
Around the year of 2012…

Speech Recognition: TIMIT

Deep Learning revolution: success and challenges

Deep Learning for Speech Recognition

Performance improvements in spoken word error rate over the years on the
TIMIT acoustic-phonetic continuous speech corpus dataset.
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Computer Vision: ImageNetBackground Info

Instance of Common Task Framework, 1

ImageNet (subset):
1.2 million training images
100,000 test images
1000 classes

ImageNet large-scale visual recognition Challenge

source: https://www.linkedin.com/pulse/must-read-path-breaking-papers-image-classification-muktabh-mayank
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Deep Learning



Depth as function of yearBackground Info

Depth as function of year

[He et al., 2016]
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AlexNet (2012): ArchitectureBackground Info

AlexNet (2012)
Architecture

8 layers: first 5 convolutional, rest fully connected
ReLU nonlinearity
Local response normalization
Max-pooling
Dropout

Source: [Krizhevsky et al., 2012]
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AlexNet (2012): ReLU

Background Info

AlexNet (2012)
ReLU

Non-saturating function and therefore faster convergence
when compared to other nonlinearities
Problem of dying neurons

Source: https://ml4a.github.io/ml4a/neural_networks/
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AlexNet (2012): Max Pooling
Background Info

AlexNet (2012)
Max pooling

Chooses maximal entry in every non-overlapping window
of size 2× 2, for example

Source: Stanford’s CS231n github
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CNN for Classification

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201740

preview:



AlexNet (2012): Dropout
Background Info

AlexNet (2012)
Dropout

Source: [Srivastava et al., 2014]

Zero every neuron with probability 1− p

At test time, multiply every neuron by p
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AlexNet (2012): Training
Background Info

AlexNet (2012)
Training

Stochastic gradient descent
Mini-batches
Momentum
Weight decay (ℓ2 prior on the weights)

Filters trained in the first layer
Source: [Krizhevsky et al., 2012]
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VGG (2014) [Simonyan-Zisserman’14]Background Info

VGG (2014) [Simonyan and Zisserman, 2014]

Deeper than AlexNet: 11-19 layers versus 8
No local response normalization
Number of filters multiplied by two every few layers
Spatial extent of filters 3× 3 in all layers
Instead of 7× 7 filters, use three layers of 3× 3 filters

Gain intermediate nonlinearity
Impose a regularization on the 7× 7 filters

Source: https://blog.heuritech.com/2016/02/29/ 33 / 50



ResNet (2015) [HGRS-15]Background Info

ResNet (2015)

Solves problem by adding
skip connections
Very deep: 152 layers
No dropout
Stride
Batch normalization

Source: Deep Residual Learning for Image Recognition
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Stride
Background Info

Stride

Source:https://adeshpande3.github.io/A-Beginner%

27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/
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Stride 1

Stride 2



Batch Normalization
Background Info

Batch normalization

Algorithm 2 Batch normalization [Ioffe and Szegedy, 2015]
Input: Values of x over minibatch x1 . . . xB, where x is a certain
channel in a certain feature vector
Output: Normalized, scaled and shifted values y1 . . . yB

1: µ = 1
B

∑B
b=1 xb

2: σ2 = 1
B

∑B
b=1(xb − µ)2

3: x̂b = xb−µ√
σ2+ϵ

4: yb = γx̂b + β

Accelerates training and makes initialization less sensitive
Zero mean and unit variance feature vectors
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Complexity vs. Accuracy of Different 
Networks

Background Info

Characteristics of different networks

Source: Eugenio Culurciello
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Deep Learning Softwares

´ Pytorch (developed by Yann LeCun and Facebook):
´ http://pytorch.org/tutorials/

´ Tensorflow (developed by Google based on Caffe)
´ https://www.tensorflow.org/tutorials/

´ Theano (developed by Yoshua Bengio)
´ http://deeplearning.net/software/theano/tutorial/

´ Keras (based on Tensorflow or Pytorch)
´ https://www.manning.com/books/deep-learning-with-

python?a_aid=keras&a_bid=76564dff



Visualizing NN and 
Transfer Learning



Visualizing Deep Neural Networks

Background Info

Visualizing deep convolutional neural networks using
natural pre-images

Filters in first layer of CNN are easy to visualize, while
deeper ones are harder
Activation maximization seeks input image maximizing
output of the i-th neuron in the network
Objective

x∗ = arg min
x

R(x)− ⟨Φ(x), ei⟩ (3)

ei is indicator vector
R(x) is simple natural image prior
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Visualizing VGGBackground Info

Visualizing VGG

Gabor-like images in first layer
More sophisticated structures in the rest

[Mahendran and Vedaldi, 2016]
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Visual Neuroscience: Hubel/Wiesel, …

The Deep Learning Tsunami

Why now?

