkiRJ6lCLClIdgSRJkqTOZtKRJEmSJEmSJEnqUOtyUh2BJEmSpM5m0pEkSZIkSZIkSZIkSZKkNjHpSJIkSZIkSZIktVtW4iArEgdbIUmSJKk7M+lIkiRJkiRJkiQdmSYJRbEGOO8jLW2U0WXhSJIkSeo6Jh1JkiRJkiRJkqQjtC+hqCEDxtS0sEncWxGSJEnS0cjf9CVJkiRJkiRJ0pFpklBUF4Nx61MYiyRJkqQuZdKRJEmSJEmSJElqN5uoSZIkST2LSUeSJEmSJEmSJKndMusPvX7O0kfJnvNo1wQjSZIkqdOZdCRJkiRJkiRJko5IoriULf9z+wHjhdsO3HbBhjfIXPBGF0QlSZIkqSuYdCRJkiRJkiRJko5MPE7dB049YLhiQwpikSRJktSlMlMdgCRJkiRJkiRJOjol/j97dx4eVX3vcfw9c7JC9oUEspCVJBIwgoAIRagoGlApdcVqbdVWW6622tb2tra3td6q1bZ60dva9dYdLAVFpIpVQQ0gGsQICZCFkEBYsofsZ+b+8ZtsJCyBhAB+Xs+TZ8458zu/8zvJzMjzzMfv1wE7D+3CVQPVzVVUN0NZzQ4Sho/Gp3RXz7EJSWBZQ7RSERERERHpL4WORERERERERERERETkxNl252ZSddfh/HDTbmHq2gUkV0HlMDh3AzzxxNM8ftHjZF9zNwAbYmBKORx4/0NITTvFixcRERERkROl0JGIiIiIiIiIiIiIiJwEBwDtTsANxSFQ7Qe7g8DphuQq2L4Y/msm/MeHMKcI5nE32cDydAhpMrOUN+wmBoWORERERETOFM6hXoCIiIiIiIiIiIiIiJzBLPNVQ5sFB4ZDYg2ENoO3C+LqwenqOXxNUtd2s7qpiYiIiIicsRQ6EhERERERERERERGRQeN099z/LKIriBTdABGNnida207pukRERERE5OQodCQiIiIiIiIiIiIiIoPGdsL2MNNyrdUB8bUwvRRsoMkLfNuhxgdq3/ondnPTUC9XRERERESOk0JHIiIiIiIiIiIiIiIyaFosmLfQtFzzcUPmfvNTGgJ+7VDvC6XBkL/uRT77v59jt7UO9ZJFREREROQ4KHQkIiIiIiIiIiIiIiIDotYXLr2xa3+4Jz/kBir9ocmCVgtavMB2mLDRsDZ4JR2Cm+Hi+5+ifMs7Q7F0ERERERHpJ4WORERERERERERERERkQGyJhryorn2fdvNY6wsvZIK/Db42jK6FeTfAa2MgvRJ2hkF0Q8dZ7lO9bBEREREROQEKHYmIiIiIiIiIiIiIyIAoDzJVjAAqAsxjaQh4u0ybNYDIRhMwKguGXSHmWEBrV+goPijhlK5ZREREREROjEJHIiIiIiIiIiIiIiJy0pq9zI9lm30/23wJ4XZCjR+0e0JHCdWe59the5jZnl0M+ZFme/WBd0/pukVERERE5MQodCQiIiIiIiIiIiIiIiftkI95rPczj1fmwx5PtSP7sG8jKgJMdaNmLygOgXP3wvpRUOULzc/8L9abq1n93h/Atk/dDYiIiIiISL94DfUCRERERERERERERETk7JIfAbW+MKqh61hoE9gOaHea5wECWyC+1gSP3A4Ia4HUTYXsWH8thalA1ExITRuKWxARERERkWNQpSMRERERERERERERETkpNrA70GynVppKRq1W1/MtXiZUVBgGBZ7A0bA2cLhhxlch/duwJcocj2iEJi9IPwDlDbtP6X2IiIiIiMjxU+hIREREREREREREREROmO22+SAO4urN/ohD5rHRB1almm3fdlPl6Iezus7zseFAgKl8FFtnjr10DnjZ8K9k8GuDz/LewG5rPXU3IyIiIiIix02hIxEREREREREREREROWHFjWV8/SrYGQppB00btQ5bRpjHFi8IaoEqfzPmohIY3gavPwc/nno/pSGQVAVvJkO7ZcanV8KN9/6eiry1Q3JfIiIiIiJydAodiYiIiIiIiIiIiIjISWlzwtyvmNZptX5dx8fu92w4TEWjdYlQO+sLjJlxLQ5/f0L/sIzJcxaxZNJi5sddhsMNh3wgqNWEjgB8y/aAbZ/yezpZq4pWDvUSREREREQGlUJHIiIiIiIiIiIiIiIyYCwXRDeY7Zh6uGpb13MuJwSGjiQkKgmn3zASx8/G8vPnoik3E3jPAxzygSnlPefLuHURVknRqbuBAZJ3cMtQL0FEREREZFApdCQiIiIiIiIiIiIiIgPq2jwoCzTbWRXmMaC15xhXRGSP/YTQFCLHTetxztGokpCIiIiIyNBS6EhERERERERERERERAbU8Fa49aqexyIaD9uPPafHvuW08EsZC8D8/L7ntdtaKc9dQ3nuGnLyllOeuwZ2FJyR7ddERERERM50XkO9ABERERERERERERERObOVhsDoKvBrB28bvjkPfFx9jz2UkkhIPaSGjun3dSo+eZus7GtYng4zLcj6bAkAVe9txB6TfjK3MKBUhUlEREREPg9U6UhERERERERERERERE5YfMYM1s9YxpIrl3FO+DmcH5TR4/n0gz3H10ybQnvm+H5d47V9b2O7bPbW7wZgczREN3Qf4TiBlQ+cjpBRRyWmnLzlJL2+TpWYREREROSsptCRiIiIiIiIiIiIiIicMMvbh8Txs0kcP5vJ/ulkTb4ap7vr+Z7hIKM1e16fc2UG9l39KK9+O7X/+DOPrLyn85gbaPCC4hD4+ydPU567Brut9WRu5YTlHdwCQEXeWrLmLCD62SVkrHyfrDkLiJw2CaukaEjWJSIiIiIymBQ6EhERERERERERERGRAXGF7QkNHUfhocyI3tWO5kbNOuL44du2A2ADNb6wIxzKgiGxBqKf+iNZcxZQvuWdE1j14MoPH+oViIiIiIgMDoWORERERERERERERERkQJWEQEwteLkgpg4WbYDJ5VDwP5A4LBaA7KS+qx11cAFPnW8qGdUd3E3DAdNarTQEbCf8Mx0qAmB5evdqSu4jTTfobJfNnrrdvY5XBAzBYkRERERETgGFjkREREREREREREREZEC5nbA2EcoDYd9w+EcGpIy/hIiVH0Fi6nHNUe0P93sKH/n863VKPnyd0bUw/1oTSALwb4fN0V3nWE5rYG/kKGyXTWFlPuW5a9hSvI4N65/j16/cje2ASn9oc8K+YRDYAmUFOUPW+k1EREREZLAodCQiIiIiIiIiIiIiIgPO5YR2y7RA2xsEWdl3YiengnXkYJDtttkeDtvDocrPBHbia8DpAhyQUAu1flDva8ZPKYeywFNzP4crqSvi5icnkzVnAS0fvc/5Ny1iTxAUhsHz4yCuDqIaIbwJxt+yiIq8tUOzUBERERGRQaLQkYiIiIiIiIiIiIiIDJgRceN67OdHHP+5xY1lZHwb5t4Ar6bCF0pNOzU/m87Oaf62aa02vAWKg8Hbhn8nwPNjwfejj8G2B+xe+sOvHdwOs+1wQ3rlYYGoIVqXiIiIiMhgUehIREREREREREREREQGjNPL64TPdcXEkVwFr71gvsDI3A8vZEK9D9iebzSiGqDBD/45FrZ983pmlEBFIHw2Avwe+SXea98+JQEf2+U65pj2Pr6FWVW0st/X8lnV/3NERERERAabQkciIiIiIiIiIiIiIjJgXDFx/TreXUJoCkuuWNa573bAYxdCgw+MaITN0d3mc8KoGQu4YSuMagBvNyTWQMh1C7AKd5z0fRybu88jxcFdFY/cQKU/FIfAivwl/PbRS2h85knsttZ+Xckrb8vJL1dEREREZICd+P9uICIiIiIiIiIiIiIicpiE0BRyFn4EQO0bcwkbMYqchX8kISjpmOdaTov4oNEc9Ow3WxDYbMI74YdgRQZcUAqjamFPMDRbbuq+ey/V2x7jglJo8IIDARC8qwSSU8GyBu0+LWfX3NEN5rHNCd+c1zWmzQlrkiCrAkreWUqTN0z+FLZk/Jbzvvy9Xuuz21op37yG6pLPeL95G+FbC7k4eS6t+e8St/3LYDmxE5IG9b5ERERERI6XKh2JiIiIiIiIiIiIiMiAsZwWySGpJIekMiwqgaoxCSSHpPYI6RyPrZGAAyqHQ5sFD003x5u8IbXKbO9rOUDJuYnMKoEbtsKaFFPtKOzGa09RtSMj3ZOSavSG0hATlHIBFQHgdMPX5sPoOvBrh/RKuHTRg1glRb3mqchbS9iN1zP72w9gv/oyEetzyfjPX1L9aQ5h0ycRNnXiKb0vkaNR2z8RERFR6EhERERERERERERERAbFhOSZfDZ1TL/Osd02hSHwp4kQ0gQJ1XBwGLydCE++BoGtcGsuFPwPTIk4n+aRUTw10Zzbvf0aOAbsPvpcp8uFG9geBptGwiuppspSfI0JRlX7w28uNEEkn3ZIP2DOS688vvlrfbsqKPU0uPclcjSrirqCRmr7JyIiIgodiYiIiIiIiIiIiIjIgGjPHH/ScxQ3lnHHXHA7YX0chDeZAM6N59/BlF+8zKSmcC4Zfy2hr3yIlZxGfOYsHr1kMWDamHWyBvsrEDftDpi3EBp8YWcEXJUPu8Kg3heaveCdBHA7wMt12NoAbLvXjM3xsfxolmfnSNmiQb8vkSNzv/oy0DN8JCIiIp9fXkO9ABEREREREREREREROTu0Zs8bkHk68jYVAeZxYxz8Z0gm8RMv5aFfpNP0zfm0pqYBYFkWsWlTAZifPyCXPy6W0zILdUO7AywX3PwJnLsP1k2Kps6nK2XkcEB+JIQ3dp+hj1SRZZE7qms3ugGWp0Nz/zrTiQwY22VTUr2DnI+XcklTHIEbNnH3UxcRFDiCOXuCqMhdQ3TmDCxvn6FeqoiIiAwBxeFFRERERERERERERGTQZEacfPWj7lwjoo4ablqePqCX68V22RRW5lP97+W4Pccst6nGtCUKfjETfMsr2BMI3u2m5VtsrXkMbOu2viNULHI7wAbcmFZsO0NheYZ5brDvTaQ7u62VDeuf4+YnJxP46K/xue8uHLtLSXo3l+hX/0X080vJmrOAiry1Q71UERERGSIKHYmIiIiIiIiIiIiIyKDJTupf9aP4jBncc+FPeh2PSD0fgJYvXX3U8zdH9+ty/VZSV8RNT07G+esHqPWDl16GJi8oDukaM7wN7syGn9oXsSIDQpuPb322ywVAaQgUhZpjEd2qIx1+rs8qtbiSwVORt5Yxty6iMAxanbAuHkYcgpSqoV6ZiIiInC4UOhIRERERERERERERkdOG5e3DtTPvJWfhR0yImkDm2EvIWfgRyeGmnVqfVY5sm+IQE/xJrDKPztJdYNuDssY2J1x2E9T4Q4sTIhvNT4eAVtgxAkaPndF5rNELRtZDkwXVvlBWkIPtOnx9pnbSI9N6zpV+sGvfWboLq3CHued1Lw/C3cmZaDACaM3xsXxvNricUO8LXjbsH25ekyIiIiKg0JGIiIiIiIiIiIiIiJxmLKdFckgqfl7++J8zkeSQVCyndZQzHCTWQGINjK41jyHXLcAqKeo1clXRyYUzOqoReS5LuxPCGiG+FkKawLcNWix4OfM3TLzkTjZMX8bYBn82xsA/0mF7OKwcA997cxEl1Tu6zWsCSA/etJQPLojvPB7eCNV+XZcMvG4BSxdNpPz1Z2j7ZCPluWuw25QC+bzzytsy8JNaFqtTYXKpCRqNqofiUMjcP/CXEhERkTOTQkciIiIiIiIiIiIiInJms47/6468gycXzji8OpGXC4JaIXckrI8z4Qy3AxyWFz7DAkgcP5tra+LJiprAG8/Bufvhpk/hjecgucrROU9JXRHTX5zMta9fw5b2Ut5KhGVp0OwNS8/pul6dLwQ3Q9bX7yJyRxlZcxZQvfrFQavqJKcn22VTWJlPee4aynPXsKV43aAE0FxesDHevLYBCsMgvRLyIwb0MnICTjZAKSIiMhAUOhIRERERERERERERkdPS2JjJ/T4numEQFtKN5ez91YrTDSsyoCLAXD/9IFiOrnFp7ggmXrjwqHMdXkGp2Qf2BEJydVc7qzWJ5jG6AZanQ4OP2c+4dVGfVZ3k7FVSV8TNT04ma84CsuYsoGXT+2TNWcALa389KNdblQqx9bAmybz2KgK6nosJiBuUa8rRnWyAUkREZCAodCQiIiIiIiIiIiIiIqelS6/5eb/PSa8chIV0YzktSkNgdJVppVbvA6FNUPA/MLkcsnfA7R9DrF9U5zmuEVHMjZp11HkPr6AEkDH1y3QcdQE7wqEk2Ow3W4dVm1GlIwEKDhXjs2pwKuCUBpnHzdE9j/cVxBMREZHPB/0rQEREREREREREREREPjfG5mw/6TncTtgVBi3e8L+TwLryGpofW4wrOYXWCRM48NLLxIzrChnZqWOOOp/tstlzaHev40GXXwcOcLigzgeq/ODh6SZ4lLm/q9KRZ5KTvi85M9kOaPSG4hBorKqgac3yAW+1VuUPP53ZtT/YFcVk8AxWKE1ERD6fFDoSEREREREREREREZHPjVFF+wZ0vn+OhTnzfsjI7JvxCY/Ce8alxJx/KZZ3VyKoPXP8UecorC7khteu6XXcjYvSYBhVDw7Ax4b4OoipNy3XAlpNqysALGsA70rOJBUB8OkISKyB1o1riX52CVlzFlCRt3bgLuKAD2PhqYz7yaqA6/MGbmo5tbzy1JZNREQGjkJHIiIiIiIiIiIiIiJy2sqMOHpg50RYhTuwCnew+oOnsQp39Ls12VXb+j4+3o7q83hr9rzO7ayK47/O3taDXHYTuIHAVhM+2hlmAkhtThjeCh+ONBVuynZuGNDKNnJmWJ4OPu1d2xUBPZ9fVTRwVW3cTghNGMu5FXBuBTybCfuGQVlBjl57IiIin1MKHYmIiIiIiIiIiIiIyGkrO2nesQcdg93WSnnuGko//heHDuwmbOpEwqZOxPvH3yNs6kQo2tmv+Y4UHLo84+pjhqTm5x//dSJSJ7Jh+jLunvYjnpwEZcGwJQqq/cC/HcKawdttKtyMv2XRwFa2kdOW7bIprSkCIDcadgdBaiVsju49Nu/gwFa1qSz+lPhaE3pbdo6pvhX1rUXkLX9cwaNT7HhbRXZ8/pXnruHZtx6kvqIIdhT0O2wpIiLSF6+hXoCIiIiIiIiIiIiIiMhgqshbS9acBTw1Ceq9u45HN5jH8obdxJB2xPNtl01J9Q78SsvY17TniONas+eRPVCLBixvHxLHzyY+Ywb2+4W8El1OQ3sBgSkjid32KbH18Hpq1/iYgLgBvLqcrkrqivjBs9fg54J6H3hkGiza2PfYsTnbYfJAXt1BYRhceR1k7YfQFigLhNnffoDNieOJOX/OQF5Muun4HIpc9iq23U7oO+vIr7+Nt/32cmHcRYQmjcfy8jKfA0kpnS0XOz7/APLHQvRnwLNLqHpvI/aY9KNcUURE5NgUOhIRERERERERERERkc+FbREQW2vaUPWn4lBJXRE3PzmZ7YthWDi8MNO0WFuRMWhL7cHy9iEwKomvTJrPqxW/YPJ//g1enQj0rLpkOZ2odsnZrXuVIxzQYkGNv9ktC4SIQz3HjyraN6DXbxo5gq9dYa6dftAca1dflVOi43No25PwQSwkNYP3tiUMS4PZOet6fK5V5XyEnZyK7bLZEdTKD2+A1S9AWVC3CW1Xj/lXFa1kTtyllH/6NmXNXa+biNTzSQ5Pw3Jap+AuRUTkTHNGhY7S0tIsYBNQXlBQMC8tLS0ReBEIAz4GbiooKGhNS0vzBf4OTAQqgesKCgpKPHP8CLgVsIG7CgoK/nXq70RERERERERERERERIbK5uj+hY4A3MC2cNgYAxUBMLME8iOgIBJsl+tYp5+09szxZCfNo8D9ZI/j/b0PObN1VDkC2BEO00q7nmt3dlXvAni7agMzyypP6DqrilaSFta7+ldE+iTuO/gTfvDJLzuPOdzm0XfvPtOyy1I4ZTAVhsGtV8ELL8NBf5i6G+6faT6XdoRCeSBc+OL9jBl3KbtCnXz/3bvwCzPnro81n2X54ZD75m9JfLyMrS3mRfTupChGhm4h4ecP8eTlMPaAOeezSHj8oieIuOIm/W1FRKSXMy17fDewrdv+w8BvCwoKUoFqTJgIz2N1QUFBCvBbzzjS0tLOAa4HxgKXAU95gkwiIiIiIiIiIiIiInKWst0228Oh2u/E52hzwuU3wi0LIKL3bu41AAAgAElEQVTRBI66t2cbbK3Z8wZkHp9VKwdkHhl6Lie4HaZ6TbWfeY1aLtgVCO/EQd6Gf+C/q4x9y/8COwpMIOgo7LZWynPXUJ67hsZnnmTf1pxeYyxvH6ITssDRdczt2c64dRFWSdFA3qIcpjAMvnaFefzjBBhTCSMOmS98LyiHFzMh8hC8n7+Kvy79Dq/+9S5KQ2BknanGENUA1b7ms+y/al7i7f3vM2XjbiZv3E3CO5so/utDPD4JvvUR3JoLU8rhjecg4xt36W8rIiJ9OmNCR2lpabHAXOBPnn0H8EXgZc+Q/wPme7av8uzjef5iz/irgBcLCgpaCgoKioGdDHAnWxEREREREREREREROb2UNe8j49uwcszAzBfUAjV+4NcOo6sgJiD22Cd5Ah825kv/P0yE+v99iPJNb2C3tR73tV2RUSe4asMrb8tJnS+nB28XXJEPvu3Q4GNCKMPaYXs4FIfCzN0Q8tlO/GobyPzGd4icNgmrcMdR56z45G2y5iwga84CvrDkfTJuXdTnuPjMmSyZtLhzP+D4X75yklxOyImHuBp4cRzsDIN6X7hxCzw0DRq9IbEGIhvBdppttxPKg+GrX4LIJnC64cLd8KXPTJu2XZ6Wa1l7YX0c5MRBs2WCbH7q1ygiIsdwJrVX+x3wAyDQsx8O1BQUFLR79suAGM92DLAboKCgoD0tLa3WMz4GWN9tzu7n9Ck0dBgAkZGBRxsmIqeQ3o8ip47ebyKnB70XRU4fej+KnDp6v4mcHvRelJM2bQrDT8XrqDqgz8NhYQEQGUhAoB/JVTCnEFIrodULlqdDiqfzVHCA71Ff79VOM7+nixQuT3WZiEbYFQaREcFEhh/jPg+aOUqDIbEW9gZC02tLyfr7Ut595pd9nhIWFtBrXr+scea+jjB+eeVbzE+f33nMdtkUHtyOd7FpoeRVvZuGog+InzALy9vn6GuW0061M4DSEEiogi0j4Ny9EHXIBElCm6AsEA55/qyVw3qe2/F+6Mvy/OXsa/2EphiIPmTCTC+M6z0uLCyA6PBwoqdewrK/mWMRTcd3jTPJ6fjfv87PIaf53AH44tfgjelPc90r36DNCQEt5jUwpW0EtcX7afKGq7bBq2nmM+vKbaYiRaOPCSDtDIdvz4WsffCd9fDJSHM+QOXwnu0bz5a/rZxZTsf3ooj0dEaEjtLS0uYB+wsKCj5KS0ub6Tns6GOo+xjPHe2cPlVXNxIZGciBA/XHu1wRGUR6P4qcOnq/iZwe9F4UOX3o/Shy6uj9JnJ60HtRBsS0i+EUvI6sqgbC+jheVdWAfaCehvpm3JjKHVGHoM2C30+Ch94042prG4/6eq+qaaA0BC4rgNIwSKmCdxKg3QkvnfcEQe0jjvl+sWqbCAb2Djeho/wIqAiA9Er47ImfmF4Pfaz/gKvnvIn+aVR57td2QGEoRByCpyeC76PXk5saSFxRGzFZX8Ty9qGwZgc3PzGR7Z7CNPnhkP7n59j8r2XEnDf7qGuW009VTQNuJxRHmP2iMNg3HB6eBl/eBq3OrjaCpcGmClLnubVN2Ie9Tm2XTeH+z1i2+re01FdRlgoPvANbI2BkQx/X97wmraoGsir6fv7wa5xpTtf//lXV9P6DuJzgF5/FM3d9BEDe739E5t9/xbiHfs+r6//IlhGQXAVXFMCKDFg6Dn5jzyH4kmGMfXMP2VY912T/lN1NFUS3v0ZUwKfMi/sCfvbSHoEjODv+tnJmOV3fiyKns6EI6p0RoSNgGnBlWlpaNuAHBGEqH4WkpaV5eaodxQJ7POPLgDigLC0tzQsIBqq6He/Q/RwRERERERERERERETlLtTrh1TFwx4fwXjy0O0wgY3k6JFjWMc93O2Grp7OZ5TKPBZGQMDwWy3ns8223zQexEOvJDSRXQo0vNDvhmXGmGsmKjGPfR3bSPCjcgQ28MxrunAc/eA+afaB5Ry63r4aJu9eS96cnaLhgMvt2buKQ59ug5ekQ0mSCTh3t3uTM9toYiK0zAThf27TbavSBH11sXt95IyDzwJHPL6ws4Ce/ns5Fu6HNAR/GgAvYOArGHDz6tQ8PpcjQsJwWySGpAIxzTqAxJJX26ReRmhxGS/VnNH/8PhHtfsQPO5eFWbfhP7qRR6+YD1dC7WO3kDIhmxSAaV/nK0t/xuUTvkLYd5YO6T2JiMiZwznUCzgeBQUFPyooKIgtKChIAK4H/l1QUHAj8DZwtWfYV4EVnu1XPPt4nv93QUGB23P8+rS0NN+0tLREIBXYeIpuQ0REREREREREREREhsJhAZudYRDQCgeHwYuZEBMQd4QTeyoNgdFV8PB005ptedZi4jNmHNe5xY1l3H5V135CDTR6g7fLtMNKrjruu+lcS1w9FIbBX84zlZMu3wFxdeZ5n/vu4panLiDj1kW0eJsQyeZo0xJOzi7DW03LPzAtP9aNhpw4SKqB/MhuAw97H9gum62fvMa60bAsDWLqTfWsl86Bv04w+wD//eYpuQ0ZAO2Z4wFonXcl8bf/mOwfPM9XJnyTUd9/jPtvWUJy1qW0X9HVfvHyjKt7nH/pNT8/pesVEZEz3xkROjqK+4B70tLSdgLhwJ89x/8MhHuO3wP8EKCgoOAzYAmwFVgNfLugoEBRfhERERERERERERGRs5TtsvnXgXU4oPPHDbQ5TfAorgYa//AI5G89ZvUftxN2hUGtPwS0QdQ5U7G8fY56Tnc7wuGyhfBGIvi3wfIMsDAVanaFmGpHHZ7PfpmEoKQjzhVTC3uGw+9WQauXadU2pRy8PFWYbCCu1jy6HbAnEMoCzT0DcBzVneT0Y7tcvY5t7JaZKw2BlalwwB/SD3JYCzRHj/NK6op4cP0D2F7wabRpy/bJCPh4lDn3FVM8h9QqSOuolmT3vr6cPlqz5/U61p453lRIO87xIiIi/XGmtFfrVFBQ8A7wjme7CJjcx5hm4JojnP8g8ODgrVBERERERERERERERE4XJXVF/O/el0lwQUCLaTnla0NgK5y/17SfGr1mKfx9KVXvbcQek35c867I8Pwfz8cpPmMGOSwDYHTZ02zauproehOA2j/cVKu5Y1NXi7WYgKO3bSsJg1lfN9splSYEBRDrqU6Dw7TcwgEBzeZQu7MrlBRf5cK2bYWPzjjuHns+7V3bDkwwrmYYRDSZY91boHl9uAE7IRF8uoJyHdW7avxhaySENptKSX6tMGe7CRs1+EB0g2kn6CzfDeFpg3h/MtAULBIRkcF0xoWORERERERERERERERE+sUBJRFmc3M0BLZAYNsRBg4Sy9uHxPGzAfC7sIg9ZauJaIT34kzww78NMvd3G+88crMKOyGJ0Fc3sqGxDIBnl97L/obintdzm/DInZeb6kb+bRDeaEJJy9Nh/g1XU5XzEXZy6sDfrAyaw4Now/p8HUNQMzR4d+3nh0Pqdxexq3UfdtZ5AOxr2tNZvQvg+XNNAGnDCLM/axdMKodPR8Dklggemf70cbcTFBERkc8HhY5ERERERERERERERORzIy8KwpqAvsIa1pGDPgOp+au3sn1UPt95sw5XvM0sry1MG5lMkncut4dM4OtzfkFCSMqRJ7AsSEknEVOV6eEXLuHhg0/3GmZ7wbvJENYIIS0Q3gQlQfD0efBhNIx4+yEuqr6O6HNn9qtNnJz+AlthdRI86tmvCDAVvsbd9wBggmeTyoF7jzyH2wHJ1fDzWbD4QFpnaE5ERESkw6n517OIiIiIiIiIiIiIiMhp4Llx8E48ZFWY/di6IViEZUFYBCFRSYSNTGXGtIXc9Y0leI1OITjlXJLD047aWq0vHffTlyp/uH8m3Pc+bIuACRXwbiJEPbeUrOyrqchbe3L3I0OuMMxUJBpdBSti7ucmv2k8P3XxEcdvjga/9t7HS0NgedZiNkxfxu3x1xKZOY1HMu6jeM6Fg7j6/llVtPKYY3xWHXuMiIiInDyFjkRERERERERERERE5HPD7YQmH5ifb/ZnFx99/GBqzxzfY981IorMiPFHGH2UeVLHdN5PnxxQEmqCKd+9zASUyoK7gkrxVS6w7X5fV06No4VsOkJCOTOWkRFxDkuuXMbk7Lu5PvALxKZNPeq83t3+5GkHzKPbCVHnTCVx/GxCopIIuOnb3DLrx4wbcd5A3MqAyDu4pdcxr1eXU567hvLcNTz71oO4/vok7Cg4Ja/rjr/Pp3/92aBfS0RE5HSj9moiIiIiIiIiIiIiInJWWZ7O0UM4p4nW7Hl45XUFKFq+dDXZSfP6PU/bRbOOf7ADMvebzfRK8xh2w9VU5XyEnZza72vL4Ms7uOWIr4vOkFBIKpPffPaILdCiG6DNCZfdAKtfABfQ2O1bQi9X73PaM8d3XvdEXpcDyXbZlFTvwLuoiH1bP6Bs+ddYMXwXs4MmkutbxRVvFpP17iYAls+E0HeBaZOoem8j9pj0QV3T2+/+noQPt7H7X89gDQvgnAlXQlKKqWgmIiJyllPoSEREREREREREREREziqbo0//0FH3ikZZ0VmACSGdDNsBhaEQeQh2B8JV22BFhnmuMAzqn1vKkop9pD+5iNhacAMlIeb5vL/+kMyREwi49GoFJs5Ql2dcTatn+/AqWumVsD0cXJ4eKLV+MKxbe7UGn97znezrcSCV1BVx85OTuScH4oJgbykEjICD1ZuItCCwEC69Ed547vAzHYO2psKanXztyckszIOL3llLWSZc9B8PAA8oxCciIp8baq8mIiIiIiIiIiIiIiJnHRsoK8hh39acztZRxz6p71ZMtquPMjAnqaNyTHvmeOanzx+QOQvDYO5CcDng/Xjw6xYqcTmhLSmJ2JTJ2MDEPVDlC59EQ2INtKx7k8SfP0zktElYhTsGZD1y4myXTWFlPuW5a6ivKKLhyQcpz12D3dZ2xHO6h4SOFBgq9YTM2h2wM7Tr+JjKAVn2oHK4YH0s5EfAW0nmHnaEws4wU8XJ7utbT2swvwp1d24tugxq/GDKrfB+jPnsUctCERH5PFClIxEREREREREREREROeuUhsD4WxbhFw7R8yD9YM+qP9v+vJgxty6iNAQiG6DNgrKC9Yx0OPqo9OPuNf9L85aREJR00usc6Goy7Q54fhxsiAX/tp7VjgwHheHwzmi4x6erKtTmaLh6m2eIPfAhK+mfjso+2xdD9ExIfMccX7F88UnN63KYilifRkF5UNfxoJaTmraXjtZjfqVlvF21gfn5UHvhFKIzZ2B591FW6ZjzuWjzgv/LgtBG+FI+jKoDPxveTYCY2qPXNPJZtXJA32u2y2bTnhx2hsFjUyG4CaI+gmp/SKuE0h8sYue7qwmZeilRgaOwZ17cZ/Wwjt9TzuZ/MCtsCrtW/x2mfxHLdjFy02fsm3IuABMuuH7A1i4iIjKQVOlIRERERERERERERETOKul9VDbKqujadjmhJXYUpSGmyk9AO+wLgPG33mUq/ZQU9TjXcvYOC8QHje7z+FCxHfBuHOAAhxucbghohevzDhuXnELdbxdT6wd/Ow+Kg+GlcyB3JNT5mBZcO5vLsF1dVVpWFa08tTcjPeRHnPi5NrAzBHYFwoaR5tgfzoecWDjkbcIySZUQ3AxPj7mfnOs+PKEw3fL0nvsldUV87fHJBF+3gLdeeZj3//EwwdctIG/Zb7HbWjvHffrXnx37Hlw2+7blUBICvu0Q2gzlgZAyPJ6cWLgt1wTr4mrN+L5+X155Wzq3T/b1bLe18kHO31m87G6+/SFkHICLdoFvG5y3FyoCIKYBPtmykg2L76L2zqvxXvt2r8pHtstmw/rn+PIfJjPs1w+z5mcLqPr3cr7/9l28/4fv8PJHf6Ty54vI/vIi6v78GHs+XXuE349CgiIiMnQUOhIRERERERERERERkTOanZBEzUvLOvejG+CNZM9zxzlHRcDAr+tUKgyDX86AXSHwegrU+kKDj/ld9GBZxF58Pb/L/AluB7Ra8ORk07bq3kvht1PgulevZuUbj/DGsz/kle9dxIp//4YN7/ylR1hETp0TfW3abpsPYsFyQ0gL2BbM3wbL0kxVoIQaCG+EmSUwbh+cM+EKksPT+hWmKw6Bal/IizTbztJdYNvYLhejDplQX4Mv7Iww27PuepAN65+nPHcN5blrCHz5ZU/buCO/tkrqirjvrbuIrzH7QS3w8UgYMekSNsaaSl17A8C/HTbEmDEuYF0cbPxkOU+svJea91fT8It7KN/0BsV/+gXluWtgR8EJtUCryFtLxu13UxRmWqptiwTLBWHXf4MNMeY9GNVo3oN+trnvkOsW9Agz2m2tbFj/HN9bs6izDeKHMSb8NXY/fBQNOXGescCeP/0Kv/u+C8Dk3eanS+9KbINC7eJERKQPCh2JiIiIiIiIiIiIiMiZzbJoi4tle5gJQLQ54b04uPRGOnsupR/sGv7SvGXEBMQddUqfVaYaSmtLE3s+e59roy5jem0oQVYAj33hd8QFjB6km+k/OyGJ0Fc38sis3/H0iG+xP2oYlgvyRpjASlpH5SdP2zTL24eoxHPZHG2qITmBP79iqrP88m1wO+GRjb/ixnueYm9xLtc+t4l5136Hiry+K63I6am4fhdfnQ93zAUvTzEcHxdUBJrtwBHxhPmHcm/A5Vx+069JDknt9zUSayC0BWLrDg/XuCkL6j2+MAzue+sugq9bwL5vLaB+/26Cr1tA9eoXjxhqsV0udkbArjBo8Tbtyw4Eguvm23j2iqVs+dtiJraEM3fETJq8THWvWl/4wm645I4HyH3zj/hs3kzi4j9Rcs/VjNicT9acBaaqWeGOY96j3dbaGZLKeeirFNXv4rZ5pmJachXE1EFSDYxNv5gXsl8kdtJlAAxv61lhrbuKvLVk3LqInRFQFG4CgiVBML41lG8UhjKmNZDoBrhpC9T4wy3zYe5XYHSVmXdYK0TWm8+yE/m7HfV+E5KoeWFpH0+oopKIiPTmNdQLEBEREREREREREREROVnFjWV8ZSFsXwzeLpheCi+ONVVeDhcfNBqrsuexRm9TUaQ0BOq3vseIt9+nYqQfO+tLuCbvHgAuqoK6YLh33XeYEjONMWFpg39jx8OyICWdL6aYHlerH/83oT5O3hm+lfwIU+2oIBKc5bsh3KzZEZvAigx44jWo9zPVYjqUhsC1n5rtwJau4MSxgloycLq3zDo47ERncVASZrZ2hEFJCHwSBXF+0UxMmMqo//gSfiU/JmbOTbRmz+vf+jzVxUKuW9Dn85bTwu0J/EU3mNeQC9POD4cJKO0KNpWCEncBty6iKmcqdnJfAZqeb+JmL0/YJjwdK3IsnAe/Igw7LY0tb09kfj5U+sGcG+A/3zOVliwXPHoBbIqFoOauuV7b/y6XjTmsN9xhKj55m3HZ11AaAt7h8Nn6f5IzG4Ka4LNImFYKcy64lcRxF2N5+2AFp2K/sJov5Zt7/iAGlqfB1Bd+RmLWpZTmvY172iy+dwNcWGLebw0+8F9T7id8eiqRlhdTUlJZevckbGBFKpzXLby0bzgcGAaLr1vKjNhZA9/m0bJwjer9XvfatBEsCzs5xXzmiIiIoEpHIiIiIiIiIiIiIiJyFnC5e1ZJiauD8mCz3avFmEeb01MNCdNmrM7XhCHG33o3Na8vYdxlCygq2niEK56ilkYnYIw7HNIzjzomITSFnIUfcU3atZ1VoDqCR24nfOxpU3VxMaR7AlqWU18rnTp9v76ihkUf/xSWE7cTiiNMtZx3EmD/cMjwHsWjV/4f7VfMZ3J7TL8DR2ZuC1f8aGygyhecbvhHGvzpPKh99kkoKaYwDH4/wVQZm59vgjXfnAcuR9c0rYdlV1YVrezjNnoOWpHhCQ52O95xD/6eVmU4YEck3HKVabn2/DhYMta0Yds0EnYFwoZoWJXzB4runEvOdy6lfNMbfbZ58927j9IQaLYwrdAc5j0ysgFezoT5k28n8buPYnn7dJ6zPRxi74W3EuHHM+GzKLjyiZUE33MXDW/8k4B772JnBHyQAGUhkDsSQr84n/Yr5tOaPQ87OYWp/7GYDTGmNd20UsjaB1GHYGsUPDVzMTPiZw984KhDt1BRkwW3z4Oy/76Lz26YxN5Vf1erNRER6aR/HYqIiIiIiIiIiIiIyBnPDcTU9v1c+sHewSO7vZXiECgJNfulnoDSck/Rk4oA0wrqhw0vMroKJpRDXK1pafT8ZS8NeEujgTYmIPGoz1tOi+SQVIZnTu6zBZQb2B4G62Ph2UzYNwzKCnL6DGXIwLOcFlY7FIfA8FZ46RzTOnB/Ue5xzxGfMYMN05exYfoyxiVOY0xYOo9/70MmjJ7ROeanaXed1DpLg00Hw8nlEN4Mu4Mh7I9/4YOfXI3LCdX+3e7JZV5XDT7mffZevAkrdZd3cMtJrWdKOdgOqPYzlZ0AvGzYEgVjfEdR4wfFoebnbxMh7cOdTPnHOpLeXE9W9tV9thCsnTKROy6H30w29+rbDjMLYWQdXOZ3HpNuf6RX+GffcCj4H5i7HWaVmt/L/uHwlyxT/ajat+c1VmSA3dbW7ZdlMXLOjfj/4nckuUKxgwLIaAvlS9UjWRr7E6ZPuH7wAkeAnZxC1XsbWfvzb9FimWpoz2SZlnXjb73b00JPREREoSMRERERERERERERETkLWA6LvYFd+1FHqG7UobixnG92K/Dy8Ujz+KKnQFBHSyu3E3aFQWArJFfDgUBIDEsZ1C/8B8JN07/PhunLWPjF+5gQfA4bpi8jPmNGr3FtF83q0Vqt87gT5i2EsmBTaSWqEcbfsqjPUIYMjlGHIDfaBHW2RMMn0eD76weP+3zL24fE8bNJHD8bv/O/wLTrfkpyeBpzrvlF55gTqnLkYbttygJNtaIxlbAn0FQDWpEG+ZFmTN4Is/5VySaI0+gNLV6wMxR2hkHmftPWsDgE2n/xA+oriijPXQM7Ck64mk5hGDw73rx3SyKgwQ+qhsGC2fexJRpSK2FNEozo9hkR4MnS+Zbt6X1dHx/eSIM/T4KPo+Gh6fBlnwk8/NVl/PWmN3t9FtgJSfg+/SJFD95P1bhUohugJBheGAvrRpuWbLtD4L/fND8dnHt297yuZRF7xde55pYnOXjXIu75/S7uvPIxLrryBz2qKg0Ky8Iek07GNx7E78pruT5vcC8nIiJnLoWORERERERERERERETk7OBp21QRYCobOV1mf7OnI9WojkpItgusrq9I3ECzF+wfZs4FCGvqPf3mfnS2GkquyKjOwEnonT/GLyCUxPGzjxpU6Ah+1PrAVdugNKSrclT3SkgxAXGDu3jBdtmU1u2iLAjeToRtkeZvUxYI35x7YnO2Z44nO+nEA0Z9KW4sY+bX4e45UOsLPrb54rHGH379Jqz5G9T6QVIVfGsubIyBoFaYvBscbmh3QjvwuykmUPV85VtMfWIJW763gObLJuH74nP9Dh7ZwO7A3se9XBCVNpnb4q7l8WtepC5hJDdsMa/td+JNyO4PE8Hv3kWwfXufc7udcO/lJnh4yYSFR35PWRYpE7KZuOD7OLLn826C+TwZ0WiqVn0j11RYS6wxP52nOfoOMrZmzyMzYnzn9illWbSdP5n5+fCrt07tpU9HfbX/ExH5vFPoSEREREREREREREREzgouT+goPxJCm6He13zJvyLDHPf2hJCc5aaiSEewptkybZ5cDpi+y4wJa4J/JZkAToeOeU53duqYHvuuyKhjnlMaYgIQwa0miDGpHMo9Lee6V0KynPpqabCV1BVx3coF7AyHJefAM/+Ea7dCbD288dyJzTlYYRWXE14eC6+MgZwY09rM5TABnpsWQFkQZO8wwb78SGizoMnHVBZLqoZ9gfBpNPx8Bmweadqj+bggrh6CvrsIq3BHv9ZTGmLO7fCVzeYx/aCp/DR97HxSJmSTnnABV90A78cADvPZkFXRMwR0NNWXzDqucUHfuI+7v72MJVcuI3pUOhdPv43tYfD8WPP5siIN/Frhf9J+0mclsg4DHRjrj7aLju9ePw9Otv2fiMjZSP8yFBERERERERERERGRs4YLaPSCFgtGNYBPex9j3KZ6ittpgjXNXvDpCHgrGVKqYPEkE5JYH9dV5aej3drz2S+TEJR0Su7lRHVURelweAjpcDawd5h5/PEsiGiES4q6KkX1HHxiLa/k2Oy2Vspz17Bvaw4AVxSY4Nz8/K7gl39rzyAcgO3q6w916theUBwG/5dlgkQfjYStI2BvkKlg9NNZ8LOkO9gcDUEt5pxX0kw1sjuzYVyFabvW6A3plYcHfxz9WkuzE+beACPrIKQR/Nshug6uSb2GhKCkzvDOgtv/yDMLlnHTTYupCDCVkKaUeyaxelYcenf32yf2i6Fni7tJC3/K9LRsLrsZDgaa39mL46HZB84778rBb5kmJ6TjfVmeu6az/Z/d1jrUyxIROW14DfUCREREREREREREREREBkq1vwkQWW5Irew63tE2DUyg6HBFoZBYDQeGw4ejILkKnh8Pv3oTbv8Q1iTD6CqID4rHcvbdBul00d+qKCUhMPIQlAbDlmhTVSegFRZ+Cq5et9q/EIgcv4q8tYybs4ADicBX4fo8eCPZPGcDuKHGzwTh9gbAxs5Od329ogdffMYMNrAMgJjCF3EG1TF3+2ruvAK+mgvhh6ByOIy7+X7OCTuXW2t+z2RTZIxDPvDbC+DR2Ys5v+otiq1thPs3AyVd4R/o0QbxeBSHmVZppSEQW2fauH3li/cx6sA42ru9bzvCQNbwHRTZpooUmN9z6afrqAoI5uWKN5gUMJb3dr4ImLDXyVQ7a82eR3xba+fv7NO9j/HI9HtxxcSREJJy4hOf5VYVrRzSSk8VeWvJmrMA2wETz4Nhu5aQf8tC/G77LgmhKaf9fw9ERAabQkciIiIiIiIiIiIiInLWaPYysZg2C4a1ga+nME9+hAnSAFiO3l8Se7lMhZ8Dw6Hdgs8iu1BlAZ4AACAASURBVOYb1WBaRu0K5Yz8gvnwyke9OExQ479mmPZYADvDIP0A7Iw4bGw/QyDSP6XBMNITgPFygdvz9ygNgYyD4OXJF11S1BU6GqrXZEdwB8Dn4mbuTEqi+vHVAIQ3mvdb5XCYEHYuCWNnssFpwjYvvvITHpnxSxO2CU3BuvBmHn7kv2n51jXwzMQTXo+dkET4/U/wWNsB1pc/ziyvkUz/2YPMiL+4R+DocFfmw/YwiGqAreFw/tW3sW4cLJ4Ht22CeZWwqBYOeZtQ43WX3X/C1c66/87Syppp9WzLkeUd3ML8/MFrEXgszfGxfO0K+NEH8FE0XFQMazY9T/B7z+MVPxOfuVfjGhFNTPBoSErpVSlL5GiGOlQnMhAUOhIRERERERERERERkTNefMYMXi5bTN0LizqP1fnC7ydCcBPsCYA7WicwefpPiM+YAcAGluFXtoeWv5hz9g03NWNsB0zaYyqbbI6G2UVDcUcD51hfaNoOmLsQ4qrN/uvJsDvEhI7k1Olok9YRWWjwgZAms93shPvmwONvmNdkR7u17ucNpdbseWDbhL66kdu2Pco90bDD6wOWTH+C+IwZPcI2fv9+rHN7QFkWSZffQhLgenUpM3+68djn2DblgXDl9bD1KVPpK7ANNsTAuRXQ4Gs+R74517Rf2zQS7kgYNyBBr6EK0ZxpxuZsx6tlCH9flsXfz4OyIBNmTa6GzANw/VZYs+8dXq9+h/H7oKoWDn51IbOz78VOSFL4SI5L3sEtCh3JGU9xdBEREREREREREREROeNZ3j7Epk1lTyCMqoNqP2i1YGMs1PrDHyfBlX4TTUslb5/OEMTI5InsHW7aMDV7gbdtzo2rNW2sVmSYii1tZ+k3KnZCEqErN/Lc/GU8dPNSoodHkXnRQr4b8WXCrYBe452lu8C2h2ClZ7/m+BguuxHuvBz8WqHFgrEtQWz5r++xO9hUNloXb16TPV+PQ9NerRfLgpR0po+dT0hUEpm+ozvfb92NjZnc69T2zGNU4+qnq/aHH+dIBw2+gMNUMdo0ynwOhDbC2ANwYBjE1UHWPlgyDhp9IT4wfkDXKn2z21opz11DxJZ8thSvozx3DT5//sOQfP64nLAmFd5NhBm3QEEE/CsJVqeAjwuC2+CLpXDtA88TNnUiVskZnlQVEemHs/SfyCIiIiIiIiIiIiIi8rlj24yqhyll8Ox4iK+Fg8O6D+gdzthb+BHDXVA7zISUhrfBrhB4LRV82iGg2TxmBWfw3pc/OOG2SqctT1AkcfxsEs+bw9iAFLLv+D1JD/yVgxm97zXkugVYhTuGYKGfA5YX20dASCs0+8DrqTBuWAokJJBQZ1qs+dkwrMW0+prudw45131IckjqUK+8h46qHX2FiwAuvebnvY4NVRUbOzmFiFc28uykJ2i78AuEegcQOzKVwG/cy/wLv8WKcyC6Aa7P6zrHe++eIVnrmcJn1cqTnqO1pYklz97FuMsWsK5xK1sL3+fvv15AyW++z0f/cQlb//eHlG96A7utdQBW3A8OyImHyy68ndCnl9E+YQJT9HKQfrBdNoWV+ZT/P3t3HpdVnfZx/AM3IKDsqKjIJnhEEXHJJQ3XNJHMzDWzsWWmmXJapm2mmWZqmmamxp6eGmum6alxmhbNsjKzLNMy03DJXFKPCoogIiqiIiJw4Pnj3KAoKAiI4Pf9evnivs/5/c75HfK6D3KurmvDUvZtWErUp3ZC3SX/uyxSj5R0JCIiIiIiIiIiIiIizYQLDuCEs7CK76nKe11dzn0sUtiuLWOm2i3Y3Jw5SWZrONwSitwg3xO2toE/DHqazm3j6qWt0uUs3mp7+s2k6dWMcrkka7mSWMVFHNi2GrArbIFd0ahrcUDFmDJXuwpPQQv4KhK6tI6jU5BxWf6dLImLrzK56FIpbdP2woOgIukuPGkGPj0H0sc3jpDfP8vtI/9AUF+7BVz2uQW/5Dzctmyq8zHWrZ/PAyfeZuJNkBIK+e6wIxi+CYerFq3D/dWXOX7XBD759QjWfvNGlQkbi9PqnvxUlTJXKLv950TGj6D31Tczbnvldoci57PnWBq3vtSXhFHjSRg1nthF35IwajzZW1bU+BjlVcD2bVjKm18+Tf5LTytxSRqVko5ERERERERERERERKRZsDpFE/DxGq7uMxGAlTXpguRwsCvYbsFW4gI5LaH1cfA/CW6ldlWZvJgwwmITG3bxl4nrrc4Vr8e0G1b1IIceL9W37C0riLvz3nO2Dw7oU5EYF54L24LtBLnbRzzO1V0apzpQTTRW5aJyp26ccFHzRg27F8aNAyAsNpGUQQvoNelRruk1iWdjHyVl0IIr5rOgJqxSi2e/e4pnX5/Eq08M5tnXJ7Fn01LYada4DVpVlZGCY3rTMQ82hIDDgn2t4IYsHw62tFvghR11tjVb9wNJN82sMmFjy6Hqk5+sUovc+f8iNW8n7755L6l5O7FKa9+2bUzbobWeczloqIQsqZkyYEcg7PaHk27210O7NmAVF1XEw/kqhmVvWVGRtHT0lWeIfPKZWicuidQnt8ZegIiIiIiIiIiIiIiISL1wVi1h/FR+ODz/nN0nYjvT4qxtYbGJpLCAV9Pn0tp7Gd9M7cPC2NvpmPMez7mt4uboq+nfvh0Od49Lcw2NrCQu/sKDaphMIDVXGBbKRGdikWeJnVj0nwGz8b1qCnnbVrAr2B63PNJOkAuJ7MmAmBGNu+jL2MUkPZXExVea53D3IDJ+BMSPwPvZPzNj6GP1ucQmwyqz2BYEhzyhbQGktIej7zyAt38bDnCc1wuXcM8aWNcG8vIhfj/0S76KU3f+jKIhw/nckcZoFwMAv1UpHL26HyFxiRWfqW5bNp3z38vh7kF6oP16TzAsi4btQY9jeh7now+eok8WpPvCinAodIVTX76OVWZRHNoRz312v7OoT79hn/vSSueyL8hiz8YlrJ3zEH9JhR7Z8ELaHN4Z/S5hva617yPN3JZDmyraIMqlZ7nA9VPg47mwNRh6Z0HY755i8dK3CduTy8LFdzPph1OsXRFNvncL2m/bQ4ugdgRExBFlDMQKaVNxrO3BjXghIk5KOhIRERERERERERERkWYlLDaRx366gHUr/8uuXJNnB/2J0g4d8QuIPmdseWKBf+EacjpuwjcmgU69rsMju4TvTu3jrm7jGHUFPZw9++F/QjZYQL4HtCixH3B6fTiHwBtvg6joenlA77F4UaNXxml0zopbYLdQO+oFbbsOwOHuUZEYBzA393eMib3+iqm2Y5UUcWDr+ktyriv+72A1dh9P55apsORNiMyDN3rAie0r+MiwkyceWg/fdoQDLSE1ELa0gbXtYdhH/yLn83/x3EiI/wCWR8BPNsJr30HXUz54tIsgIDiM2A3pnPyoDe1HTcPh6VXtOo6MGk7fluGEhMVz9OQzhO9YBy6Q5w0zn13EjtcWcf1k+Oxte3xYMPi99S3znrqDmyfMOv1ZlbaL1lOn8MsjduUwF+CRlfCfHZMoCw/jhkOt8Rs9lawgDzw3b+bNY8vB155qHLTbbzZFVnFRRSWc49lp7NuwFODcpCxpcO6l8PInkHwzjNoFh7xhZxC85Z3K47lwpAj2eEBW+mbmdYN52+GY5yGCV2zmkOMdsvrHkdGlcls/CyBjL/tYWrGtpv9tdQ+WulLSkYiIiIiIiIiIiIiINCvliUSR8SN4/n9H29VKamCbEVTxuigpGT546YquBmFFRDHkyQXsvWs8kXn2Nv9TEDHrZZj1Mrmr12N1iqnzeaqqdHIl+yGk8vuKijtA3y/eZPjQ3zbCqi6BsypoWcCmZf8h9sV/wi/hhm3wUWzjLO3K5kJqIAy/BRbOhcPe0D0H/voFTJ4EXQ7ayUYHW0LUYcjwg6ATdqLi5zFw32r79boOcNd6MIPh9i+Pc3jPZr6J2EzgXgh/+Ff8mL2L+DufPm8io8Pdg8ieo2gV9QVRy9ex3+f0Pgtof9xuyRZQYCfvnXKBtcteo/vGLEp79KZlxy58n7+F95MgNtdO9kjaCUP3wt8GQfe0vfRctZe3MtZzXzL8fA3M7QU/XQt7/O3zPBR7NxG+UQ37La9CXRNDyltyAYQMgYSv3gXghyUL6NBTVdMupV1B8Puhdtx4F8PmNnC8BRS5wda4ENxjgsg7mU2xVwGtfL0pcT2MfyGs6ghb28BTn2zhd8OgSw5gwQEv+PtV8ORP72dOd8jxgVxPGFUchmPoaAL6XUvr7teQkZ/O9nUfs/7YVny/XkmYexs6+oYRszGdkqytBA9Khhjjiqj2JfVLSUciIiIiIiIiIiIiItJslbZuW6vxccGn24u18a7d3GbH4aA0LLz6/fXUZm3nkR10qJcjNQ/nS6wZHTuBoku3lEvMpdK7V3vDqOf/SbHz+feItDO+N1bpJV1ZjdoONlNhcUNIOTAbq6yUTv99DFfy+bE1DM0HDwvS/SGhZQxj+0+hxDeAZUufZ+qpNljhZRQH78b/GHQeeQfJbrvx6nOAIVkpHAsNIqcsj3z3Qrwsu4JS5OMvkzvijholMpbEdAbsSi+WCxz0gk1tYK8PzBoAv1wDIcdhRzBEH4HsHZ9SuOZT8lrAg2OAGCjdDd+EQbY39CWUtscz2RkA/+4Bp9zglg12UpKbBb3b9iE6JIDEIXcR0W0IDtcLJGXU4bOxuuSi+krO3O0PRzzhna7QPwtaZGZBvKVEk0uo1BVWh0G7Y7DXD3K8IWdkIj2zTzH+mc+Y6Pz79acn+/D1PSnsGrSEwwvfJG3XIuZ1tef5FsK2ILuymP8pSA2COQnwWRTc9T384yrI37SXcU++ArzCR++/wMPL72PbbJg/FaZtBe+SA7wWv5kXNkPoqi3An8hduQarc5dG/f5I06OkIxERERERERERERERabYs58PpmjqzslFMQO3mNkdWRBT+v/tfDr/1KkEbfiTDFyKOlu+8+MSPM1v9bM5aCxuWEhKXyJKMz6/o6lIX0pwrQlmuZWwLhgUx8JPN8Luh8Hw/GLTX3t/50On2Vq77MiDIuGRra87f9wtxuHsQft2t9uvOb+E9pTt5xccY8BVMiSwmaUxnfO98uKKN05qslcQ8PQeA8WmL2HJoE6F9H+MnAHdC8kPTaDfrLbqn7sT7tt7021f7NRUPHgrY1Y2+CrcrxbzUF/b7QMJBKPCAHUF2MtNxdzjhDqvC7Lnx+yGwAA61hI5HYeYv5xPYYSg/27qcNYe+J3LWSyyLcqegZSn+/Ubwn/jJJIYNrzLRyIqIIm/eAvwnjz9rj8s5Y6tlWez9fgkLt79HlGswvf/7KZtWvcKa1qe46mAL2oZ25duWh5i+9QAtt23BtXNsRYLQmZ+jy3NTGLcdjl7dr8q2WoVhoYycBp+/BaUuduKLdxHw4Ez2O6DdqGlKPLqEylwhyx/m+kPfDBjfdSy3T/5ZpTG9pj8BDgfRvZKgxyiWf/Ewn7VPYl3L/xIMhPSfzCunSti3dRYdXfeQ28mHru5l+LR2JfrwXnb7wsZg+OkNMPHNZ6ADrAiHjSEwLA1e6A/dDkKOF6wMBZ9T8Nobo+hx3IfjHhCZXYCnmxeho6bjKIMQrzY4HHZ6SVvvEKwhw/V3RgAlHYmIiIiIiIiIiIiIiEh1HA5Kbr2dVj/+CBt+5MtOcE3G6X0Xa9/m5fhMncghbzjRFjY+NJ60sTezJcaLpPDRzfpB5uK0RUqsqsLugkz6zYQhqXD/Wjtx5LYNdisij2LYFQgzfIczbNA9hMUmNvZyr0jFg4cS19mu+uS/bROzxj52zpgzEz2TopLZcmhTpf3tZr1V8Xrc9otfi+UCq0JhSDq0LIKvImFXsJ3u89eB0CYf3lobxprCvaxtD1mt7BZWQaUetHH1wDMihluH/IbEsBE4XB1E9xhFNKPwONWdAUnJ3DVnJH8d+9r5F1FdNTiHa82uodQie9Ny/G6ZQuoQ+DgYXjoAn+9Pp+cG8DoOnfZ/zb9GgPs3kLrxalrN/A1tpt3Pvs3LSV+1kPFPv02GD2waCtO+gMxg+PGBuxnZ7zaIigaHA6u4iENfLeTLTnB3EnweBX//1F5DSgD0mzGT3NUD6qVdptTemo7wQseh52yvdJ9wOIjrPIzIqBHntox9fywPn/HWkbqTm8f2ZuJkCC6ETD/w2JhFkD98HA099oPRMpzYqPb8siiQzKEH2JG1jqszoW3mEWYuO0L4/fD5l7A4GpZ89WeOtYAJ24Eyu8LZ0D3g98fZnJqiZDVR0pGIiIiIiIiIiIiIiAhQ+1ZsVxRXu3JHQvYZ22r4YL0qmYUHeCnJrrphBkOrYsj+/G06fwq7Q8cQFjf0wi2MmqgthzYp6agKYbGJrCqbT0ZcBumr/8RJj1z6ZUFgIXzYFe65HlYN/Pm5D9zlkir/u1sS17jr2BEIQ26DTrkQfgTangAjB/q1G8AjYx6kNCycU3Pn41j6LK/2hcG7wXKFTv3HMaSwAyMnPlnlccurWt2QeG+DX0Nq3i4Svx3PVTdASgQkZNnJUQu6wnWpsLoD/DsBBu6FLyLBtxjavvwXthXspu/f55ITCIGPwAuLIfyYnQzy2DCY9PbLfPray3TsP4btvcNxW7eWQQvXUjoTEtPh9Z52a658d7u93Cs9oOXvx9IysB2tO/cmLvZaioeqis3lpqb3DSsiitJnX2RW0QGysucy42ARsTERRAfnMHDgJO466UubVu3oN2asPb64iJAty9m44H+4avduTkZ706fwKFdnHub9LpDrDXEH4LtQGJxut3K7dTPwwExy+ytZTZR0JCIiIiIiIiIiIiIiAkDsgAmNvYTLXl0qk5SzSi0KQ4KxsKuVFLqBfyE8PhQeWQm3fDief7f7js6tu9b9ZJehnUd2AJVbI320/1Nu2AYfxTbmyhqXw93DWW0G3H4TzK1lHzCgB7QryeHW0DbcEzFdFY4aWUlcfMXr6lrOxQXHn/d9TV0wHpwtwnYG28k2S2Ngfu/ZDLpqWkXCovWzRxh+TX9SgM37n6P7xAd5t2A1I/s/fsHzN0RioMfiRRXfN6vUovTjdyl1tROOwL4Otym3cVdHaDNgP6NPnGC9+zf0PADzY6HLYfgiCjovmcvvb7aTrY54w3cdYXUo9NwH3iUQdgyyW8KB1Z9wd0eYfATmjIFeGXDSAde4dmL0tFQ6H4auB+3P38Qd+/gkZh/T/rWOx3u+gsfXMfQuCGBtOwtcXBjb/jriJj2oRKSmwOEgdMwMQgHvnRYFj9gVyXqeMaTkzOHuHkT2HEVkz1EVf0fnWxa5k9Pot2UBo5et4GP/jXh7edMi8UYio6M4fp0LxYOHYkVEXcork8uUko5ERERERERERERERERomIfMzUXJGS2T6mrPsTSmfDaFmABIDYTlEfDnZXBNOjjKYMmbsLPLx1g3RuNw96i38zam8gSj5bkpZOZsZ9+GpVglJfQeMwmAV0dDQkHlJAurtLSRVtv4Sq4fxyzGwViIW7yIWdUkuMilVV2i0ZnO/hytcXUWYP+y98j69CCHvv+ahOP29vKYODMerIgogheuIaUgE4DN85+j+6AHCYtNrFQhzeHuUVEZy8gspCh+BN3TCmu0notRCqT7w3FzNaXH0rHKLNx2p5N9aBcpa+dy4y53li15Anz9ONW2NQVfL4Yzumqt6QjBU37BI4FdYKz9uXH/4he4rtNT3P8t5LeAjW3hul0Qexg+MiDqMOwMhKktr6bd7Ad4JmMf1pf341YKbfPt43Y8BvN62K99xs1mTsJEVq57h/yM7by39W1i8705WVAILnm4uECGH3TdsZP3W8P0hdA1BzrnriM/24WT9/5KiUdNyJmJgjVREeMOB1anGIZ2ehRueJRDz81g+INzKsYVDqzHRUqTp6QjERERERERERERERGRKlxshY7mqHjw0AsPughLouDTGHj3fcjzsh+qR+ZB5Myn+SEqgQ59RjXIeS8lq9Ti++/mknTTTBYMgaFu4PfUeF6+ZyC9gSIXWNseknZVru5ilVqNuezLRk0SXaRps4CFBiT87S+4+sP3naDzMcjxPnNU2emXDgdEdyGSLgB0+2wNBRdou1f+96ihkkstF9geCN0Og3XbTJ4eBIl74NcjICUcnjoCz3eCiMyD7AwAswieS4Mnz/hoffu6d+nkf7pVlcPdg75J9zH/+7aUxhXx2bL/JaaFOy0dWVxz0o/UsjJu8uzEdT/5FRHdhthJmvEWae6uRM6fj7VnB71w59ruAzjQvoSZUXa1MIe7B8MG3g6A53wvu9WcZbFi6aOUZLdm4Ia5TErNZWC/E7z/blHFelr95SmKxo5TO60mpL4+P0fHTqDowsPkCqWkIxERERERERERERERueJVlWCkykcNKzUQnh1oJxo9kQgh+ZX3d2jVsXEWVs9S83Zx//KZJAFHW0DPbNgYAp0Xf4sFLIiFtR1h0o+QkH066cjh6tqYyxZpUFZJEbv8YX8rWBINf06EbtkQlwOtiqHIFfxcPfm1XxLJIx+plIxzttpWc6lPVpnFkk6w2we+ioLtwdDtAJS5wtA9kOEP3bNhWzCs7QBBBVDoAT0PwoGWcMsPsCwSsvzAOzsHR1TlKkIOdw8G97sVgJOhISRFJePRYxE9k5K5taoFORxEjZ6B9+YsSib8gnu7QM+o5Eqttc40cuKTFfO6xgwhYlQyM37yKD4zpnFV2ElgaaXxrnvT7ZZaqnZ0RVHyp5yPko5EREREREREREREROSKpwSjS6/UFTL9wK8Qvg6H+9ZW3v9Z7kpK09KawX+bskrvWhbZLeX8TsIhb2hdYG8PPmknYJU7s02USHOzP3U9PkDbk4AL9NwPuV6Q7QOje95Mwqh7uXnNLkrGjL3gsRozIWJ3QSbXTYexWyE1CAbvgQ+7gEcxTN8IQ48H07KFDz7Jg3m4RSjdxybw5spZjM+PwOxfRsL337K1LJfk9mPo03viec9V/llYk+stiYunKCmZpFpcy5mftcfnvEXnTx88Z4z/5PHkrlyD1blLLY4sIs2Zko5ERERERERERERERESkzhanLapRgpBVWnr6jQsc9YJ9fnD9drvd2g9t4LfDIGf9c4R7dqBHrgchPZytg5qg8uQhywVyWtqVjtL94d1ucKwFPLjaTkBylEK74+B9Cv7T7wUifKMaeeUiDafNsIlsuX0lvyiayx++hg0hkOcJDwz8HX2vvx+HuwclY7o29jIvKCw2kRQWYPUv4p/v38+IfDjq3YZx/X9GlHGSf+45xMlHf1tpjlfROrr3fYzuzvcfvNaXP417rV7XVR+JWKWBgeTNW4D/5PFn7XGp87FFpPlQXUYRERERERERERERERGpsy2HNtVwZFmVW5dGwd8GQkIO5HpDjx/2E/fFOhKSJpC9ZUWt1+OxeFGt5zSk1EBI6QAdjkFEnp18tCICvEvsxKvUQMjwg4IWENaqoyodSbPm8PQi7sHZvDVuAUVhoYwxbuTngx6tSDhqKhzuHkTGjyC6VxIv+81g2B3/w/P3rWRwv1sJnHwXVvce58w5u51ncOhlmlzl4kJph9AqdlT9GX45WZx2eX3+izRnqnQkIiIiIiIiIiIiIiIil0xVyTSpgbD/vrvJ2vEyACfdIfT46f0dWnWs9Xl2f/MeHRqx7dKZUgPhtuthdyB81wGKXGH8NvgxGB4dDr32gf9JcHTvScqgxwmLTWzsJYs0uPKEnbS4vlx/95zGXk69OLvCUFUVh86uCBcT0LlB13Sx4oLjcd2dfs52t7VrsDrFgOPiEiOt4qKKRNLluSkMDexHSFxinZLNrFKLPUd24rk3E4CChS+xb6xnnY8rIhempCMRERERERERERERERG5JDwWL8LqH3PO9lJXiBkxnfl+XYGZFDkgIRt+CLH3O8rKsGpyAsvCsScNgIO5e9i86l9c1++Oi344Xl9KXWFVhP16fhzEHoRpE+Gna2FtB+i1H7a2hgd6TiU4fkSjrlXkUhsdO4Gixl5EPSiJi7/woCYkKSqZ0qKt52z3fWAmuf0H2IlHtbQ4bRE9jnqSMGo8u/yhpAvsPgIbBvalXd9R9O46BmKMcz6zz04qKleeVLTnWBoz/t6X7XbeKnnhkPDSt2x7bTbBSdMa/R5QrlJ7UZFmQklHIiIiIiIiIiIiIiLSbJ3dxkYujcVpi86p5gHgtmUT9I8+Z/u85AV0CuqCY1QXjj2wG+/85xiwF9a0h93+4Je+By5QWcMqtdi3cSkf/nUiAQXQ7gT8cen3uKxfS2z/mwjrde1l8eD5lT7wUbvfwoGnefUqiM2Bw95wy9QXCeg/vbGXJ3LJVVUNqClqLtdRibs7lotdrS3kOLzZA0akQUBZjdJAAfuzOXvjcgq++ZxFeR/Rf0Eew26B1xZBx+PQPh/y163hutfXAE+Ru3p9RUJTeVWktIIMfvn1fex9AWaOhp+tg0IHrL8qjoCgcN4PPQYu9vl2BEKxK+R5gOeDM9nvgHajLpfEo3Nb081LXkCEb1QjrEWkfijpSEREREREREREREREmq2qEl+k9qyIKHJXrwfA6/9e4eSdd2FFnH5IapVaHCnMJTVvJwDfZH7FqIjRlVqpLU5bxASqbq8W5htesX1Pj0h+91doWwAepRCZB0ybVOlBdFX2HEvj6lUT8e0HbY/DpK3gCrR/Yx6Bf5+H45/zsQaPaPQHz6WuEJCYTMr+3gC8/dYvufmnfycsNrHK742ISGPaFghjp8LvV8ATifByL3j481lYZhSubu7MP/wlE4OGMyZqLERFV3zGlicMpZ/M4hcrZjJtI7R3B7888CuCv/cB3xL7M77dcShygW/CgKWvUfZ9EN4tW5CfnsHIP7xCVjTkToLsVvBOHDy4GjaGwIyFW/hj4hbSTsDYw9D+VzBuGwzaC45SOOkKGU/NJG3JG3j3H0ZQdC86JAyraLnmsXhRpWQxq9Qi+/ultNh/wH5fVkpGQsMB+wAAIABJREFU0QHahPfA4eaG36oUjl598e3gLnT/E2mKlHQkIiIiIiIiIiIiIiIi5+dwVCT8uBw6dE4VivT8TD5Y8y9WfPUv8j1g+G7Y0+1OIgJiKlrirM74kFHZcGDr6guebtz2KjZaF66sUeYKRz1hxC7Y1hr6Z9iJR5F5wJSJ5K5cg9W5Sy0uvGE43D2IdLZRezLzbxSppZqIXKayfe0E0Fs3wT5fuz3k0k7v8vITdiW6uWNg3PxVHPF+Cr9F9mesx+JF7GrrQULSBL7sC30j4LmB0CMb+kfAfS7XsMNzN8G7MjnsCUEFdmW76TdB1uMvk9IBSoEST+g8E7plg2sZmP4wItefE255zOsGkUdgcTSEH7H335Tpi5+fN8c9s8nwgzYnIMsX0nesYXnxGkb9G+4bEsCNB1vTqoUvvXbksXHtK7T2ac8qRwbuR46y5uhmZn8GCwy4NhUW9QTfYgg4CWNNSHgSflg8nw59RtX6e1lVezW1XJOmTklHIiIiIiIiIiIiIiIiUmOuOQcqXmdvWUHCqPH4+cM9CXDPGvjYgA7HIH/Zx6QOGcNt/+jPjtnQZgh4fAd5m97lhlj4KPb0Mc986FrYri0jp8Gnb8NJB5xyhX/0ge5f/pu3UnbylzU+uN77WOWKGqUW3+35yj6AC/TZb89JfxG+CgcL2OsPx83vKD2RCUCHVh0rHaMhWKUWe4+lV7H99PU2y5ZMItIsWBFR+D75AqTcxxEvOzmoXT78dB3cfj0MTYefrwffIsjxgWMvPMknIccZ8/Fmvom28AmEF/vBXeshsAAcZbB68jU8dtdCupVBxlv/w/i9T5G0CwbshaFpMH0c+J6Cm36EMc6OkzuD7a8vXg2/uu8T2g1N5+69K/F2pNHfYTJs1DTS8/dyS9BISq4bA7u2s/LHhbi++G/2+R7jsFsB+30g0w/SS4+QcuoIM76DpSGwMWsX1++E9l7waQykBcDw6XBVJgzf50GZpwsUnwKgVZG9jg6tOtb+e1lqkXF8T5XbRZoyJR2JiIiIiIiIiIiIiIjI+VkWjj1pALgUnsSRutO53U6esYAMX7slWs/9YAbD8defwitnB2XAjkB7/7xusCQaErJhezCYrctPUFZxqrC4ocwa/iI7PruXzW0g38OushH1/D/4cQIcWAY+Sz4g4JUFFCcOBYeDPcfSeGfugxBmHyP6COR72q+9SuBYCwjLg70P3suOIHu732Hwe2ke1rCRDZZ4tOdYGpMXjQfghm1nJlqVVTtHRK4sccHxjb2E6jkchA2fxhtt22Ntf5GC1lkc9SrAN/MYVkx78t2Lmb5gDxk+8MgICCj4hAM5MDkbittBRisYkQY5oQH0DTAY2jYRvzsfqWgn1n7qfbyzuRsH0zezd+FrDCt0wX/3ft7vCh4lpz83+2bAmo7264fd3XG5Npn+2Ambv3UudQBQUr5uoxuDjG54eHYntp0HM1ZPgFKYstmufgd2gqxLGRQ5YFswdC1rTRcvT3xcSvgx2MGUW16kY+hQBnz3GtPHPVT52+LuTm1ShaxSixWZy5n6ycRzv8WurlXMEGk6lHQkIiIiIiIiIiIiIiIi5+XYk0bggN4V78tfZ86ZDUC6H8zpCTdsh4QD9kNcv0LoNXseJTfDmJth0