Around the year of 2012...

Speech Recognition: TIMIT

Computer Vision: ImageNet

• ImageNet (subset):

- 1.2 million training images
- 100,000 test images
- 1000 classes
- ImageNet large-scale visual recognition Challenge

Depth as function of year

AlexNet (2012): Architecture

- 8 layers: first 5 convolutional, rest fully connected
- ReLU nonlinearity
- Local response normalization
- Max-pooling
- Dropout

AlexNet (2012): ReLU

- Non-saturating function and therefore faster convergence when compared to other nonlinearities
- Problem of dying neurons

Source: https://ml4a.github.io/ml4a/neural_networks/

AlexNet (2012): Max Pooling

• Chooses maximal entry in every non-overlapping window of size 2×2 , for example

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

Source: Stanford's CS231n github

CNN for Classification

AlexNet (2012): Dropout

- $\bullet\,$ Zero every neuron with probability 1-p
- At test time, multiply every neuron by p

AlexNet (2012): Training

- Stochastic gradient descent
- Mini-batches
- Momentum
- Weight decay (ℓ_2 prior on the weights)

Filters trained in the first layer

Source: [Krizhevsky et al., 2012]

VGG (2014) [Simonyan-Zisserman'14]

- Deeper than AlexNet: 11-19 layers versus 8
- No local response normalization
- Number of filters multiplied by two every few layers
- Spatial extent of filters 3×3 in all layers
- Instead of 7×7 filters, use three layers of 3×3 filters
 - Gain intermediate nonlinearity
 - Impose a regularization on the 7×7 filters

ResNet (2015) [HGRS-15]

- Solves problem by adding skip connections
- Very deep: 152 layers
- No dropout
- Stride
- Batch normalization

Stride 1

7 x 7 Input Volume

5 x 5 Output Volume

7 x 7 Input Volume

Stride 2

3 x 3 Output Volume

Stanford University

Batch Normalization

Algorithm 2 Batch normalization [loffe and Szegedy, 2015] Input: Values of x over minibatch $x_1 \dots x_B$, where x is a certain channel in a certain feature vector Output: Normalized, scaled and shifted values $y_1 \dots y_B$

1:
$$\mu = \frac{1}{B} \sum_{b=1}^{B} x_b$$

2:
$$\sigma^2 = \frac{1}{B} \sum_{b=1}^{B} (x_b - \mu)^2$$

3:
$$\hat{x}_b = \frac{x_b - \mu}{\sqrt{\sigma^2 + \epsilon}}$$

4:
$$y_b = \gamma \hat{x}_b + \beta$$

- Accelerates training and makes initialization less sensitive
- Zero mean and unit variance feature vectors

Complexity vs. Accuracy of Different Networks

Deep Learning Softwares

- Pytorch (developed by Yann LeCun and Facebook):
 - <u>http://pytorch.org/tutorials/</u>
- Tensorflow (developed by Google based on Caffe)
 - https://www.tensorflow.org/tutorials/
- Theano (developed by Yoshua Bengio)
 - <u>http://deeplearning.net/software/theano/tutorial/</u>
- Keras (based on Tensorflow or Pytorch)
 - https://www.manning.com/books/deep-learning-withpython?a_aid=keras&a_bid=76564dff

Visualizing NN and Transfer Learning

Visualizing Deep Neural Networks

- Filters in first layer of CNN are easy to visualize, while deeper ones are harder
- Activation maximization seeks input image maximizing output of the i-th neuron in the network
- Objective

$$x^* = \operatorname*{arg\,min}_{x} \mathcal{R}(x) - \langle \Phi(x), e_i \rangle$$

- e_i is indicator vector
- $\mathcal{R}(x)$ is simple natural image prior

Visualizing VGG

- Gabor-like images in first layer
- More sophisticated structures in the rest

Stanford Univ [Mahendran and Vedaldi, 2016]

Visual Neuroscience: Hubel/Wiesel, ...

architecture

Kandell et. al., Arinc. of Neural

Oxiented

Olshausen and Field 1996

Experimental Neuroscience uncovered the

- neural architecture of Retina/LGN/V1/V2/V3/ etc
- ... existence of neurons with weights and activation functions (simple cells)
- ... pooling neurons (complex cells)

All these features are somehow present in today's sucessful Deep Learning systems

Neuroscience	Deep Network
Simple cells	First layer
Complex celle	Pooling Layer
Grandmother cells	Last layer

Theorists Olshausen and Field (Nature, 1996) demonstrated that receptive fields learned from image patches

First layers learned ...

Efficient coding of natural images: Olshausen and Field, 1996

Network weights are adapted to maximize coding efficiency: minimizes redundancy and maximizes the independence of the outputs

Transfer Learning?

- Filters learned in first layers of a network are transferable from one task to another
- When solving another problem, no need to retrain the lower layers, just fine tune upper ones
- Is this simply due to the large amount of images in ImageNet?
- Does solving many classification problems simultaneously result in features that are more easily transferable?
- Does this imply filters can be learned in unsupervised manner?
- Can we characterize filters mathematically?

FC-1000 FC-4096 FC-4096 MaxPool		very similar dataset	very different dataset
Conv-512MaxPoolMore specificConv-512MaxPoolConv-256More genericMaxPoolMaxPool	very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
Conv-128 MaxPool Conv-64 Conv-64 Image	quite a lot of data	Finetune a few layers	Finetune a larger number of layers

Takeaway for your projects and beyond:

Have some dataset of interest but it has < ~1M images?

- 1. Find a very large dataset that has similar data, train a big ConvNet there
- 2. Transfer learn to your dataset

Deep learning frameworks provide a "Model Zoo" of pretrained models so you don't need to train your own

Caffe: <u>https://github.com/BVLC/caffe/wiki/Model-Zoo</u> TensorFlow: <u>https://github.com/tensorflow/models</u> PyTorch: <u>https://github.com/pytorch/vision</u>

Style-Content Features

Example: The Noname Lake in PKU

Neural Style

- J C Johnson's Website: <u>https://github.com/jcjohnson/neural-style</u>
- A torch implementation of the paper
 - A Neural Algorithm of Artistic Style,
 - by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.
 - http://arxiv.org/abs/1508.06576

Style-Content Feature Extraction

Loss for Content (1st order statistics) and Style (2nd order statistics of outputs)

$$\mathcal{L}_{content}(\vec{p}, \vec{x}, l) = \frac{1}{2} \sum_{i,j} \left(F_{ij}^l - P_{ij}^l \right)^2$$
$$\mathcal{L}_{style}(\vec{a}, \vec{x}) = \sum_{l=0}^L w_l E_l$$

$$E_{l} = \frac{1}{4N_{l}^{2}M_{l}^{2}}\sum_{i,j}\left(G_{ij}^{l} - A_{ij}^{l}\right)^{2}$$

$$G_{ij}^l = \sum_k F_{ik}^l F_{jk}^l.$$

Thank you!