Where are the Intellectuals?

Relevant Theoretical Approaches

Course Structure

Neuroscience

Harmonic Analysis

Approximation Theory

Statistics/ML

Visual Neuroscience – Hubel/Wiesel et seq.

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?

The Deep Learning Tsunami

Why now?

Where are the Intellectuals?

Relevant Theoretical Approaches

Course Structure

Neuroscience

Harmonic Analysis

Approximation Theory

Statistics/ML

Simple Cells/Complex Cells

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?



Olshausen and Field 1996

The Deep Learning Tsunami

Why now?

Where are the Intellectuals?

Relevant Theoretical Approaches

Course Structure

Neuroscience

Harmonic Analysis

Approximation Theory

Statistics/ML

Prediction/Inspiration by Neuroscience

Experimental Neuroscience uncovered the
I ... neural architecture of Retina/LGN/V1/V2/V3/ etc
I ... existence of neurons with weights and activation functions

(simple cells)
I ... pooling neurons (complex cells)

All these features are somehow present in today’s sucessful Deep
Learning systems

Neuroscience Deep Network
Simple cells First layer
Complex celle Pooling Layer

Grandmother cells Last layer

Theorists Olshausen and Field (Nature, 1996) demonstrated that
receptive fields learned from image patches
Deep Learning works often pay lip service to neuroscience
inspiration.

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?



First layers learned …

The Deep Learning Tsunami

Why now?

Where are the Intellectuals?

Relevant Theoretical Approaches

Course Structure

Neuroscience

Harmonic Analysis

Approximation Theory

Statistics/ML

Olshausen and Field (1996)

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?

The Deep Learning Tsunami

Why now?

Where are the Intellectuals?

Relevant Theoretical Approaches

Course Structure

Neuroscience

Harmonic Analysis

Approximation Theory

Statistics/ML

Olshausen and Field

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?



Transfer Learning?
Background Info

Transfer learning

Filters learned in first layers of a network are transferable
from one task to another
When solving another problem, no need to retrain the
lower layers, just fine tune upper ones
Is this simply due to the large amount of images in
ImageNet?
Does solving many classification problems simultaneously
result in features that are more easily transferable?
Does this imply filters can be learned in unsupervised
manner?
Can we characterize filters mathematically?
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Deep Learning revolution: success and challenges

Training Deep Convolutional Networks

Training Deep Convolutional Networks

Zaid Harchaoui DeepNets and Kernel-based Methods November 1st, 2017 18 / 85



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201790

Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 
this and train

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

3. Bigger dataset

Freeze these

Train these

With bigger 
dataset, train 
more layers

Lower learning rate 
when finetuning; 
1/10 of original LR 
is good starting 
point

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on 
top layer

You’re in 
trouble… Try 
linear classifier 
from different 
stages

quite a lot of 
data

Finetune a 
few layers

Finetune a 
larger number 
of layers
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Takeaway for your projects and beyond:
Have some dataset of interest but it has < ~1M images?

1. Find a very large dataset that has 
similar data, train a big ConvNet there

2. Transfer learn to your dataset

Deep learning frameworks provide a “Model Zoo” of 
pretrained models so you don’t need to train your own
Caffe: https://github.com/BVLC/caffe/wiki/Model-Zoo
TensorFlow: https://github.com/tensorflow/models
PyTorch: https://github.com/pytorch/vision 



Style-Content Features



Example: The Noname Lake in PKU



Left: Vincent Van Gogh, Starry Night
Right: Claude Monet, Twilight Venice
Bottom: William Turner, Ship Wreck



Application of Deep Learning: 
Content-Style synthetic 
pictures 
By “neural-style”





Neural Style

´ J C Johnson’s Website: https://github.com/jcjohnson/neural-style

´ A torch implementation of the paper 
´ A Neural Algorithm of Artistic Style, 

´ by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.