F5YEW4nHAHE5ZxOOip/AA1267F2MX1ZGwAnPOyWOcsj4O51dgJRrjfEpwOTx1dql7auPfTdC7uCYF07GObRlQyfrbQ9Dnv8oH0+bAg5XakC4Og9k2n14Uro2jAP/Tu2CuelLo8DsHPHP+jl04aHrvkjnfxjGuR8ItL0JEVd3tXOHO4eRPYchcf0YvYHb+KOQ/G4bdnErEceg62b2b1sIIVuMGULzI2DHW0g3R8eGQV//gI+i4EsvyOkDHqEwLNaSTrcPYjulUR0ryQG3PgojtSdnBzZm9l9IagI4rPBuwgyfSE8F2ZdO7tWn59FScmEFReR4lgAgMvXjzFzwPWMKOzIqXYhfP/dO8QBfQZNJyw2kWvdPfh8/h94eeKTFccYE5yIhd1KroVlJ9AWzn8Ov6FjCQvsVKOKeal5uyoSUM/0dtJ7uh9Ik6ekIxEREREREREREREREbloH3YBn0LABTL8oMcB8LCgaw580snevisAonMh7Chkt4TgAvAv8+D97s/Stkt/InyjKh1z96ksxtwC/iftykjvdYPnM+zWPl4lUIr9UPu4+R1f7J1P0METlLrBmjAIOgHPJMITvt1on7+VpVGw1wemboHXe8ItmyAkH3JaQr99sCn1e9o1QNKRVWrxbdYKnl31FAXuEO+AjKxDQOUkKxGRpqAoKZm4NCjqm4zblk0A7D61nwH3wrBUePYL8CyBgJOwc+oY5vW4FtfebiR9/j+M6v0rwmITL3gOKyIKjyVr+POxNA6M2EHwm/9D52OebL4+iWdDk4joNqTWn58Odw8inclOHrcVEjH8dJJXp17XnTN+5BkJRzYX9vrDfh8YmAHfh8DW1W8T/unbfBII8QWtWN/Zl2OecNQqoMf+Ura2c2NCRiusbvGEJYzAuvqqKtcW5hum+4E0eUo6EhERERERERERERERkYviu34j34eAayn4nYRuOXYyT6cjdsUhnyLY4w9exWC5wF4/KHKFoH7DGRwYxzXX3F7lccNiE0lhAa/sfoueUQcZ5HWIfZE5TP/hEP32wZEWEJkH3HEvq3tBSgi07+ysgrQfxo/5HRPbJ5EaOJ/rpsOjX8M34dCyGLa3tueeLH9K5miY1jYVrdUC7ffH8+Cgj/2QWUSkKSqvylQS50zUdLhS6gpLY8D8AeZ1t1uhRY25oyLR59rDgRT1q2E1J4cDorsQTRdat55Mz7JoAEYl1U81qKKLOI7VKZpWH6/m0I8LWffyaxwry2FziH0v6XIYloTks8Uzn1G7ILs17GwBY9ZBjnsuV72zl+MLFvFNNw+4pvJx56nKkTQTSjoSERERERERERERERGRGrGAYy3gsDe8HQcTU76iYzHgAke97BY4uV7wy7XwzrUwZifgCmHHoMgNvo60j/P01GfP+7C1vDJFYqtCQs1N3DkkHg/rc8bNnQPAws7wVjz8fL1dNantCcjyt+f6FkN8j2RcAwwCPl7DRz9+zKobtlL41hf0P9mCoxyk3z7YHmSPbxfVp6G+XZWs6ei8NlW1EJEmrjx5pzxBFKBD6lyejY1k8KB+laoaXUyiT33MrTcOBxjdGGR0w2tHCb6tSmnV3oNDyz8guOQAiyNOEtwiiJ59+5M44z48svbjv3ELX6TM4VRuNksjisloUcQtP8CbCWActFuLRhxz1f1AmgUlHYmIiIiIiIiIiIiIiEiN7PW3qwS9EQ87g+GZ0p10PAoDMu39ud6wNQhSA+32Z21O2NtD8i/ufElRyZTE2V8dJdHs8p/D/pawuiN8GQXtj0OeF0zZAjdsg49i7T8Pu7pWVMwYEN2FAcAnB2cQfNXVRP76IcCuUAHgcHfHqtu3RUTkilSpddnwQmYMvQyShBqQFd+ToKRkBgGM/w0A/1kyg3+NmnN6ULsE6D2aKbc/jFVcxOCXfkPGVd1Y/vFfudsngfBTJSRe/fMatZsTaQqUdCQiIiIiIiIiIiIiIiI1YrnAQS846glxB+DNeCh2QKsiu72aaxl8Hg0PpEB2Kzjubs8LybdbrJVXOqqN05UuXHAAuNpJTl0OQ4sSeKE/xOWAZ4k96r3Qx6usouRy/QTGlBkEbr+YKxcRkfO5LKoSNbCqrvHGmAnVjne4exBz/3PEAIXt2lS0pxNpThqmSa2IiIiIiIiIiIiIiIg0O+l+8FZ3KHW1E37KnXS326uVukCxq52c9F0YrO8AQSeg0A38TtXt3FanaFp9vJqjP/sZfm6tuG6fN5vDPJmSG0pQ60gSw4ezNmo2A0fOrLJlTVJUMljn1jRy3Zte5XYREZELqWkikRKOpLlSpSMRERERERERERERERE5L6vMYlcAnHIAZdAjG9IC7H0DMyDH236dFgA+xVCe8lOGXQXpo1j4xZo6LsLhAKMb/YxZbPZoScSqdLLGw5POtjYTa3QQl3O2+E8eT+7q9Vidzq2OJCIiIiLVU6UjEREREREREREREREROa/dBZl0/iWMmQ553hBQCCmhEHASnu8H/ift9mo7guCZYS8S8P63pAxawOi2ibQqso+R07L+1tP9tic5deMEYgI6126iQ4/GREREROqLfrISERERERERERERERGRCypzhfBcO8HIrRS+CocpW2FXMIScsNurFbpB2+4DccR2JzJ+BC59BlDifBp1yLt+11OUlExccHz9HlREREREakzt1UREREREREREREREROS8wmITSWEBAB2OzCU/bxmPRd3IiDmvAhCST6Wv5fIG9sNc2XDrSopKrvMxPuwCifWwFhEREZErjZKORERERERERERERERE5Lwc7h5Exo8AwLvtGnLabuLWXj/nEK9WGlfYBJ48WS6wJAqKgecHwshUSH3lVq7O8WTJ0HBuORpF/jVXExKXiMPdo87nu2EbfBRb93WLiIiIXG7UXk1ERERERERERERERERq5UjyaLCsc7afnVwTFptIyqAFpAxaQC+/rqQMWsDqyWuJ8I26RCs9V2og3D8aWlmwKQT67Icfc38kZtl6MlcsIPpPs0gYNZ7sLSvq5XwJ2fVyGBEREZHLThPINxcREREREREREREREZHLRUlcPN2TkmGHWbEtu1XVY8+skOS57LmK143Fiogi4OM1PL9xISz6E26lkOEDU7ZAqSt4lpweG5ZbimVZ4HBUPkZxEfs2Lyez8ABWSQmdX/4PG5MH0O+wF/mJAwmJs5u1Hfryg4o5xkEwW1+SSxQRERG5ZJR0JCIiIiIiIiIiIiIiIjVWlJRsv3CcbqixPfjC8+Kttg20olpwOCC6C30jYyjz7Uqfb+/BL8CTjFbHiMg7QfDJ00MDp04gd/V6rE4xlQ6RvWUFPjdPZPZoSA2AxRvBK2sDeUch6KXnmPPTa+gTNphOT/4JZtpzXMrsr/N7z27UKk8iIiIi9UlJRyIiIiIiIiIiIiIiItLgrrc6U9DYiyjncOBybTLT8taSH5BOqyPH6Pzt0opWaBbwzCDo9f0CSrPaAdDWO4SwhOGcCG3Pw6Phpc/AmAlLI2BXMNy9FsLyIGvzN2Qu+Ybpt0J4LvzYGlqUwIcJs+nXawoOV0e1yxIRERFpSpR0JCIiIiIiIiIiIiIiIrVnWZXeDkuFZZ0Aq7Rx1nMRRk58kmfX/JnfbwoClnK9abdbO+QFRW5Q+Pen+W88vP8uWC6w/pO5HDiVw5ed4Pl+EFQAG9tCUCG80w0Gp0OeJ+z3gX774KNYSA+E54fMpl+XaUo4EhERkWbF9cJDRERERERERERERERERM7mUuldx2P2V9e9e6ocXRIX38DruXjFQ4cBkBoI19wGX4fD+12g0AEHWtpjslvBrYumEHfnvZS5QtsTcLglrIiE6CPwTjyk+4NXMczYAFG50Gsf/D7qbqYo4UhERESaIVU6EhERERERERERERERkVqzOkVz7PnZkDbzrD0uVY4vSkpu+EXVgeUCGa1grz/gApm+kN0SHlpt729RDGUusNvf+b7E/rorCOKfnscbDlc2Fj9H15NHcbQ/jleEN//uP5M2w29WwpGIiIg0S0o6EhERERERERERERERkdpzOAgdPoWU9u3pkDqXZQWbuHvQnwmLTWzsldVKXHA8lNlVjp4YDGWu8F43uDYNlkTDp2/b4xZ1hlMOuG66/X5jiP211BWKoyLpHNiFyJ6jKo57/yW+DhEREZFLTe3VRERERERERERERERE5KI43D2IjB+Bf9soxkeOIzJ+BA53j8ZeVq0kRSVjRUQR8PEaftL7FwDkeUJwAewKhB2BsMsfUkKhZzaE54L3Kcj1hEfC72D15LV08o9p5KsQERERufSUdCQiIiIiIiIiIiIiIiJXNocDoruQPOEpUgYt4IHSgQzw7sJzPR7nhkmQ0xL8T0HUEUg4AAUt4IsYuHHg3XQKMtQ+TURERK5Iaq8mIiIiIiIiIiIiIiIidVISF4/blk2NvYw6K6/cZGQW4rZlE8eT7uOlbbsIPvkObfJhQzsYux1cLRg76BdE+EY19pJFREREGo2SjkRERERERERERERERKROipKSG3sJ9ar8ehzuHnS9/3/Z330Ak176J6lt8ikpKODRqHGE3vSEKhyJiIjIFU1JRyIiIiIiIiIiIiIiIlJnzTbxyNOL0DEz8HAJZsCJtdADoiY+2cirExEREWl8SjoSERERERERERERERERuYCipGRG0rwSq0RERETqwrWxFyAiIiIiIiIiIiIiIiIiIiIiIk2Lko5ERERERERERERERERERERERKRWlHQkIiIiIiIiIiIiIiIiIiIiIiK1oqQjERERERERERERERERERERERGpFSUdiYiIiIiIiIiIiIiIiIiIiIhIrbg19gJqwjAMT2AF0AJ7ze+ZpvkHwzAigblAIPA9MN00zSLDMFoAbwC9gcPAZNM09ziP9RvgDsAC7jVNc8mlvh4RERERERERERERERERERERkaasqVQ6OgUMM02zB5AAXGcYRn/gGeB50zRjgCPYyUQ4vx4xTTMaeN45DsMwugJTgG7AdcDLhmE4LumViIiIiIiIiIiIiIiIiIiIiIg0cU0i6cg0zTLTNPOdb92df8qAYcB7zu3/AcY5X9/gfI9z/3DDMFyc2+eapnnKNM3dwC6g7yW4BBERERERERERERERERERERGRZqNJtFcDcFYkWg9EAy8BqUCeaZolziGZQAfn6w5ABoBpmiWGYRwFgpzbvzvjsGfOqVJAgDcArVv71Mt1iEjdKR5FLh3Fm8jlQbEocvlQPIpcOoo3kcuDYlHk0lG8iVw+FI8ilwfFosjlr8kkHZmmaQEJhmH4Ax8AsVUMK3N+dalmX3Xbq3XkSAGtW/tw8ODx2ixXRBqI4lHk0lG8iVweFIsilw/Fo8ilo3gTuTwoFkUuHcWbyOVD8ShyeVAsitReYyTqNYn2amcyTTMP+AroD/gbhlGeOBUKZDlfZwIdAZz7/YDcM7dXMUdERERERERERERERERERERERGqgSSQdGYbR2lnhCMMwvIARwDZgOTDBOewnwEfO1wud73HuX2aaZplz+xTDMFoYhhEJxABrLs1ViIiIiIiIiIiIiIiIiIiIiIg0D00i6QhoByw3DGMTsBb4wjTNRcCjwK8Mw9gFBAGvOce/BgQ5t/8K+DWAaZo/Au8CW4HPgHucbdtERERERERERERERERERERERKSG3C48pPGZprkJ6FnF9jSgbxXbC4GJ1RzraeDp+l6jiIiIiIiIiIiIiIiIiIiIiMiVoqlUOhIRERERERERERERERERERERkcuEko5ERERERERERERERERERERERKRWlHQkIiIiIiIiIiIiIiIiIiIiIiK1oqQjERERERERERERERERERERERGpFSUdiYiIiIiIiIiIiIiIiIiIiIhIrSjpSEREREREREREREREREREREREakVJRyIiIiIiIiIiIiIiIiIiIiIiUitKOhIRERERERERERERERERERERkVpR0pGIiIiIiIiIiIiIiIiIiIiIiNSKS1lZWWOvQUREREREREREREREREREREREmhBVOhIRERERERERERERERERERERkVpR0pGIiIiIiIiIiIiIiIiIiIiIiNSKko5ERERERERERERERERERERERKRWlHQkIiIiIiIiIiIiIiIiIiIiIiK1oqQjERERERERERERERERERERERGpFSUdiYiIiIiIiIiIiIiIiIiIiIhIrSjpSEREREREREREREREREREREREasWtsRdQ3wzDeB1IBnJM04xzbksA/gl4AiXA3aZprqlibiQwFwgEvgemm6ZZZBjGDOBvwD7n0Nmmaf5fFfNbAG8AvYHDwGTTNPcYhhEEvAdcBcwxTXNmPV6yyGWpIWLRuW8S8ARQBmw0TfPmKuYrFuWK0kD3vueBoc5h3kAb0zT9q5iveBM5QwPFYxjwH8AfcAC/Nk1zcRXzA4F5QASwB5hkmuYRwzC6AP8GegG/NU1zVr1etMhlqIFiMRx4HWgN5AK3mKaZWcV83RvlilLHeJsJ3A90AlqbpnnIud0FeAFIAgqAGaZpfl/FfMWbyBkaKB5r9LPk+eLWMIzPgP7AStM0k+vvikUaTwPF2zTgUeewfOAXpmlurGK+4k3EqZpY7IEdi62wfz8yzTTNY1XMrdPvURSLIpU1UDzq3ijNVgPFzA3AU0Ap9s+j95umubKK+fX6+5TmWOloDnDdWdueBZ40TTMB+L3zfVWeAZ43TTMGOALccca+eaZpJjj/nJNw5HQHcMQ0zWjgeefxAAqBx4GHansxIk3YHOo5Fg3DiAF+Aww0TbMb9j/Oq6JYlCvNHOo53kzTfKD8vgf8HVhQzXzFm0hlc6j/n0V/B7xrmmZPYArwcjXzfw186Zz/pfM92MkR9wJKNpIryRzqPxZnAW+YphkP/BH4SzXzdW+UK80cLj7evgVGAOlnbR8NxDj//Az4RzXzFW8ilc2h/uOxpj9Lni9u/wZMv8B8kaZmDvUfb7uBwc6fN58C/lXNfMWbyGlzODcW/w/7f9jqDnwAPFzN3Lr+HkWxKFLZHOo/HnVvlOZsDvUfM18CPZw/j97uPF5V6vX3Kc0u6cg0zRXYPxCcqQzwdb72A7LOnufMgByGnbkF9v9NPq6Wp7/BOQ/ncYYbhuFimuYJZwZZYS2PJ9JkNVAs/hR4yTTNI85z5FRzesWiXFEuwb1vKvBONadXvImcoYHi8YLznc6Mx4r5pmnmmKa5FiiuzbWINGUNFItdsf/hDrAcO+aqonujXFEuNt6cczeYprmnil03YCf5lZmm+R3gbxhGu2rGKd5EnBoiHmvxs2S1cWua5pfA8RpfiEgT0EDxtqr8957Ad0BoNadXvIk4VROLBrDC+foL4KZqptf19yiKRZEzNFA86t4ozVYDxUy+aZplzu0tsX8+vdD8Ov8+pdklHVXjfuBvhmFkYGcm/6aKMUFAnmmaJc73mUCHM/bfZBjGJsMw3jMMo2M15+kAZAA4j3PUeVwRsdU1FjsDnQ3D+NYwjO8Mwzg7+7OcYlGkfu59OFvJRALLqjmP4k3kwuoaj08AtxiGkQksBn5ZzXnamqa5H8D5tU39LF+k2ahrLG7k9D/0bwR8nCWHz6Z7o0jN4u18KuLI6ZyfU88ep3gTqVZd47Gmahq3Is1ZfcbbHcCn1exTvImc3xZgrPP1RKC6Z3p1/T2KYlHkwuozHnVvlCtBnWPGMIwbDcPYDnyCXe2oKvX6+5QrJenoF8ADpml2BB4AXqtijEsV28ozvz4GIpyl25ZyOuurNscQkbrHoht2acQh2JVX/s8wDP9aHkPkSlHXeCs3BXjPNE2rmvMo3kQurK7xOBW7f3Iodl/y/xqGcaX8HC9Sn+oaiw8Bgw3D2AAMBvZh90avzTFErhQ1ibfzqWkcKd5ELqyu8VhTikeReoo3wzCGYj9YfbSaIYo3kfO7HbjHMIz1gA9Q1EDnUSyKXFi9xKPujXIFqXPMmKb5gWmaXbCrHz1VzbB6jRm3i53YxPwEuM/5ej7O3nWGYSwB2gLrsNs2+RuG4ebM5grFWf7UNM3DZxzrVZw97QzDeBoY4xyTgJ012RHINAzDDbuE6tklsUSuZHWKRewY+840zWJgt2EYJhBjGMY4FIsiZ6trvJWbAtxT/kb3PpGLUtd4vANnb2fTNFcbhuEJBBuG8QzQE8gyTTMJOGAYRjvTNPc7ywdX14ZU5EpV138XZgHjnXNaATeZpnlU90aRKl0w3kzTvPM888vjqFwokKV4E7kodY3HKhmGcQ/2fRPsxPgq4/Yi1yzSVNU53gzDiHfOG13+XELxJlI7pmluB0YCGIbRGefPj4Zh/Js6/B5FsShSe/URj7o3ypWkPu9hpmmuMAyjk2EYwdgJ8Q32+5QrJekoC/v/RP0KGAbsBDBNc9SZgwzDWA5MAOZi/wPhI+f2duXlqbDLWW1zzv8t8NszDrHQOW+18zjLzuiZJyJ1jEXgQ5zVHpwfkJ2BNMWiSJXqGm8YhmEAAdixhHO+4k2k9uoaj3uB4dj3v1jAEzhomuZtZ52nPB7/etZ8EbHV9d+FwUCuaZql2K0yXnfO171R5Fw1irfzWAjMNAxjLtAPOOr8vYziTaT26hqPVTJN8//bu9cYy8+CjuPfbQuhsC0txYq2XBTMU+sltVZJGmgxAsIbkZSr0oqXGsQo8YUoCaStQXhlRKUGbzHYAFIM2MQSUBJrbdBKCxhC9UEQGmvQGkovQIWyHV+cs9nDMLMz053dbbufT7I5/8tzO9k8OTP/+Z3nubK6cv/5GGOzeQvHkkOab2OMJ1XvrS6ec35q/3XzDXZmjHH6nPP25SrRr6/eVnWoz1HMRdi5Q52PPhs51uzCnHla9Zk559oY49zqkdUXDvfzyz1raw+vZzFjjHe12Hrp8dX/VJdVs/rdFiGr/6tePee8eYO639niwfLjqo9Vr5hzfnWM8eYWYaOvt0h4/eIyZba+/qOqq1qkzO6oXjbn/I/lvc9VJ7f4j72zeu6c85bdet/wYHOY5uKe6rdbrPawr/qtOedfbFDfXOSYcjjm2/Le5dWj5py/cZC+zTdYcZg+/85usdrm3hZLnL52zvk3G9Q/rbq6elKLoNKL55x3jDGe0GIFl5Or+6svVWfPOe/exbcODyqHaS6+qHpzi3l4ffVL+z8z19X32cgx5RDn269Ur62e0OJbee+fc/788ne/t7b43e8r1c/MOW/aoL75BisO03zc1s+SB5u3Y4x/qM5q8fPsF6qfm3N+cFffPBxhh2m+/Ul1UXXrsujX55znbVDffIOlTebi3g6s3P7e6nUb/SH1UJ/zDMh0AAAHMElEQVSjmIvwjQ7TfPTZyMPWYZozv15dUt1X3Vv92pzzhg3q7+rzlIdd6AgAAAAAAAAAADi8jjvaAwAAAAAAAAAAAB5ahI4AAAAAAAAAAIAdEToCAAAAAAAAAAB2ROgIAAAAAAAAAADYEaEjAAAAAAAAAABgR4SOAAAAAAAAAACAHTnhaA8AAAAAgCNnjLG2ya2vVXdXd1W3Vh+tbqyunXPee4SGV9UY45XVU6rmnJcfyb4BAAAA2J49a2ubPWcCAAAA4OHmIKGjzdxZvb26bM5512EY0jcZY1xXXVg159xzJPoEAAAAYGesdAQAAABw7HrhyvGe6rHVqdU51QUtVhs6pXpNddEY4+VzzhuO9CABAAAAePAROgIAAAA4Rs05/2qze2OMPdXzq7dU31WdWV07xjh/zvnJIzREAAAAAB6kjjvaAwAAAADgwWfOuTbnfH91XrV/daOTq/eMMTxTAgAAADjGWekIAAAAgE3NOe8eY7ykuqXFVmvfXb20etf6smOME6vnVc9uEVZ6Woug0leq26rrq7fNOf9lo77GGNdVF667trZB0SvmnJdvUP+46kXVRdUPV99a7av+q/q76g/mnJ/Y6j0DAAAAsDXfSgMAAADgoOacn6/+aOXSz25S9JbqvdWrW4R+HtfiS28nV2dXr6o+PsZ4026PcYzx1Orm6t3VS6qnVCdWe6ux0vdv7nbfAAAAAMciKx0BAAAAsB3vrF67PD5/jPGIOed968qcWN1R/W31sRYrDN1XnVGd2yIM9IjqdWOM2+ecb1lX//XV46s3Vt+zvPbCDcbyb6sny8DRPy3rVt1YXVN9tjp+2fcrW4Sg3jDGuH+jlZIAAAAA2L49a2sbrVANAAAAwMPR6nZlc849O6h3fHVX9ZjlpXPWb5M2xnhe9aE559c3aePJ1Qeqs6p7qjPmnPdsUO66ltusbTXG5ZZqH2kRLNpXXTrn/LMNyp1efbA6p7q/+v455ycP1jYAAAAAm7O9GgAAAABbmnPuq25bufQtG5T5wGaBo+X9W1tsvVZ1UvWCXRjaT7QIHFVdsVHgaNn37dVLWwSTjqteswt9AwAAAByzhI4AAAAA2K4vrhyf9gDb+PDK8dMPYSz7Xbx8/Vr1+wcrOOf8VPXPy9Pn7kLfAAAAAMesE472AAAAAAB4yFj9AtvaRgWW25hd0iLUc3Z1avXoTdo7cxfG9Mzl6+3Vs8YYW5Xft3x98hjjxDnnvbswBgAAAIBjjtARAAAAANt1ysrxHetvjjFeWv1h9dhttnfyoQxmjLG3AysunVm9b4dNnFoJHQEAAAA8AEJHAAAAAGxpjHF837gy0f+uu39B9c4OrIb00epD1Wequ6qvrhTfHw46/hCHtd1w02YeeYj1AQAAAI5ZQkcAAAAAbMf3dWCbtC9Xt6y7f3kHAke/MOf8440aGWM8ZhfH9KWV4+vmnD+yi20DAAAAcBDHbV0EAAAAAPrJleMPzznv238yxnhk9czl6U2bBY6WnrxbA5pz3tWB4NHZY4w9u9U2AAAAAAcndAQAAADAQY0xvq26dOXSn64rcloHVtT+zBbN/dg2urx/pe+tgkTXL19Pr87fRtsAAAAA7AKhIwAAAAA2NcY4qbq6OmV56V+r96wr9pWV46du0davbqPb1W3TttqO7e0rx28aYxy/jfYBAAAAOERCRwAAAAB8kzHGnjHG86ubqmcsL99dvXjOef9q2eU2Z/++PD1vjPHCDdrb2yKs9MRtdP/ZleNztyj7l9VHlscXVO9Yhps2NMZ41Bjjp8cYL9vGOAAAAADYxJ61tbWjPQYAAAAAjpAxxurDoNVw0J7qpOpx1TktAjzfsXL/turlc84bNmn3l6vfW57eX72juqG6p/re6pXVt1d/Xl2yLPf3c85nbdDWj1fXLE8/Xf1OdWu1b/+1OeenV8o/sfrH6ozlpS9W765uru6sHt0i7PSD1XOqvdUb5pxv3Oi9AAAAALC1E472AAAAAAA4at63jTJ3tggKXTbnvPMg5d5aPb36qRara1+8/LfqmupVHQgdbebaFoGlZ1RPq65cd/+K6vL9J3PO/xxj/FB1VfWj1anLfjazr/rvLcYAAAAAwEEIHQEAAABQdV+L7dPurj5XfbS6sfrrOee9W1Wec65VrxhjXFtdWv1AixWGbq8+Xl0157y6aoyxVVv7xhjPqV5TvaA6qzq5Ov4gdT5fPXuMcWH18haBpTNarN705RYrNX2iuq66ZlkeAAAAgAfI9moAAAAAAAAAAMCOHHe0BwAAAAAAAAAAADy0CB0BAAAAAAAAAAA7InQEAAAAAAAAAADsiNARAAAAAAAAAACwI0JHAAAAAAAAAADAjggdAQAAAAAAAAAAOyJ0BAAAAAAAAAAA7IjQEQAAAAAAAAAAsCNCRwAAAAAAAAAAwI4IHQEAAAAAAAAAADsidAQAAAAAAAAAAOzI/wOS92Pv7LzeKAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"data['timestamp']=data.candle_begin_time.apply(mdates.date2num)\n",