´ http://arxiv.org/abs/1508.06576



Style-Content Feature Extraction



Style Features as Second Order Statistics

Figure 4: Best performance of different classic model
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Figure 5: Process to extract style features

Experiments Then we apply K-Nearest Neighours (KNN), Support Vector Machine (SVM) and114

Decision Tree classifiers with leave-one-out validation. Due to memory constraint, we resize the115

picture to 256/512/1024 pixels. We divide the picture into 16 patches in KNN classifier to augment116

training data. The result is shown in Table 2. We find that since the dimension is too high (above117

100,000), SVM is not applicable. KNN performs better on features got from low-definition pictures118

with 16 seperated patches and Decision Tree performs better on features got from low-definition119

pictures.120

Table 2: Leave-one-out result with style features
Feature Extraction Model TPR TNR Classification Accuracy

Style Features-256
KNN 0.833 0.889 0.857

SVM 1.000 0.000 0.571
Decision Tree 0.667 0.556 0.619

Style Features-512
KNN 1 0.333 0.714
SVM 1.000 0.000 0.571

Decision Tree 0.833 0.889 0.857

Style Features-1024
KNN 0.667 0.444 0.571
SVM 1.000 0.000 0.571

Decision Tree 0.833 0.889 0.857

Predictions Upon our style-features models, we give our prediction to the 7 pictures remain121

disputed (Pic1/7/10/20/23/25/26). We pick three Models performed best in validation. We predict122
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Loss for Content (1st order statistics) and 
Style (2nd order statistics of outputs)

Generally each layer in the network defines a non-linear filter bank whose complexity in-

creases with the position of the layer in the network. Hence a given input image ~x is encoded

in each layer of the CNN by the filter responses to that image. A layer with Nl distinct filters

has Nl feature maps each of size Ml, where Ml is the height times the width of the feature map.

So the responses in a layer l can be stored in a matrix F l 2 RNl⇥Ml where F l
ij is the activation

of the ith filter at position j in layer l. To visualise the image information that is encoded at

different layers of the hierarchy (Fig 1, content reconstructions) we perform gradient descent

on a white noise image to find another image that matches the feature responses of the original

image. So let ~p and ~x be the original image and the image that is generated and P l and F l their

respective feature representation in layer l. We then define the squared-error loss between the

two feature representations

Lcontent(~p, ~x, l) =
1

2

X

i,j

�
F l
ij � P l

ij

�2 . (1)

The derivative of this loss with respect to the activations in layer l equals

@Lcontent

@F l
ij

=

(�
F l � P l

�
ij

if F l
ij > 0

0 if F l
ij < 0 .

(2)

from which the gradient with respect to the image ~x can be computed using standard error

back-propagation. Thus we can change the initially random image ~x until it generates the same

response in a certain layer of the CNN as the original image ~p. The five content reconstructions

in Fig 1 are from layers ‘conv1 1’ (a), ‘conv2 1’ (b), ‘conv3 1’ (c), ‘conv4 1’ (d) and ‘conv5 1’

(e) of the original VGG-Network.

On top of the CNN responses in each layer of the network we built a style representation

that computes the correlations between the different filter responses, where the expectation is

taken over the spatial extend of the input image. These feature correlations are given by the

Gram matrix Gl 2 RNl⇥Nl , where Gl
ij is the inner product between the vectorised feature map
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i and j in layer l:

Gl
ij =

X

k

F l
ikF

l
jk. (3)

To generate a texture that matches the style of a given image (Fig 1, style reconstructions),

we use gradient descent from a white noise image to find another image that matches the style

representation of the original image. This is done by minimising the mean-squared distance

between the entries of the Gram matrix from the original image and the Gram matrix of the

image to be generated. So let ~a and ~x be the original image and the image that is generated and

Al and Gl their respective style representations in layer l. The contribution of that layer to the

total loss is then

El =
1

4N2
l M

2
l

X

i,j

�
Gl

ij � Al
ij

�2 (4)

and the total loss is

Lstyle(~a, ~x) =
LX

l=0

wlEl (5)

where wl are weighting factors of the contribution of each layer to the total loss (see below for

specific values of wl in our results). The derivative of El with respect to the activations in layer

l can be computed analytically:

@El

@F l
ij

=

(
1

N2
l M

2
l

�
(F l)T

�
Gl � Al

��
ji

if F l
ij > 0

0 if F l
ij < 0 .

(6)

The gradients of El with respect to the activations in lower layers of the network can be readily

computed using standard error back-propagation. The five style reconstructions in Fig 1 were

generated by matching the style representations on layer ‘conv1 1’ (a), ‘conv1 1’ and ‘conv2 1’

(b), ‘conv1 1’, ‘conv2 1’ and ‘conv3 1’ (c), ‘conv1 1’, ‘conv2 1’, ‘conv3 1’ and ‘conv4 1’ (d),

‘conv1 1’, ‘conv2 1’, ‘conv3 1’, ‘conv4 1’ and ‘conv5 1’ (e).

To generate the images that mix the content of a photograph with the style of a painting

(Fig 2) we jointly minimise the distance of a white noise image from the content representation
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Thank you!