"fig,ax=plt.subplots(1,1,figsize=(40,10))\n",
"plt.title('OKEX-FUTURE_BTC-USD_1H',fontsize=30)\n",
"candlestick_ohlc(ax,data[['timestamp','open','high','low','close']].values,width=.6,colorup='g',alpha=1)\n",
"ax.xaxis_date()\n",
"ax.xaxis.set_major_formatter(mdates.DateFormatter('%y-%m-%d'))\n",
"ax.set_ylabel('Price',fontdict={'size':30})\n",
"ax.set_xlabel('Date',fontdict={'size':30})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### What we want to do is to predict the next price down or up based on last price"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"data['down_or_up']=np.sign(data.close.diff().shift(-1))\n",
"data=data.dropna()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" candle_begin_time | \n",
" open | \n",
" high | \n",
" low | \n",
" close | \n",
" volume | \n",
" timestamp | \n",
" down_or_up | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2018-05-15 00:00:00 | \n",
" 8674.33 | \n",
" 8761.76 | \n",
" 8663.17 | \n",
" 8696.66 | \n",
" 172152.0 | \n",
" 736829.000000 | \n",
" 1.0 | \n",
"
\n",
" \n",
" 1 | \n",
" 2018-05-15 01:00:00 | \n",
" 8694.66 | \n",
" 8728.17 | \n",
" 8662.17 | \n",
" 8701.85 | \n",
" 122668.0 | \n",
" 736829.041667 | \n",
" -1.0 | \n",
"
\n",
" \n",
" 2 | \n",
" 2018-05-15 02:00:00 | \n",
" 8699.98 | \n",
" 8741.04 | \n",
" 8642.36 | \n",
" 8673.34 | \n",
" 181228.0 | \n",
" 736829.083333 | \n",
" 1.0 | \n",
"
\n",
" \n",
" 3 | \n",
" 2018-05-15 03:00:00 | \n",
" 8673.19 | \n",
" 8717.70 | \n",
" 8638.95 | \n",
" 8707.10 | \n",
" 193166.0 | \n",
" 736829.125000 | \n",
" -1.0 | \n",
"
\n",
" \n",
" 4 | \n",
" 2018-05-15 04:00:00 | \n",
" 8710.92 | \n",
" 8737.36 | \n",
" 8684.20 | \n",
" 8699.16 | \n",
" 155912.0 | \n",
" 736829.166667 | \n",
" 1.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" candle_begin_time open high low close volume \\\n",
"0 2018-05-15 00:00:00 8674.33 8761.76 8663.17 8696.66 172152.0 \n",
"1 2018-05-15 01:00:00 8694.66 8728.17 8662.17 8701.85 122668.0 \n",
"2 2018-05-15 02:00:00 8699.98 8741.04 8642.36 8673.34 181228.0 \n",
"3 2018-05-15 03:00:00 8673.19 8717.70 8638.95 8707.10 193166.0 \n",
"4 2018-05-15 04:00:00 8710.92 8737.36 8684.20 8699.16 155912.0 \n",
"\n",
" timestamp down_or_up \n",
"0 736829.000000 1.0 \n",
"1 736829.041667 -1.0 \n",
"2 736829.083333 1.0 \n",
"3 736829.125000 -1.0 \n",
"4 736829.166667 1.0 "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" candle_begin_time | \n",
" open | \n",
" high | \n",
" low | \n",
" close | \n",
" volume | \n",
" timestamp | \n",
" down_or_up | \n",
"
\n",
" \n",
" \n",
" \n",
" 6618 | \n",
" 2019-02-14 18:00:00 | \n",
" 3574.04 | \n",
" 3576.45 | \n",
" 3573.22 | \n",
" 3575.91 | \n",
" 210.194723 | \n",
" 737104.750000 | \n",
" -1.0 | \n",
"
\n",
" \n",
" 6619 | \n",
" 2019-02-14 19:00:00 | \n",
" 3576.18 | \n",
" 3577.88 | \n",
" 3571.17 | \n",
" 3574.89 | \n",
" 164.462093 | \n",
" 737104.791667 | \n",
" -1.0 | \n",
"
\n",
" \n",
" 6620 | \n",
" 2019-02-14 20:00:00 | \n",
" 3576.06 | \n",
" 3576.06 | \n",
" 3563.81 | \n",
" 3566.38 | \n",
" 178.780002 | \n",
" 737104.833333 | \n",
" 1.0 | \n",
"
\n",
" \n",
" 6621 | \n",
" 2019-02-14 21:00:00 | \n",
" 3565.87 | \n",
" 3575.20 | \n",
" 3556.68 | \n",
" 3572.00 | \n",
" 218.644452 | \n",
" 737104.875000 | \n",
" -1.0 | \n",
"
\n",
" \n",
" 6622 | \n",
" 2019-02-14 22:00:00 | \n",
" 3570.56 | \n",
" 3572.85 | \n",
" 3564.21 | \n",
" 3566.40 | \n",
" 192.240609 | \n",
" 737104.916667 | \n",
" -1.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" candle_begin_time open high low close volume \\\n",
"6618 2019-02-14 18:00:00 3574.04 3576.45 3573.22 3575.91 210.194723 \n",
"6619 2019-02-14 19:00:00 3576.18 3577.88 3571.17 3574.89 164.462093 \n",
"6620 2019-02-14 20:00:00 3576.06 3576.06 3563.81 3566.38 178.780002 \n",
"6621 2019-02-14 21:00:00 3565.87 3575.20 3556.68 3572.00 218.644452 \n",
"6622 2019-02-14 22:00:00 3570.56 3572.85 3564.21 3566.40 192.240609 \n",
"\n",
" timestamp down_or_up \n",
"6618 737104.750000 -1.0 \n",
"6619 737104.791667 -1.0 \n",
"6620 737104.833333 1.0 \n",
"6621 737104.875000 -1.0 \n",
"6622 737104.916667 -1.0 "
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.tail()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"X=data[['open','high','low','close','volume']].values\n",
"y=data['down_or_up'].values"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[8.67433000e+03, 8.76176000e+03, 8.66317000e+03, 8.69666000e+03,\n",
" 1.72152000e+05],\n",
" [8.69466000e+03, 8.72817000e+03, 8.66217000e+03, 8.70185000e+03,\n",
" 1.22668000e+05],\n",
" [8.69998000e+03, 8.74104000e+03, 8.64236000e+03, 8.67334000e+03,\n",
" 1.81228000e+05],\n",
" ...,\n",
" [3.57606000e+03, 3.57606000e+03, 3.56381000e+03, 3.56638000e+03,\n",
" 1.78780002e+02],\n",
" [3.56587000e+03, 3.57520000e+03, 3.55668000e+03, 3.57200000e+03,\n",
" 2.18644452e+02],\n",
" [3.57056000e+03, 3.57285000e+03, 3.56421000e+03, 3.56640000e+03,\n",
" 1.92240609e+02]])"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(6623, 5)"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X.shape"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 1., -1., 1., ..., 1., -1., -1.])"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(6623,)"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Split the data into training and validation\n",
"Issue: the training error is a __biased__ estimate of the generalization error.\n",
"\n",
"Solution: Divide total data into two disjoint parts called training and validation sets (usually using 70% for training and 30% for validation).\n",
"- Use the training set for fitting the model;\n",
"- Use the validation set for evaluation only, thereby yielding an unbiased estimate."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"train_size=int(len(y)*0.7)\n",
"X_train, y_train=X[:train_size], y[:train_size]\n",
"X_val, y_val=X[train_size:], y[train_size:]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transform the feature to the same scale\n",
"\n",
"- StandarScaler: X=(X - u) / s where u is the mean of the samples and s is the standard deviation\n",
"- MinmaxScaler: X=(X - X_min) / X_max"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from sklearn.preprocessing import StandardScaler\n",
"scale=StandardScaler()\n",
"scale.fit(X_train)\n",
"X_train_scaled=scale.transform(X_train)\n",
"X_val_scaled=scale.transform(X_val)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 2.68340902, 2.76453073, 2.70426659, 2.71440148, 3.97125254],\n",
" [ 2.71113596, 2.71881706, 2.70290241, 2.72147818, 2.75280471],\n",
" [ 2.71839161, 2.73633224, 2.67587799, 2.68260404, 4.19473149],\n",
" ...,\n",
" [-3.20513657, -3.22857419, -3.21534922, -3.21588942, -0.22445486],\n",
" [-3.22106627, -3.22715882, -3.25607 , -3.28047968, -0.21019077],\n",
" [-3.28267109, -3.27647896, -3.25312337, -3.27313027, -0.23175138]])"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X_train_scaled"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[-3.27080565, -3.26201227, -3.2424282 , -3.27446653, -0.23060444],\n",
" [-3.27612464, -3.30111181, -3.30051501, -3.30709572, -0.21607014],\n",
" [-3.30906147, -3.31864061, -3.28658672, -3.30250063, -0.23357483],\n",
" ...,\n",
" [-4.26983487, -4.2928495 , -4.25218098, -4.28087189, -0.26325551],\n",
" [-4.28373243, -4.2940199 , -4.26190758, -4.27320887, -0.26227392],\n",
" [-4.27733601, -4.29721809, -4.25163531, -4.28084462, -0.26292407]])"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X_val_scaled"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Classification"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Framework\n",
"\n",
"Data comes as a finite learning set ${\\cal L} = (X, y)$ where\n",
"* Input samples are given as an array $X$ of shape `n_samples` $\\times$ `n_features`, taking their values in ${\\cal X}$;\n",
"* Output values are given as an array $y$, taking _symbolic_ values in ${\\cal Y}$."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The goal of supervised classification is to build an estimator $\\varphi: {\\cal X} \\mapsto {\\cal Y}$ minimizing\n",
"\n",
"$$\n",
"Err(\\varphi) = \\mathbb{E}_{X,Y}\\{ \\ell(Y, \\varphi(X)) \\}\n",
"$$\n",
"\n",
"where $\\ell$ is a loss function, e.g., the zero-one loss for classification $\\ell_{01}(Y,\\hat{Y}) = 1(Y \\neq \\hat{Y})$."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Algorithms"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Supervised learning:__\n",
"\n",
"* Logistic Regression\n",
"* Support Vector Machines\n",
"* Tree-based methods (Random Forests, Bagging, GBRT, ...)\n",
"* Nearest neighbors \n",
"* Neural networks (basics)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data \n",
"\n",
"- Input data;\n",
" - X: \\[n, m\\] matrix, Numpy arrays or Scipy sparse matrices\n",
" - y: \\[n, \\] vector\n",
" - where n represent the number of data, m represent the feature number you have for each data sample\n",
"- Algorithms are expressed using high-level operations defined on matrices or vectors;\n",
" - Leverage efficient low-leverage implementations ;\n",
" - Keep code short and readable. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Logistic regression\n",
"\n",
"Idea: model the decision boundary as an hyperplane."
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from sklearn.linear_model import LogisticRegression\n",
"clf = LogisticRegression()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/yhuangcc/anaconda3/envs/mafs6010u/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
" FutureWarning)\n",
"/home/yhuangcc/anaconda3/envs/mafs6010u/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:460: FutureWarning: Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
" \"this warning.\", FutureWarning)\n"
]
},
{
"data": {
"text/plain": [
"LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n",
" intercept_scaling=1, max_iter=100, multi_class='warn',\n",
" n_jobs=None, penalty='l2', random_state=None, solver='warn',\n",
" tol=0.0001, verbose=0, warm_start=False)"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clf.fit(X_train_scaled,y_train)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training accuracy = 0.5569456427955134\n",
"Validation accuracy = 0.5460493205837946\n"
]
}
],
"source": [
"print('Training accuracy =',np.mean(clf.predict(X_train_scaled)==y_train))\n",
"print('Validation accuracy =',np.mean(clf.predict(X_val_scaled)==y_val))"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAD4CAYAAAAZ1BptAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAADz5JREFUeJzt3X2wXHV9x/H3JWGghDvIw7alChO1+GUAIQyEVguMUkpBK7GFEuy0QqF1QDFleJ5ihUGckYcC1gbKGBxxrARJBQKdAm0hBBkryFMg0G9FiRWKeNFIQ2kDCbd/7Em5vd5f7t5l95zsve/XTObuOXvOnu/3bLKf/M7D3qHR0VEkSZrIVk0XIEnachkSkqQiQ0KSVGRISJKKDAlJUtHspgvopQ0bNo6uXftK02U0Zscdt2Mm9w/uA/u3/276b7WGh0rPTauRxOzZs5ouoVEzvX9wH9i//ffatAoJSVJvGRKSpCJDQpJUZEhIkooMCUlSkSEhSSoyJCRJRYaEJKnIkJAkFU2rr+V46K6zJ5y/+/6frrkSSZoeHElIkooMCUlSkSEhSSoyJCRJRYaEJKnIkJAkFRkSkqSinoVERMyNiCd69XqSpOY5kpAkFW32juuIuAT4QWZeXU1fCKwDfhk4ChgFLs7MG8etdyJwYGaeVk3fDlyemSsi4mVgMXA4sBb4c+BSYHfg9MxcHhGzgM8B7wO2ARZn5rW9aFiS1LnJvpZjKXAVcHU1fRxwCXAksB+wC/BgRKycwjbnACsy89yIuBm4GPgtYC/gemA5cDLwUmbOj4htgPsj4q7MfGYK2/k/rdZwN6sNpJnUa8lM3wf2b/+9tNmQyMxHIuIXI+JXgBbt//nPA27IzI3ACxFxLzAfWNXhNl8F7qgePw6sz8zXIuJxYG41/whg34g4tpreAdgD6CokRkbWdbPawGm1hmdMryUzfR/Yv/130//mgqWTL/hbBhxL+xDTUuCdHayzgf9/vmPbMY9fy8zR6vHrwHqAzHw9IjbVMwR8MjPv7GBbkqQ+6eTE9VLgeNpBsQxYCSyMiFkR0QIOBR4Yt84aYF5EbBURuwEHTbGuO4FTI2JrgIh4V0TMmeJrSJLepElDIjNXA8PAc5n5PHAz7UNLjwF3A+dk5o/GrXY/7UNDjwOXAw9Psa4lwJPAw9Vltdcyzb7WXJIGwdDo6OjkSw2Ih+46e8JmZsrvk5jpx2PBfWD/9t/lOYmh0nPeJyFJKjIkJElFhoQkqciQkCQVGRKSpKJpdVnpAUdcNqOvbJCkXnMkIUkqMiQkSUWGhCSpyJCQJBUZEpKkIkNCklRkSEiSigwJSVKRISFJKjIkJElFhoQkqciQkCQVGRKSpCJDQpJUZEhIkooMCUlSkSEhSSoyJCRJRYaEJKnIkJAkFRkSkqSi2U0X0EsXnXlb0yVIUu1OPe99fXttRxKSpCJDQpJUZEhIkooMCUlSkSEhSSoyJCRJRX0PiYi4MCLO6vd2JEm950hCklTU85vpIuKjwFnAKLAK+N6Y5+YBfwNsV80/KTPXRsQi4BRgA/BkZh4fEXOALwDvruq8MDNv7XW9kqSyno4kImJv4HzgsMzcD/izcYt8BTg3M/cFHgcuqOafB+xfzT+lmnc+cHdmzgfeD1xWBYckqSa9HkkcBizLzBcBMvOnEQFAROwAvCUz762WvR64qXq8CvjbiLgFuKWadwRw9JjzGdsCuwNP9bhmSRpordbwhI97odchMUT7MNNUfRA4FDga+ItqRDIEHJOZ2cP6JGnaGRlZB7QDYtPjqdhcsPT6xPU/A8dFxM4AEbHTpicy8yVgbUQcUs36I+DeiNgK2C0z7wHOAd4CbA/cCXwyIoaq19q/x7VKkibR05DIzNXAZ2l/+D8GXDFukRNon1tYBcwDLgJmAV+NiMeBR4ArM/NnwGeArYFVEfFENS1JqtHQ6Gg3R4e2TBededv0aUaSOrTpq8LfxOGmodJz3ichSSoyJCRJRYaEJKnIkJAkFRkSkqSiaXV1EzDazZn96aLbKxumk5m+D+zf/r26SZJUG0NCklRkSEiSigwJSVKRISFJKjIkJElFhoQkqciQkCQVGRKSpCJDQpJUZEhIkooMCUlSkSEhSSoyJCRJRYaEJKnIkJAkFRkSkqQiQ0KSVGRISJKKDAlJUpEhIUkqmt10Ab10/4Jjmi6ha+9a8uWmS5Ckn+NIQpJUZEhIkooMCUlSkSEhSSoyJCRJRYaEJKnIkJAkFdUeEhHxct3blCR1x5GEJKmosTuuI2IIuBQ4ChgFLs7MGyPiauCOzFweETcDazPzpIg4GXh7Zn6qqZolaaZp8ms5fg+YB+wH7AI8GBErgZXAIcBy4K3ArtXyBwNLG6izFq3W8Bb1OoNspu8D+7f/XmoyJA4GbsjMjcALEXEvMB+4Dzg9IvYCngR2jIhdgfcAixqrts9GRta96ddotYZ78jqDbKbvA/u3/27631ywNHlOYmiimZn5HLAjcCTtUcV9wHHAy5k5c999SWpAkyGxElgYEbMiogUcCjxQPfct4HTeCImzqp+SpBo1GRI3A6uAx4C7gXMy80fVc/cBszPzaeBhYCcMCUmqXe3nJDJz++rnKHB29Wf8MtcB11WPXwPm1FmjJKnN+yQkSUWGhCSpyJCQJBUZEpKkIkNCklTU5B3XPfcbt/7djL7bUpJ6zZGEJKnIkJAkFRkSkqQiQ0KSVGRISJKKDAlJUpEhIUkqMiQkSUWGhCSpyJCQJBUZEpKkIkNCklRkSEiSigwJSVKRISFJKjIkJElFhoQkqciQkCQVGRKSpCJDQpJUZEhIkopmN11ALx1346lNlwDA4sMubboESeoJRxKSpCJDQpJUZEhIkooMCUlSkSEhSSoyJCRJRX0NiYiYGxFPTDD/oog4fJJ1L4yIs/pXnSRpMo3cJ5GZn25iu5KkqakjJGZFxBeB9wLPAQuAa4DbM3NZRHwAuAJ4EXgYeEdm/k617l4RsQLYHbgqM/+qhnolSZU6zknsASzOzL2BnwHHbHoiIrYFrgWOysyDgda4dfcEfhs4CLggIrauoV5JUqWOkcQzmflo9fghYO6Y5/YEvp+Zz1TTNwAfG/P832fmemB9RPwY+CXg2T7X+6a1WsMzcttbipm+D+zf/nupjpBYP+bxRuAXxkwPTXHdgfiuqZGRdY1st9UabmzbW4qZvg/s3/676X9zwdL0JbD/CrwjIuZW0wsbrEWSNE6jIZGZ/w18HLgjIr4JvAC81GRNkqQ39PXwTWauAfYZM335BIvdk5l7RsQQsBj4TrXsheNea58J1pUk9VHTh5sA/jQiHgVWAzvQvtpJkrQFaPxEcGZeCVzZdB2SpJ+3JYwkJElbKENCklRkSEiSiho/J9FLX194zYy+kUaSes2RhCSpyJCQJBUZEpKkIkNCklRkSEiSigwJSVKRISFJKjIkJElFhoQkqciQkCQVGRKSpCJDQpJUZEhIkooMCUlSkSEhSSoyJCRJRYaEJKnIkJAkFRkSkqQiQ0KSVGRISJKKZjddQC996Mxbmy5B0hR86bzDmi5Bk3AkIUkqMiQkSUWGhCSpyJCQJBUZEpKkIkNCklRkSEiSigwJSVKRISFJKurLHdcRcQZwUjW5BLgFuAP4NrA/8G/ARzPzlYg4ALgC2B54ETgxM5+PiBXV8u8H3gKcnJn39aNeSdLEeh4S1Yf+HwO/BgzR/qC/FwjaH/T3R8SXgI9HxOeBLwALMnMkIhYCn+WNgJmdmQdFxAeAC4DDe12vpOa0WsMD8ZqDpNf992MkcTBwc2b+F0BEfAM4BPhhZt5fLfNVYBHt0cU+wD9GBMAs4Pkxr/WN6udDwNw+1CqpQSMj63r6eq3WcM9fc5B02//mgqUfITFUmD86wfQQsDoz31NYZ331cyPT7MsIJWkQ9OPE9UrgwxGxXUTMAX4XuA/YPSI2hcFHgG8CCbQ2zY+IrSNi7z7UJEnqQs9DIjMfBr4MPED7fMQSYC3wFHBCRKwCdgKuycxXgWOBSyLiMeBR4L29rkmS1J2h0dHxR4F6LyLmArdn5j793M6Hzry1/81I6ple/z4Jz0l0fU6idJrA+yQkSWW1nAzOzDW0r2KSJA0QRxKSpCJDQpJUZEhIkoqm1Q1qt/3lAq9smMH9g/tgpvev3nMkIUkqMiQkSUWGhCSpyJCQJBUZEpKkIkNCklRkSEiSigwJSVKRISFJKjIkJElFtfzSIUnSYHIkIUkqMiQkSUWGhCSpyJCQJBUZEpKkIkNCklRkSEiSigby15dGxJHA54FZwJLM/Ny457cBvgIcAPwEWJiZa+qus1866P9Q4CpgX+D4zFxWf5X900H/ZwB/AmwARoCTMvMHtRfaRx3sg1OATwAbgZeBj2Xmk7UX2ieT9T9muWOBm4D5mfmdGkvsqw7e/xOBy4Dnqll/nZlLutnWwI0kImIWsBg4CtgL+EhE7DVusZOBtZn5q8CVwCX1Vtk/Hfb/78CJwNfqra7/Ouz/EeDAzNwXWAZcWm+V/dXhPvhaZr47M+fR7v+Kmsvsmw77JyKGgUXAt+utsL867R+4MTPnVX+6CggYwJAADgKezszvZ+arwFJgwbhlFgDXV4+XAb8ZEUM11thPk/afmWsycxXwehMF9lkn/d+Tma9Uk/8CvK3mGvutk33wn2Mm5wDT6asVOvkMAPgM7YD8nzqLq0Gn/ffEIIbEW4Efjpl+tpo34TKZuQF4Cdi5lur6r5P+p7Op9n8y8A99rah+He2DiPhERHyP9gfloppqq8Ok/UfE/sBumXl7nYXVpNN/A8dExKqIWBYRu3W7sUEMiYlGBOP/l9TJMoNqOvfWiY77j4g/BA6kfWx2OuloH2Tm4sx8J3Au8Km+V1WfzfYfEVvRPsx8Zm0V1auT9/82YG51yPWfeOPIypQNYkg8C4xNxbcB/1FaJiJmAzsAP62luv7rpP/prKP+I+Jw4Hzg6MxcX1NtdZnq34GlwIf7WlG9Jut/GNgHWBERa4BfB5ZHxIF1Fdhnk77/mfmTMX/vv0j7Ip6uDOLVTQ8Ce0TE22mfuT8e+INxyywHTgC+BRwL3J2Z0+V/2530P51N2n91qOFa4MjM/HH9JfZdJ/tgj8z8bjX5QeC7TB+b7T8zXwJ22TQdESuAs6bR1U2dvP+7Zubz1eTRwFPdbmzgRhLVOYbTgDtpN/71zFwdERdFxNHVYtcBO0fE08AZwHnNVNt7nfQfEfMj4lng94FrI2J1cxX3Vofv/2XA9sBNEfFoRCxvqNy+6HAfnBYRqyPiUdr/Bk5oqNye67D/aavD/hdV7/9jtM9Hndjt9vx9EpKkooEbSUiS6mNISJKKDAlJUpEhIUkqMiQkSUWGhCSpyJCQJBX9L+dzZq3PdXMBAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"pd.Series(np.abs(clf.coef_[0])/(np.abs(clf.coef_[0]).sum()),index=['open','high','low','close','volume']).plot(kind='barh')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Decision trees\n",
"\n",
"Idea: greedily build a partition of the input space using cuts orthogonal to feature axes."
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from sklearn.tree import DecisionTreeClassifier\n",
"clf=DecisionTreeClassifier()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,\n",
" max_features=None, max_leaf_nodes=None,\n",
" min_impurity_decrease=0.0, min_impurity_split=None,\n",
" min_samples_leaf=1, min_samples_split=2,\n",
" min_weight_fraction_leaf=0.0, presort=False, random_state=None,\n",
" splitter='best')"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clf.fit(X_train_scaled,y_train)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training accuracy = 1.0\n",
"Validation accuracy = 0.5123301459486663\n"
]
}
],
"source": [
"print('Training accuracy =',np.mean(clf.predict(X_train_scaled)==y_train))\n",
"print('Validation accuracy =',np.mean(clf.predict(X_val_scaled)==y_val))"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAD4CAYAAAAZ1BptAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAD3tJREFUeJzt3XuQnXV9x/H3mjBQYMv1tPVCJmDhSwOFZAQcLTBKEcFWYgsFdFqhpO2AVcoAIhYrTMQOtwGsEyxT6ohjJWhGINIplymQYEbKnYRAvw43EUQMEplQnGDC6R/nybDu7m+zl3POs+fs+zWT2fNcfs/5nu+e7Gef29mBZrOJJEmjeVvdBUiSpi9DQpJUZEhIkooMCUlSkSEhSSqaXXcB7bRp0+bm+vWv113GtLPLLttjX36TPRnJnoxuJvSl0RgcKC3rqz2J2bNn1V3CtGRfRrInI9mT0c30vvRVSEiS2suQkCQVGRKSpCJDQpJUZEhIkooMCUlSkSEhSSoyJCRJRYaEJKmorz6W48HbP1t3CdPSc3UXMA3Zk5FmYk/mLPhi3SVMe+5JSJKKDAlJUpEhIUkqMiQkSUWGhCSpyJCQJBUZEpKkoraFRETMjYjH2rU9SVL93JOQJBWNecd1RFwC/Dgzr66mLwQ2AL8HHAM0gYsy84Zh404BDsrMT1fTtwCXZ+bdEfEasAQ4ElgP/CNwKTAHODMzl0fELOBi4APAtsCSzLymHS9YkjR+W/tYjqXAVcDV1fQJwCXA0cCBwO7A/RGxcgLPuQNwd2Z+LiJuBC4CPgTMA64DlgOLgFcz8+CI2BZYFRG3Z+YzE3geSRpTozHY1vX60ZghkZkPR8TvRMQ7gAat3/znA9dn5mbgpYhYARwMrB7nc74B3Fo9XgNszMxfR8QaYG41/yjggIg4vpreCdgbMCQktc26dRu2uk6jMTiu9XrZWCE4ng/4WwYcT+sQ01Lg3eMYs4nfPN+x3ZDHv87MZvX4TWAjQGa+GRFb6hkAPpOZt43juSRJHTKeE9dLgZNoBcUyYCVwYkTMiogGcDhw37AxzwLzI+JtEbEHcMgE67oNOD0itgGIiH0iYocJbkOSNEVbDYnMXAsMAi9k5ovAjbQOLT0K3Amcm5k/GzZsFa1DQ2uAy4GHJljXtcDjwEPVZbXX0Gcfay5JvWCg2Wxufa0e8eDtn+2fFyOp48bz9yRmyDmJgdIy75OQJBUZEpKkIkNCklRkSEiSigwJSVJRX13dBDT7/SqEyZgJV2dMlD0ZyZ6Mbib0xaubJEmTYkhIkooMCUlSkSEhSSoyJCRJRYaEJKnIkJAkFRkSkqQiQ0KSVGRISJKKDAlJUpEhIUkqMiQkSUWGhCSpyJCQJBUZEpKkIkNCklRkSEiSigwJSVKRISFJKjIkJElFs+suoJ0Wn/39ukuQpK47/bwPdGzb7klIkooMCUlSkSEhSSoyJCRJRYaEJKnIkJAkFXU8JCLiwog4p9PPI0lqP/ckJElFbb+ZLiI+CZwDNIHVwFNDls0H/hXYvpp/amauj4gzgNOATcDjmXlSROwAfBX4w6rOCzPz5nbXK0kqa+ueRETsB5wPHJGZBwL/MGyVbwKfy8wDgDXABdX884AF1fzTqnnnA3dm5sHAB4HLquCQJHVJu/ckjgCWZebLAJn5SkQAEBE7ATtn5opq3euA71aPVwP/ERE3ATdV844Cjh1yPmM7YA7wRJtrlqSe1mgMdmzb7Q6JAVqHmSbqT4DDgWOBf6r2SAaA4zIz21ifJPWddes2TGn8WCHT7hPX/w2cEBG7AUTErlsWZOarwPqIOKya9VfAioh4G7BHZt4FnAvsDOwI3AZ8JiIGqm0taHOtkqStaGtIZOZa4Mu0fvg/ClwxbJWTaZ1bWA3MBxYDs4BvRcQa4GHgysz8JfAlYBtgdUQ8Vk1LkrpooNmczNGh6Wnx2d/vnxcjSeM01Y8KbzQGB0rLvE9CklRkSEiSigwJSVKRISFJKjIkJElFfXV1E9Cc6k0l/ajRGJzyzTb9xp6MZE9GNxP64tVNkqRJMSQkSUWGhCSpyJCQJBUZEpKkIkNCklRkSEiSigwJSVKRISFJKjIkJElFhoQkqciQkCQVGRKSpCJDQpJUZEhIkooMCUlSkSEhSSoyJCRJRYaEJKnIkJAkFRkSkqSi2XUX0E6rFh5XdwnT0o/qLmAasicj9VNP9rn2G3WX0Dfck5AkFRkSkqQiQ0KSVGRISJKKDAlJUpEhIUkqMiQkSUVdD4mIeK3bzylJmhz3JCRJRbXdcR0RA8ClwDFAE7goM2+IiKuBWzNzeUTcCKzPzFMjYhGwZ2Z+oa6aJWmmqfNjOf4cmA8cCOwO3B8RK4GVwGHAcuCdwNur9Q8FltZQp6Qe02gMTuvt9ZI6Q+JQ4PrM3Ay8FBErgIOBe4AzI2Ie8DiwS0S8HXgfcEZt1UrqGevWbWjbthqNwbZubzoaKwTrPCcxMNrMzHwB2AU4mtZexT3ACcBrmdnf3ylJmmbqDImVwIkRMSsiGsDhwH3Vsh8CZ/JWSJxTfZUkdVGdIXEjsBp4FLgTODczf1YtuweYnZlPAg8Bu2JISFLXDTSbzbpraJtVC4/rnxcjadLa+fckZsg5iVEP/4P3SUiSxmBISJKKDAlJUpEhIUkqMiQkSUV9dXUT0Oz3qxAmYyZcnTFR9mQkezK6mdAXr26SJE2KISFJKjIkJElFhoQkqciQkCQVGRKSpCJDQpJUZEhIkooMCUlSkSEhSSoyJCRJRYaEJKnIkJAkFRkSkqQiQ0KSVGRISJKKDAlJUpEhIUkqMiQkSUWGhCSpyJCQJBXNrruAdjrhhtPrLkFSlyw54tK6S5gR3JOQJBUZEpKkIkNCklRkSEiSigwJSVKRISFJKupoSETE3Ih4bJT5iyPiyK2MvTAizulcdZKkranlPonM/GIdzytJmphuhMSsiPg34P3AC8BC4GvALZm5LCI+AlwBvAw8BOyVmX9ajZ0XEXcDc4CrMvNfulCvJKnSjXMSewNLMnM/4JfAcVsWRMR2wDXAMZl5KNAYNnZf4MPAIcAFEbFNF+qVJFW6sSfxTGY+Uj1+EJg7ZNm+wNOZ+Uw1fT3wd0OW/2dmbgQ2RsTPgd8Fnu9wvZJ6QKMx2JfPNd10IyQ2Dnm8GfitIdMDExzbV581JWny1q3b0JXnaTQGu/ZcdRkrBOu+BPZ/gb0iYm41fWKNtUiShqk1JDLzV8CngFsj4gfAS8CrddYkSXpLRw/fZOazwP5Dpi8fZbW7MnPfiBgAlgAPVOteOGxb+48yVpLUQXUfbgL424h4BFgL7ETraidJ0jRQ+4ngzLwSuLLuOiRJI02HPQlJ0jRlSEiSigwJSVLRQLPZrLuGdmr2+00vkzETbgaaKHsykj0Z3UzoS6MxWLyx2T0JSVKRISFJKjIkJElFhoQkqciQkCQVGRKSpCJDQpJUZEhIkooMCUlSkSEhSSoyJCRJRYaEJKnIkJAkFRkSkqQiQ0KSVGRISJKKDAlJUpEhIUkqMiQkSUWGhCSpyJCQJBXNrruAdvro2TfXXYKkGe7r5x1Rdwlt5Z6EJKnIkJAkFRkSkqQiQ0KSVGRISJKKDAlJUpEhIUkqMiQkSUWGhCSpqCN3XEfEWcCp1eS1wE3ArcD/AAuAHwGfzMzXI+I9wBXAjsDLwCmZ+WJE3F2t/0FgZ2BRZt7TiXolSaNre0hUP/T/GngvMEDrB/0KIGj9oF8VEV8HPhURXwG+CizMzHURcSLwZd4KmNmZeUhEfAS4ADiy3fVKUjs1GoN1l9BWndiTOBS4MTP/DyAivgccBvwkM1dV63wLOIPW3sX+wB0RATALeHHItr5XfX0QmNuBWiWprdat21B3CRM2VrB1IiQGCvObo0wPAGsz832FMRurr5vpsw8jlKRe0IkT1yuBj0XE9hGxA/BnwD3AnIjYEgYfB34AJNDYMj8itomI/TpQkyRpEtoeEpn5EPAN4D5a5yOuBdYDTwAnR8RqYFfga5n5BnA8cElEPAo8Ary/3TVJkiZnoNkcfhSo/SJiLnBLZu7fyef56Nk3d/7FSNIYevHvSTQag6XTBN4nIUkq68rJ4Mx8ltZVTJKkHuKehCSpyJCQJBUZEpKkoq5c3dRFzV6827HTGo3BnrwLtJPsyUj2ZHQzoS9e3SRJmhRDQpJUZEhIkooMCUlSkSEhSSoyJCRJRYaEJKnIkJAkFRkSkqQiQ0KSVNRvH8shSWoj9yQkSUWGhCSpyJCQJBUZEpKkIkNCklRkSEiSigwJSVLR7LoLGK+IOBr4CjALuDYzLx62fFvgm8B7gF8AJ2bms9WyzwOLgM3AGZl5WxdL75jJ9iQi5gJPAFmtem9mnta1wjtsHH05HLgKOAA4KTOXDVl2MvCFavKizLyuO1V31hR7shlYU00+l5nHdqfqzhtHX84C/gbYBKwDTs3MH1fL+vK9MlxP7ElExCxgCXAMMA/4eETMG7baImB9Zv4+cCVwSTV2HnASsB9wNHB1tb2eNpWeVJ7KzPnVv34KiPH05TngFODbw8buClwAvBc4BLggInbpdM2dNpWeVH415L3STwExnr48DByUmQcAy4BLq7F9+V4ZTU+EBK1vwpOZ+XRmvgEsBRYOW2chsCXJlwF/HBED1fylmbkxM58Bnqy21+um0pN+ttW+ZOazmbkaeHPY2A8Dd2TmK5m5HriD1i8WvW4qPeln4+nLXZn5ejV5L/Cu6nG/vldG6JWQeCfwkyHTz1fzRl0nMzcBrwK7jXNsL5pKTwD2jIiHI2JFRBzW6WK7aCrf75n8XhnLdhHxQETcGxEfa29ptZpoXxYB/zXJsT2rV0JitN9+h3/oVGmd8YztRVPpyYvAnMxcAJwFfDsifrvN9dVlKt/vmfxeGcuczDwI+ARwVUS8uz1l1W7cfYmIvwQOAi6b6Nhe1ysh8Tywx5DpdwE/La0TEbOBnYBXxjm2F026J9Wht18AZOaDwFPAPh2vuDum8v2eye+Vosz8afX1aeBuYEE7i6vRuPoSEUcC5wPHZubGiYztB71yddP9wN4RsSfwAq0T0Z8Yts5y4GTgh8DxwJ2Z2YyI5bR+U74CeAewN3Bf1yrvnKn0pEErLDZHxF60evJ090rvqPH0peQ24J+HnIA8Cvh8+0vsukn3pOrF65m5MSJ2B/6I6uRtH9hqXyJiAXANcHRm/nzIon59r4zQE3sS1fH0T9P6xjwBfCcz10bE4ojYcrXFvwO7RcSTtA6hnFeNXQt8B3gcuBX4+8zc3O3X0G5T6QlwOLA6Ih6ldUL7tMx8pbuvoDPG05eIODgingf+ArgmItZWY18BvkTrh8f9wOJ+6MtUegL8AfBA9V65C7g4Mx/v/qtov3H+H7oM2BH4bkQ8Uv3S2bfvldH49yQkSUU9sSchSaqHISFJKjIkJElFhoQkqciQkCQVGRKSpCJDQpJU9P8r/rcv5nvqPwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"pd.Series(clf.feature_importances_,index=['open','high','low','close','volume']).plot(kind='barh')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Random Forests\n",
"\n",
"Idea: Build several decision trees with controlled randomness and average their decisions."
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from sklearn.ensemble import RandomForestClassifier\n",
"clf=RandomForestClassifier()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/yhuangcc/anaconda3/envs/mafs6010u/lib/python3.7/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
]
},
{
"data": {
"text/plain": [
"RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',\n",
" max_depth=None, max_features='auto', max_leaf_nodes=None,\n",
" min_impurity_decrease=0.0, min_impurity_split=None,\n",
" min_samples_leaf=1, min_samples_split=2,\n",
" min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=None,\n",
" oob_score=False, random_state=None, verbose=0,\n",
" warm_start=False)"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clf.fit(X_train_scaled,y_train)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training accuracy = 0.978213977566868\n",
"Validation accuracy = 0.5113236034222446\n"
]
}
],
"source": [
"print('Training accuracy =',np.mean(clf.predict(X_train_scaled)==y_train))\n",
"print('Validation accuracy =',np.mean(clf.predict(X_val_scaled)==y_val))"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAD4CAYAAAAZ1BptAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAEipJREFUeJzt3X2wXHV9x/H3JRdB8QoB1pYKmaDilwJiUgGrBSqICFbBFgpYy4PQWrCKDg+C9QEGYQbQEawDlJEq4ANBMwaiVqJTICAjBYGQEOjX8qSCqEEiE4sTJN7+cc4t601+yd17d89uru/XTObunqf93LMn+9nzsHuHRkdHkSRpXTbpdwBJ0uCyJCRJRZaEJKnIkpAkFVkSkqSi4X4H6KbnnlszunLlM/2OsZaZM1/EIOaCwc02qLlgcLOZq3ODmq3pXK3WyFBp3LTakxgentHvCOs0qLlgcLMNai4Y3Gzm6tygZhukXNOqJCRJ3WVJSJKKLAlJUpElIUkqsiQkSUWWhCSpyJKQJBVZEpKkIktCklQ0NJ3+6NBd3zl9+vwykqatWXM/vt7xrdYIK1asaijNH9DXckiSusuSkCQVWRKSpCJLQpJUZElIkoosCUlSkSUhSSrqWklExOyIuK9by5Mk9Z97EpKkouH1jYyIC4AfZeal9f2zgVXAHwMHA6PAuZl57bj5jgP2yMz31fe/CXwqM2+OiF8DlwAHACuBfwEuBGYBH8zMhRExAzgfeCOwGXBJZl7ejV9YkjRx6y0JYB5wMXBpff8I4ALgIOA1wLbAnRFxSwePuQVwc2aeERELgHOBNwO7AFcBC4ETgKczc8+I2Ay4LSK+k5mPdPA4kjSQWq2RrkzThPWWRGbeExEvjYg/AVpU7/znANdk5hrg5xGxGNgTWDrBx3wWuKG+vQxYnZm/jYhlwOx6+IHA7hFxeH1/S2AnwJKQtNHb0Pcy9eG7m4rjNrQnATAfOJzqENM84BUTmOc5fv98x+Ztt3+bmWNfxPc7YDVAZv4uIsbyDAHvz8xFE3gsSVKPTOTE9TzgKKqimA/cAhwZETMiogXsC9wxbp5HgTkRsUlE7ADs1WGuRcBJEbEpQES8KiK26HAZkqQp2mBJZOZyYAR4PDOfABZQHVq6F7gR+FBm/mzcbLdRHRpaBnwKuLvDXFcA9wN315fVXs7E9nokSV3k35OQpIb59yQkSdOCJSFJKrIkJElFloQkqciSkCQVTaurm4DRJq8ImKimr1ToxKBmG9RcMLjZzNW5Qc3m1U2SpI2CJSFJKrIkJElFloQkqciSkCQVWRKSpCJLQpJUZElIkoosCUlSkSUhSSqyJCRJRZaEJKnIkpAkFVkSkqQiS0KSVGRJSJKKLAlJUpElIUkqsiQkSUWWhCSpyJKQJBUN9ztAN51z6jf6HUGSeuKkM9/Yl8d1T0KSVGRJSJKKLAlJUpElIUkqsiQkSUWWhCSpqOclERFnR8RpvX4cSVL3uSchSSrq+ofpIuIY4DRgFFgKPNQ2bg7wb8CL6uHHZ+bKiDgZOBF4Drg/M4+KiC2AzwKvrnOenZnXdzuvJKmsq3sSEbEr8BFg/8x8DfCBcZNcDZyRmbsDy4Cz6uFnAnPr4SfWwz4C3JiZewL7AZ+si0OS1JBu70nsD8zPzCcBMvOpiAAgIrYEtsrMxfW0VwFfq28vBb4cEdcB19XDDgQOaTufsTkwC3igy5klaeC1WiN9edxul8QQ1WGmTv0VsC9wCPCxeo9kCDgsM7OL+SRpo7RixaqeLXt9BdTtE9f/CRwREdsARMTWYyMy82lgZUTsUw86GlgcEZsAO2TmTcCHgK2AFwOLgPdHxFC9rLldzipJ2oCulkRmLgfOo3rxvxf49LhJjqU6t7AUmAOcA8wAvhQRy4B7gIsy81fAJ4BNgaURcV99X5LUoKHR0ckcHRpM55z6jenzy0hSm15+VXirNTJUGufnJCRJRZaEJKnIkpAkFVkSkqQiS0KSVDStrm4CRnv5gZPJarVGevpBmKkY1GyDmgsGN5u5Ojeo2ZrO5dVNkqRJsSQkSUWWhCSpyJKQJBVZEpKkIktCklRkSUiSiiwJSVKRJSFJKrIkJElFloQkqciSkCQVWRKSpCJLQpJUZElIkoosCUlSkSUhSSqyJCRJRZaEJKnIkpAkFVkSkqSiodHR0X5n6JrbDj1s+vwykv4gvOqKK9ca1mqNsGLFqsYytFojQ6Vx7klIkoosCUlSkSUhSSqyJCRJRZaEJKnIkpAkFVkSkqSixksiIn7d9GNKkibHPQlJUtFwvx44IoaAC4GDgVHg3My8NiIuBW7IzIURsQBYmZnHR8QJwI6Z+dF+ZZakPzR9Kwngb4A5wGuAbYE7I+IW4BZgH2Ah8DJgu3r6vYF5fcgpST3Tao10NLxp/SyJvYFrMnMN8POIWAzsCdwKfDAidgHuB2ZGxHbA64GT+5ZWknpgXd/R1IfvbiqO6+c5iXV+oVRmPg7MBA6i2qu4FTgC+HVmNrfWJEl9LYlbgCMjYkZEtIB9gTvqcd8HPsjzJXFa/VOS1KB+lsQCYClwL3Aj8KHM/Fk97lZgODMfBO4GtsaSkKTG+fckJKmP/HsSkqSNliUhSSqyJCRJRZaEJKnIkpAkFU2rq5uA0SavCJiopq9U6MSgZhvUXDC42czVuUHN5tVNkqSNgiUhSSqyJCRJRZaEJKnIkpAkFVkSkqQiS0KSVGRJSJKKLAlJUpElIUkqsiQkSUWWhCSpyJKQJBVZEpKkIktCklRkSUiSiiwJSVKRJSFJKrIkJElFloQkqciSkCQVDfc7QDcdce1J/Y4gSR27ZP8L+x2hyD0JSVKRJSFJKrIkJElFloQkqciSkCQVWRKSpKKelkREzI6I+9Yx/JyIOGAD854dEaf1Lp0kaUP68jmJzPx4Px5XktSZJkpiRkR8DngD8DhwKHAZ8M3MnB8RbwU+DTwJ3A28PDPfVs+7S0TcDMwCLs7Mf20grySp1sQ5iZ2ASzJzV+BXwGFjIyJic+By4ODM3BtojZt3Z+AtwF7AWRGxaQN5JUm1JvYkHsnMJfXtu4DZbeN2Bh7OzEfq+9cA72kb/63MXA2sjohfAH8EPNbjvJLUqFZrZELD+qGJkljddnsN8MK2+0MdzjutvmtKkgBWrFj1e/dbrZG1hvXS+gqp35fA/jfw8oiYXd8/so9ZJEnj9LUkMvM3wHuBGyLie8DPgaf7mUmS9LyeHr7JzEeB3druf2odk92UmTtHxBBwCfCDetqzxy1rt3XMK0nqoX4fbgL4x4hYAiwHtqS62kmSNAD6fiI4My8CLup3DknS2gZhT0KSNKAsCUlSkSUhSSoaGh0d7XeGbhpt8gMoE9X0B2M6MajZBjUXDG42c3VuULP14cN0xQ82uychSSqyJCRJRZaEJKnIkpAkFVkSkqQiS0KSVGRJSJKKLAlJUpElIUkqsiQkSUWWhCSpyJKQJBVZEpKkIktCklRkSUiSiiwJSVKRJSFJKrIkJElFloQkqciSkCQVWRKSpKLhfgfoprefen2/I0hS4z5/5v49W7Z7EpKkIktCklRkSUiSiiwJSVKRJSFJKrIkJElFloQkqciSkCQVWRKSpKKefOI6Ik4Bjq/vXgFcB9wA/BcwF/ghcExmPhMRrwU+DbwYeBI4LjOfiIib6+n3A7YCTsjMW3uRV5K0bl0vifpF/93A64Ahqhf6xUBQvdDfFhGfB94bEZ8BPgscmpkrIuJI4DyeL5jhzNwrIt4KnAUc0O28krSxa7VGerbsXuxJ7A0syMz/BYiIrwP7AD/JzNvqab4EnEy1d7Eb8N2IAJgBPNG2rK/XP+8CZvcgqyRt9FasWDWl+ddXMr0oiaHC8NF13B8Clmfm6wvzrK5/rmGafRmhJG0MenHi+hbgHRHxoojYAvhr4FZgVkSMlcE7ge8BCbTGhkfEphGxaw8ySZImoeslkZl3A1cCd1Cdj7gCWAk8ABwbEUuBrYHLMvNZ4HDggoi4F1gCvKHbmSRJkzM0Ojr+KFD3RcRs4JuZuVsvH+ftp17f+19GkgbMVP+eRKs1UjpN4OckJElljZwMzsxHqa5ikiRtRNyTkCQVWRKSpCJLQpJU1MjVTQ0aneonD3uh1RqZ8icie2VQsw1qLhjcbObq3KBmazqXVzdJkibFkpAkFVkSkqQiS0KSVGRJSJKKLAlJUpElIUkqsiQkSUWWhCSpyJKQJBVNt6/lkCR1kXsSkqQiS0KSVGRJSJKKLAlJUpElIUkqsiQkSUWWhCSpaLjfAdYnIg4CPgPMAK7IzPPHjd8MuBp4LfBL4MjMfLQe92HgBGANcHJmLprIMnuZKyLeDJwPvAB4Fjg9M2+s57kZ2A74Tb2YAzPzFw3lmg08AGQ96e2ZeWI9z2uBK4EXAv8BfCAzO/5wzRSyvQs4vW3S3YE/y8wlDa2zfYGL68c9KjPnt407FvhofffczLyqHj7ldTbZXBExB7gMeAnVtn9eZl5bj7sS+Evg6Xoxx2Xmkk5yTSVbPW4NsKy+++PMPKQeviMwD9gauBs4OjOfbSJXROwHXNQ26c71+OsaXGenAP8APAesAI7PzB/V43q2nU3EwO5JRMQM4BLgYGAX4J0Rscu4yU4AVmbmK6me5AvqeXcBjgJ2BQ4CLo2IGRNcZs9yAU8Cb8/MVwPHAl8cN9+7MnNO/a/TF7up5AJ4qO2xT2wbfhnwHmCn+t9BneSaarbM/PJYLuBo4NFx/0l7vc5+DBwHfGXcvFsDZwGvA/YCzoqImfXoKa2zqeQCngGOycyxbf/iiNiqbfzpbetrMi92U8kG8Ju2xz+kbfgFwEWZuROwkmp7aCRXZt7Uto3tT7UOv9M2SRPr7B5gj8zcHZgPXFjP27PtbKIGtiSoVsiDmflw/Y5iHnDouGkOBa6qb88H3hQRQ/XweZm5OjMfAR6slzeRZfYsV2bek5k/rYcvBzav30F3w1TW1zpFxHbASzLz+/U7lKuBd/Qx2zuBaybx+JPOlZmPZuZS4Hfj5n0L8N3MfCozVwLfBQ7q0jqbdK7M/GFm/k99+6fAL4BWh4/fk2wl9fO8P9XzDtV20Ng6G+dw4NuZ+UyHjz/VbDe1PebtwPb17V5uZxMyyCXxMuAnbfcfq4etc5rMfI5ql3Cb9cw7kWX2Mle7w4B7MnN127AvRMSSiPjY+l68e5Rrx4i4JyIWR8Q+bdM/toFlNpFtzJGsXRK9XmedztuNddaN7ZSI2Ivq0OZDbYPPi4ilEXHRJN+gTDXb5hHxg4i4PSLGXtS2AX5VP++TWWY3co05irW3sabX2QnAtzcwb7f+b27QIJfEuv7Djz/eVpqm0+FN5QIgInal2r3+p7bx76oPQ+1T/zu6wVxPALMycy5wCvCViHjJBJfZ62wARMTrgGcy87628U2ss07nbWobW6/6neYXgXdn5tg75w9THW/fk+rY/xkd5upGtlmZuQfwd1SHwl7RhWV2I9fYOns1sKhtcKPrLCL+HtgD+OQG5u3W/80NGuSSeAzYoe3+9sBPS9NExDCwJfDUeuadyDJ7mYuI2B5YQHXc+P/f4WXm4/XPVVTHTPdqKld9WO6X9ePfRfXO81X19Nu3zT+Z9TWlbG3j13qH19A663TebqyzKW2ndcF/C/hoZt4+Njwzn8jM0Xrv9Qt0vr6mnG3scGtmPgzcDMylOle3Vf28d7zMbuSqHQEsyMzftuVtbJ1FxAHAR4BD2o4w9HI7m5BBLok7gZ0iYseIeAHVi8TCcdMspDoBDNWxxBvr43MLgaMiYrP6qomdgDsmuMye5apPIH4L+HBm3jY2cUQMR8S29e1NgbcB99GZqeRq1SfXiIiXU62vhzPzCWBVRPx5fSjnGOD6DnNNKVudaRPgb6mO5VIPa2qdlSwCDoyImfWJxAOBRV1aZ5POVU+/ALg6M782btx29c8hquPXna6vqWabOXa4pn7u/gK4v36eb6J63qHaDhpbZ23WOufV1DqLiLnA5VQF0X4BRi+3swkZ2JKoj0++j2olPQB8NTOXR8Q5ETF2VcS/A9tExINUh0nOrOddDnwVuB+4AfjnzFxTWmZTuer5Xgl8rD6OviQiXgpsBiyKiKXAEuBx4HMN5toXWBoR91KdPDwxM8fexZ8EXEF18v8hnj9W2lS2sXyP1e8+xzSyziJiz4h4jKqkLo+I5fW8TwGfoHoBuBM4p1vrbCq5qN4N7wsc17aNzanHfTkillFdgrotcG4nubqQ7U+BH9Tb2U3A+Zl5fz3uDOCU+vnfhmp7aCoXUV0GvgOweNyiG1lnVIeXXgx8rX7OFtbz9mw7myj/noQkqWhg9yQkSf1nSUiSiiwJSVKRJSFJKrIkJElFloQkqciSkCQV/R9Vf7U19z60YgAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"pd.Series(clf.feature_importances_,index=['open','high','low','close','volume']).plot(kind='barh')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Boosting\n",
"Idea: Boosting is an ensemble technique that attempts to create a strong classifier from a number of weak classifiers.\n",
"\n",
"- AdaBoost:\n",
"- GradientBoosting: "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### AdaBoost\n",
"AdaBoost is a meta-estimator that begins by fitting a classifier on the original dataset and then fits additional copies of the classifier on the same dataset but where the weights of incorrectly classified instances are adjusted such that subsequent classifiers focus more on difficult cases."
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from sklearn.ensemble import AdaBoostClassifier\n",
"clf=AdaBoostClassifier()"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,\n",
" learning_rate=1.0, n_estimators=50, random_state=None)"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clf.fit(X_train_scaled,y_train)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training accuracy = 0.5125107851596203\n",
"Validation accuracy = 0.5093105183694011\n"
]
}
],
"source": [
"print('Training accuracy =',np.mean(clf.predict(X_train_scaled)==y_train))\n",
"print('Validation accuracy =',np.mean(clf.predict(X_val_scaled)==y_val))"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAD4CAYAAAAZ1BptAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAEDBJREFUeJzt3X2wXHV9x/H3NWGgQMrjtvUpE6HwpQEhGQGrAqOWImghtlCCTisWWguClAEELRYYxI6APFgnUKa0I46FgKlAoFPQKQ/BjJZngoF+LU8iiBgkUihOMOH2jz0Zrpf7u9mbPbvn7vp+zWTunj3nd/b7vedmP/e35+zekdHRUSRJmsgbmi5AkjR9GRKSpCJDQpJUZEhIkooMCUlS0cymC6jT2rXrRlevfrnpMmq1zTabY0+DYRj7sqfB0G1PrdaskdK6oZpJzJw5o+kSamdPg2MY+7KnwdDLnoYqJCRJ9TIkJElFhoQkqciQkCQVGRKSpCJDQpJUZEhIkooMCUlSkSEhSSoaqo/luOdbn266hNo92XQBPTCMPcFw9jUoPc2ef0bTJQwtZxKSpCJDQpJUZEhIkooMCUlSkSEhSSoyJCRJRYaEJKmotpCIiDkR8f269idJap4zCUlS0aTvuI6Ic4EfZuYl1fJZwIvA7wAHAaPAOZl59bhxHwf2zMzjq+UbgS9l5m0R8RKwCNgfWA38LXAeMBs4MTOXRsQM4IvAe4FNgUWZeVkdDUuSOrehj+VYDFwMXFItHw6cCxwI7AFsD9wVEcum8JhbALdl5mkRcS1wDvCHwFzgCmApcDTwQmbuFRGbAssj4luZ+fgUHkfSr4lWa1ZPtx8Evepp0pDIzPsi4rci4k1Ai/Zv/vOAqzJzHfBsRNwO7AWs6PAxXwFuqm4/CKzJzF9GxIPAnOr+A4DdI+KwankrYCfAkJD0OqtWvdjxtq3WrCltPwi67WmygOnkA/6WAIfRfolpMbBjB2PW8qvnOzYbc/uXmTla3X4VWAOQma9GxPp6RoBPZebNHTyWJKlHOjlxvRg4gnZQLAGWAQsjYkZEtID9gDvHjXkCmBcRb4iItwJ7T7Gum4FjI2ITgIjYOSK2mOI+JEld2mBIZOZKYBbwdGY+A1xL+6WlB4BbgFMz8yfjhi2n/dLQg8CXgHunWNflwEPAvdVltZcxZB9rLkmDYGR0dHTDWw2Ie7716eFpRlLHpvL3JDwnMeH4kdI63ychSSoyJCRJRYaEJKnIkJAkFRkSkqSiobqs9B0HnO9VCwNgGHuC4exrGHvS1DiTkCQVGRKSpCJDQpJUZEhIkooMCUlSkSEhSSoyJCRJRYaEJKnIkJAkFRkSkqQiQ0KSVGRISJKKDAlJUpEhIUkqMiQkSUWGhCSpyJCQJBUZEpKkIkNCklRkSEiSigwJSVLRzKYLqNPZJ9/QdAmNOvYz7226BElDxpmEJKnIkJAkFRkSkqQiQ0KSVGRISJKKDAlJUlHPQyIizoqIU3r9OJKk+jmTkCQV1f5muoj4GHAKMAqsAB4ds24e8I/A5tX9R2Xm6og4ATgGWAs8lJlHRMQWwFeAt1d1npWZ19ddrySprNaZRETsCpwOvD8z9wD+ZtwmXwNOy8zdgQeBM6v7PwPMr+4/prrvdOCWzNwLeB9wfhUckqQ+qXsm8X5gSWY+B5CZz0cEABGxFbB1Zt5ebXsF8I3q9grgXyPiOuC66r4DgEPGnM/YDJgNPFxzzUOj1ZrVdAkdG6Rap2IY+7KnwdCrnuoOiRHaLzNN1YeA/YBDgL+rZiQjwKGZmTXWN9RWrXqx6RI60mrNGphap2IY+7KnwdBtT5MFTN0nrv8TODwitgOIiG3Xr8jMF4DVEbFvddefA7dHxBuAt2bmrcCpwNbAlsDNwKciYqTa1/yaa5UkbUCtIZGZK4Ev0H7yfwC4cNwmR9I+t7ACmAecDcwAvh4RDwL3ARdl5s+BzwObACsi4vvVsiSpj2q/uikzr6B9vmGidfcDvz/Bqn0m2PYXwF/XW50kaSp8n4QkqciQkCQVGRKSpCJDQpJUZEhIkopqv7qpSWdccLBvkpGkGjmTkCQVGRKSpCJDQpJUZEhIkooMCUlSkSEhSSoyJCRJRYaEJKnIkJAkFRkSkqQiQ0KSVGRISJKKDAlJUpEhIUkqMiQkSUWGhCSpyJCQJBUZEpKkIkNCklRkSEiSigwJSVLRzKYLqNPyBYc2XULtftB0AT0wjD3BcPbVi552vvyrPdiresWZhCSpyJCQJBUZEpKkIkNCklRkSEiSigwJSVKRISFJKup7SETES/1+TEnSxnEmIUkqauwd1xExApwHHASMAudk5tURcQlwU2YujYhrgdWZeVREHA28LTM/11TNkvTrpsmP5fgTYB6wB7A9cFdELAOWAfsCS4E3A2+stt8HWNxAnZJq1GrNarqEaVFD3XrVU5MhsQ9wVWauA56NiNuBvYA7gBMjYi7wELBNRLwReBdwQmPVSqrFqlUvNvr4rdasxmuoW7c9TRYwTZ6TGJnozsx8GtgGOJD2rOIO4HDgpcwcriMrSdNckyGxDFgYETMiogXsB9xZrfsucCKvhcQp1VdJUh81GRLXAiuAB4BbgFMz8yfVujuAmZn5CHAvsC2GhCT13cjo6GjTNdRm+YJDh6cZaUg1/fckPCcx4fgJX/4H3ychSZqEISFJKjIkJElFhoQkqciQkCQVNfmO69q95/p/86qFATCMPcFw9jWMPWlqnElIkooMCUlSkSEhSSoyJCRJRYaEJKnIkJAkFRkSkqQiQ0KSVGRISJKKDAlJUpEhIUkqMiQkSUWGhCSpyJCQJBUZEpKkIkNCklRkSEiSigwJSVKRISFJKjIkJElFhoQkqWhm0wXU6fCrj226BKkRi95/XtMlaEg5k5AkFRkSkqQiQ0KSVGRISJKKDAlJUpEhIUkq6mlIRMSciPj+BPefHRH7b2DsWRFxSu+qkyRtSCPvk8jMM5p4XEnS1PQjJGZExD8B7waeBhYAlwI3ZuaSiPggcCHwHHAvsENm/lE1dm5E3AbMBi7OzH/oQ72SpEo/zknsBCzKzF2BnwOHrl8REZsBlwEHZeY+QGvc2F2ADwB7A2dGxCZ9qFeSVOnHTOLxzLy/un0PMGfMul2AxzLz8Wr5KuATY9b/e2auAdZExE+B3wae6nG90sBptWYN5L6bYk+d60dIrBlzex3wG2OWR6Y4dqg+a0qqy6pVL/Zkv63WrJ7tuyn2NPH4kqYvgf1vYIeImFMtL2ywFknSOI2GRGb+AvgkcFNEfAd4FnihyZokSa/p6cs3mfkEsNuY5S9NsNmtmblLRIwAi4C7q23PGrev3SYYK0nqoaZfbgL4q4i4H1gJbEX7aidJ0jTQ+IngzLwIuKjpOiRJrzcdZhKSpGnKkJAkFRkSkqSixs9J1OmahZf6JpkBMIw9wfD2pV9vziQkSUWGhCSpyJCQJBUZEpKkIkNCklRkSEiSigwJSVKRISFJKjIkJElFhoQkqciQkCQVGRKSpCJDQpJUZEhIkooMCUlSkSEhSSoyJCRJRYaEJKnIkJAkFRkSkqQiQ0KSVDSz6QLqdPDJ1zddgiT13Q0XLOjZvp1JSJKKDAlJUpEhIUkqMiQkSUWGhCSpyJCQJBUZEpKkIkNCklRkSEiSinryjuuIOAk4qlq8HLgOuAn4L2A+8APgY5n5ckS8A7gQ2BJ4Dvh4Zj4TEbdV278P2Bo4OjPv6EW9kqSJ1R4S1ZP+XwDvBEZoP9HfDgTtJ/rlEfEvwCcj4svAV4AFmbkqIhYCX+C1gJmZmXtHxAeBM4H9665XkoZBqzWrJ/vtxUxiH+DazPw/gIj4JrAv8KPMXF5t83XgBNqzi92Ab0cEwAzgmTH7+mb19R5gTg9qlaShsGrVixs9drKA6UVIjBTuH51geQRYmZnvKoxZU31dx5B9GKEkDYJenLheBnw4IjaPiC2APwbuAGZHxPow+AjwHSCB1vr7I2KTiNi1BzVJkjZC7SGRmfcCXwXupH0+4nJgNfAwcGRErAC2BS7NzFeAw4BzI+IB4H7g3XXXJEnaOCOjo+NfBapfRMwBbszM3Xr5OAeffH3vm5GkaeaGCxZ0e06idJrA90lIksr6cjI4M5+gfRWTJGmAOJOQJBUZEpKkIkNCklTUl6ub+mi0mzP801GrNaurqxamo2HsCYazL3saDN325NVNkqSNYkhIkooMCUlSkSEhSSoyJCRJRYaEJKnIkJAkFRkSkqQiQ0KSVGRISJKKhu1jOSRJNXImIUkqMiQkSUWGhCSpyJCQJBUZEpKkIkNCklRkSEiSimY2XUCnIuJA4MvADODyzPziuPWbAl8D3gH8DFiYmU9U6z4LHA2sA07IzJv7WHrRxvYUEXOAh4GsNv1eZh7Tt8In0UFP+wEXA7sDR2TmkjHrjgQ+Vy2ek5lX9KfqyXXZ0zrgwWrxycw8pD9VT66Dnk4C/hJYC6wCjsrMH1brBvU4TdbTtDxO0FFfxwDH0X5+ewn4RGY+VK3r+rlvIGYSETEDWAQcBMwFPhIRc8dtdjSwOjN/F7gIOLcaOxc4AtgVOBC4pNpfo7rpqfJoZs6r/k2XgOikpyeBjwNXjhu7LXAm8E5gb+DMiNim1zVvSDc9VX4x5jhNiyeeDnu6D9gzM3cHlgDnVWMH+ThN2FNl2h0n6LivKzPz7Zk5j3ZPF1Zja3nuG4iQoP3D+EhmPpaZrwCLgQXjtlkArP+NZgnwBxExUt2/ODPXZObjwCPV/prWTU/T1QZ7yswnMnMF8Oq4sR8Avp2Zz2fmauDbtH+wm9ZNT9NVJz3dmpkvV4vfA95S3R7k41TqaTrrpK//HbO4BbD+YzRqee4blJB4M/CjMctPVfdNuE1mrgVeALbrcGwTuukJ4G0RcV9E3B4R+/a62A51870e5OM0mc0i4u6I+F5EfLje0jbaVHs6GviPjRzbL930BNPzOEGHfUXEcRHxKO2ZxAlTGbshgxISE/32PP5Dp0rbdDK2Cd309AwwOzPnAycBV0bEb9Zc38bo5ns9yMdpMrMzc0/go8DFEbFjPWV1peOeIuLPgD2B86c6ts+66Qmm53GCDvvKzEWZuSNwGq+dL6rlWA1KSDwFvHXM8luAH5e2iYiZwFbA8x2ObcJG91RNH38GkJn3AI8CO/e84g3r5ns9yMepKDN/XH19DLgNmF9ncRupo54iYn/gdOCQzFwzlbEN6Kan6XqcYOrf78XA+plQLcdqUK5uugvYKSLeBjxN+2TMR8dtsxQ4EvgucBhwS2aORsRS2r9pXwi8CdgJuLNvlZd101OLdlisi4gdaPf0WP9KL+qkp5Kbgb8fcxL0AOCz9Zc4ZRvdU9XLy5m5JiK2B97Dr54sbcoGe4qI+cBlwIGZ+dMxqwb2OJV6msbHCTrra6fM/J9q8UPA+tu1PPcNxEyiej3+eNo/oA8D12Tmyog4OyLWX4nwz8B2EfEI7ZdgPlONXQlcAzwE3AQcl5nr+t3DeN30BOwHrIiIB2if0D4mM5/vbwev10lPEbFXRDwF/ClwWUSsrMY+D3ye9n+Ku4CzB70n4PeAu6vjdCvwxfWXJjapw5+984EtgW9ExP3VL1sDfZwo9MQ0PU7QcV/HR8TKiLif9vPEkdXYWp77/HsSkqSigZhJSJKaYUhIkooMCUlSkSEhSSoyJCRJRYaEJKnIkJAkFf0/l9q6AkrfhFwAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"pd.Series(clf.feature_importances_,index=['open','high','low','close','volume']).plot(kind='barh')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### GradientBoosting\n",
"GradientBoosting builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differentiable loss functions"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from sklearn.ensemble import GradientBoostingClassifier\n",
"clf=GradientBoostingClassifier()"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"GradientBoostingClassifier(criterion='friedman_mse', init=None,\n",
" learning_rate=0.1, loss='deviance', max_depth=3,\n",
" max_features=None, max_leaf_nodes=None,\n",
" min_impurity_decrease=0.0, min_impurity_split=None,\n",
" min_samples_leaf=1, min_samples_split=2,\n",
" min_weight_fraction_leaf=0.0, n_estimators=100,\n",
" n_iter_no_change=None, presort='auto', random_state=None,\n",
" subsample=1.0, tol=0.0001, validation_fraction=0.1,\n",
" verbose=0, warm_start=False)"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clf.fit(X_train_scaled,y_train)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training accuracy = 0.709879206212252\n",
"Validation accuracy = 0.5118268746854555\n"
]
}
],
"source": [
"print('Training accuracy =',np.mean(clf.predict(X_train_scaled)==y_train))\n",
"print('Validation accuracy =',np.mean(clf.predict(X_val_scaled)==y_val))"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAD4CAYAAAD//dEpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAD7RJREFUeJzt3X2MZQV5x/HvuEuk4hZBb1vfNisWHwsU2QgYFYhSVLAVbKGAphULbYNWqRFUrFYIYiNgAGuAklKjxirqVgRtCpryKtGCvC0u9DEIqCDqKivBYlZZp3/cM3GczO48s/fce+be+X4SMve83fOc557lN+ftztT09DSSJC3kCV0XIEkaDwaGJKnEwJAklRgYkqQSA0OSVLKy6wLa9PjjW6Y3bXqs6zI6t8suT2K598Ee2IMZ9mHhHvR6q6Yq7zNRRxgrV67ouoQlwT7YA7AHM+xDez2YqMCQJA2PgSFJKjEwJEklBoYkqcTAkCSVGBiSpBIDQ5JUYmBIkkoMDElSyUR9NcgtX35H1yUsCd/tuoAlwB7Ygxnz9WH12veNvI5J4BGGJKnEwJAklRgYkqQSA0OSVGJgSJJKDAxJUomBIUkqaS0wImJNRHyzrfeTJC0tHmFIkkq2+aR3RJwFfCczL2yGTwceBX4POAyYBs7MzM/MWe6NwL6Z+ZZm+EvAhzLz2oj4GXABcAiwCfgH4GxgNfC2zLwiIlYAHwReBjwRuCAzL25jgyVJ22ehrwa5FDgfuLAZPho4CzgUeAHwNODmiLh+EevcCbg2M98VEZcBZwKvAPYAPg5cAZwAPJKZ+0XEE4EbI+LLmXnfItYjSfPq9VZ1XcLItbHN2wyMzLwtIn4nIp4B9OgfEewDfDoztwA/jIjrgP2A9cV1/gK4snl9J7A5M38ZEXcCa5rxrwT2joijmuGdgd0BA0PSwDZufLTrEkaq11u1zW2uhknlywfXAUfRPw11KfDcwjKP85vXR3ac9fqXmTndvP4VsBkgM38VETP1TAFvzcyrCuuSJI1A5aL3pcCx9ENjHXA9cExErIiIHnAQcNOcZe4H9omIJ0TEs4H9F1nXVcCbImIHgIh4XkTstMj3kCS1aMHAyMwNwCrgwcx8CLiM/umnO4CrgXdm5g/mLHYj/dNHdwIfAm5dZF2XAHcBtza36l7MhH0VuySNm6np6emF5xoTt3z5HZOzMZKGZrn9PYzCNYypyvv4HIYkqcTAkCSVGBiSpBIDQ5JUYmBIkkom6i4pYHq5PcE5n4XuiFgO7IE9mGEfvEtKkjRiBoYkqcTAkCSVGBiSpBIDQ5JUYmBIkkoMDElSiYEhSSoxMCRJJQaGJKnEwJAklRgYkqQSA0OSVGJgSJJKDAxJUomBIUkqMTAkSSUGhiSpxMCQJJUYGJKkEgNDklSysusC2nTGyV/sugRJGrk3nfqykazHIwxJUomBIUkqMTAkSSUGhiSpxMCQJJUYGJKkkqEHRkScHhGnDHs9kqTh8ghDklTS+oN7EfEG4BRgGlgPfHvWtH2AfwGe1Iw/PjM3RcRJwInA48BdmXlsROwEfAT4w6bO0zPz8rbrlSTVtHqEERF7Au8BDs7MFwB/P2eWTwDvysy9gTuB05rxpwJrm/EnNuPeA1ydmfsBLwfOaUJEktSBto8wDgbWZeaPATLz4YgAICJ2Bp6Smdc1834c+Fzzej3w7xHxBeALzbhXAofPuv6xI7AauLvlmiVprPV6q1qZZyFtB8YU/VNRi/XHwEHA4cA/NkcqU8CRmZkt1idJE2fjxke3Ob3XW7XNeaph0vZF7/8Gjo6IpwJExK4zEzLzEWBTRBzYjPpL4LqIeALw7My8Bngn8BTgycBVwFsjYqp5r7Ut1ypJWoRWAyMzNwAfoB8EdwDnzpnlOPrXItYD+wBnACuAT0bEncBtwHmZ+VPg/cAOwPqI+GYzLEnqyNT09PacQVqazjj5i5OzMZJUtNDXmxdOSU1V1uNzGJKkEgNDklRiYEiSSgwMSVKJgSFJKpmou6SA6YUeYFkOFrojYjmwB/Zghn3wLilJ0ogZGJKkEgNDklRiYEiSSgwMSVKJgSFJKjEwJEklBoYkqcTAkCSVGBiSpBIDQ5JUYmBIkkoMDElSiYEhSSoxMCRJJQaGJKnEwJAklRgYkqQSA0OSVGJgSJJKDAxJUsnKrgto041HHNl1CUvCt7ouYAmwB9vfg+dd8rE2y9AE8QhDklRiYEiSSgwMSVKJgSFJKjEwJEklBoYkqcTAkCSVjDwwIuJno16nJGlwHmFIkko6e9I7IqaAs4HDgGngzMz8TERcCFyZmVdExGXApsw8PiJOAJ6Tme/tqmZJWs66/GqQPwP2AV4APA24OSKuB64HDgSuAJ4JPL2Z/wDg0g7qlJaVXm9V1yW0bhK3abHa6EGXgXEA8OnM3AL8MCKuA/YDbgDeFhF7AHcBu0TE04EXAyd1Vq20TGzc+GjXJbSq11s1cdu0WAv1oBomXV7DmJpvZGY+COwCHEr/aOMG4GjgZ5m5vD91SepQl4FxPXBMRKyIiB5wEHBTM+1rwNv4dWCc0vyUJHWky8C4DFgP3AFcDbwzM3/QTLsBWJmZ9wC3ArtiYEhSp6amp6e7rqE1Nx5x5ORsjNSRSft7GF7DKF3DmPcSwVw+hyFJKjEwJEklBoYkqcTAkCSVGBiSpJIun/Ru3Usv/49lfzcEeFcI2AOwB2qfRxiSpBIDQ5JUYmBIkkoMDElSiYEhSSoxMCRJJQaGJKnEwJAklRgYkqQSA0OSVGJgSJJKDAxJUomBIUkqMTAkSSUGhiSpxMCQJJUYGJKkEgNDklRiYEiSSgwMSVKJgSFJKlnZdQFtOvozb+q6BEkFFxx8dtclaDt4hCFJKjEwJEklBoYkqcTAkCSVGBiSpBIDQ5JUMtTAiIg1EfHNecafERGHLLDs6RFxyvCqkyQtRifPYWTm+7pYryRp+40iMFZExL8CLwEeBI4ALgK+lJnrIuLVwLnAj4Fbgd0y80+aZfeIiGuB1cD5mfnPI6hXkjSPUVzD2B24IDP3BH4KHDkzISJ2BC4GDsvMA4DenGWfD7wK2B84LSJ2GEG9kqR5jOII477MvL15fQuwZta05wP3ZuZ9zfCngb+dNf0/M3MzsDkifgT8LvDAkOuVNGS93qqJXt9S1EYPRhEYm2e93gL81qzhqUUuO1HffSUtVxs3PjqydfV6q0a6vqVooR5Uw6Tr22r/F9gtItY0w8d0WIskaRs6DYzM/DnwZuDKiPgq8EPgkS5rkiTNb6ineDLzfmCvWcMfmme2azLz+RExBVwAfKOZ9/Q577XXPMtKkkak61NSAH8TEbcDG4Cd6d81JUlaYjq/iJyZ5wHndV2HJGnblsIRhiRpDBgYkqQSA0OSVNL5NYw2ffaYi5b9Azrgg0pgD8AeqH0eYUiSSgwMSVKJgSFJKjEwJEklBoYkqcTAkCSVGBiSpBIDQ5JUYmBIkkoMDElSiYEhSSoxMCRJJQaGJKnEwJAklRgYkqQSA0OSVGJgSJJKDAxJUomBIUkqMTAkSSUGhiSpZGXXBbTpNSdf3nUJkibQR089uOsSlgSPMCRJJQaGJKnEwJAklRgYkqQSA0OSVGJgSJJKDAxJUomBIUkqMTAkSSVDedI7It4OHN8MXgJ8AbgS+B9gLfAt4A2Z+VhEvBA4F3gy8GPgjZn5UERc28z/cuApwAmZecMw6pUkLaz1wGgC4K+AFwFT9P+nfx0Q9P+nf2NEfBR4c0R8GPgIcERmboyIY4AP8OuwWZmZ+0fEq4HTgEParleSFtLrreq6hIG1sQ3DOMI4ALgsM/8PICI+DxwIfC8zb2zm+SRwEv2jjr2Ar0QEwArgoVnv9fnm5y3AmiHUKkkL2rjx0a5LGEivt2qb21ANk2EExtRWxk/PMzwFbMjMF29lmc3Nzy1M2BclStK4GcZF7+uB10bEkyJiJ+BPgRuA1RExEwyvA74KJNCbGR8RO0TEnkOoSZI0oNYDIzNvBT4G3ET/+sUlwCbgbuC4iFgP7ApclJm/AI4CzoqIO4DbgZe0XZMkaXBT09NzzxS1LyLWAF/KzL2GuZ7XnHz58DdG0rIz7n8Po3ANY2uXEn6Dz2FIkkpGciE5M++nfzeUJGlMeYQhSSoxMCRJJQaGJKlkJHdJjdD0uD+R2YaF7ohYDuyBPZhhH7xLSpI0YgaGJKnEwJAklRgYkqQSA0OSVGJgSJJKDAxJUomBIUkqMTAkSSUGhiSpZNK+GkSSNCQeYUiSSgwMSVKJgSFJKjEwJEklBoYkqcTAkCSVGBiSpJKVXRdQFRGHAh8GVgCXZOYH50x/IvAJ4IXAT4BjMvP+Ztq7gROALcBJmXnVCEtvzfb2ICLWAHcD2cz69cw8cWSFt6zQh4OA84G9gWMzc92saccB720Gz8zMj4+m6nYN2IMtwJ3N4Hcz8/DRVN2uQg/eDvw18DiwETg+M7/TTJuI/QAG7sOi9oWxOMKIiBXABcBhwB7A6yJijzmznQBsyszfB84DzmqW3QM4FtgTOBS4sHm/sTJIDxrfzsx9mv/GOSwqffgu8EbgU3OW3RU4DXgRsD9wWkTsMuya2zZIDxo/n7UvjGtYVHpwG7BvZu4NrAPObpadiP0AButDY1H7wlgEBv0P9Z7MvDczfwFcChwxZ54jgJnfEtYBfxQRU834SzNzc2beB9zTvN+4GaQHk2TBPmTm/Zm5HvjVnGVfBXwlMx/OzE3AV+j/EjFuBunBpKj04JrMfKwZ/DrwrOb1pOwHMFgfFm1cAuOZwPdmDT/QjJt3nsx8HHgEeGpx2XEwSA8AnhMRt0XEdRFx4LCLHaJBPs/ltC9sy44R8Y2I+HpEvLbd0kZmsT04Afiv7Vx2KRukD7DIfWFcAmO+35LnfgnW1uapLDsOBunBQ8DqzFwLvB34VET8dsv1jcogn+dy2he2ZXVm7gu8Hjg/Ip7bTlkjVe5BRPwFsC9wzmKXHQOD9AEWuS+MS2A8ADx71vCzgO9vbZ6IWAnsDDxcXHYcbHcPmtNxPwHIzFuAbwPPG3rFwzHI57mc9oWtyszvNz/vBa4F1rZZ3IiUehARhwDvAQ7PzM2LWXZMDNKHRe8L43KX1M3A7hHxHOBB+hexXz9nniuA44CvAUcBV2fmdERcQf836nOBZwC7AzeNrPL2DNKDHv3g2BIRu9Hvwb2jK71VlT5szVXAP826wPlK4N3tlzh0292DZtsfy8zNEfE04KX85kXQcbFgDyJiLXAxcGhm/mjWpEnZD2CAPmzPvjAWRxjN+fi30P+g7wY+m5kbIuKMiJi5sv9vwFMj4h76p11ObZbdAHwWuAu4Evi7zNwy6m0Y1CA9AA4C1kfEHfQvhp+YmQ+PdgvaUelDROwXEQ8Afw5cHBEbmmUfBt5P/x/ZzcAZ49iHQXoA/AHwjWZfuAb4YGbeNfqtGEzx38M5wJOBz0XE7c0vjxOzH8BgfWA79gX/HoYkqWQsjjAkSd0zMCRJJQaGJKnEwJAklRgYkqQSA0OSVGJgSJJK/h9YJEKQDIKtAAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"pd.Series(clf.feature_importances_,index=['open','high','low','close','volume']).plot(kind='barh')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Summary\n",
"\n",
"- Simplest one maybe the best one\n",
"- LogisticRegression is the best although little better than random guessing.\n",
"- Scikit-Learn provides essential tools for machine learning. \n",
"- It is more than training classifiers!\n",
"- Try it for yourself!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Questions?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}