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Probability vs. Statistical Machine Learning
Probability vs. Statistical Machine Learning

Forward problem: Probability is a language to quantify uncertainty.

Inverse Problem: Statistics or Machine Learning
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Figure 1: Larry Wasserman’s classification of statistical learning vs. machine
learning in Computer Science
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Supervised vs. Unsupervised Learning

Supervised Learning

Data: (x , y), where x is data and y is label
Goal: learn a function to map x → y
Examples: classification (object detection, segmentation, image
captioning), regression, etc.
Golden standard: prediction!

Unsupervised Learning

Data: x , just data and no labels!
Goal: learn some hidden structure of data x
Examples: clustering (topological data analysis), dimensionality
reduction (geometric data analysis), representation learning
(CNN/RNN), density estimation (GAN), etc.
Golden standard: Non!
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Related Courses

Supervised Learning

Math 4432: Statistical Machine Learning
https://yuany-pku.github.io/2018_math4432/

Math 5470, Statistical Learning, by Bingyi JING
Math 6380o, Deep learning
(https://deeplearning-math.github.io/)
Best machine learning algorithms: neural networks, random forests,
and support vector machines

Unsupervised Learning

Math 4432: Statistical Machine Learning (PCA/clustering)
https://yuany-pku.github.io/2018_math4432/

CSIC 5011, Topological and Geometric Data Reduction
(https://yao-lab.github.io/2019_csic5011/)
Math 6380o, Deep learning (Generative models and GANs)
(https://deeplearning-math.github.io/)
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Today: Introduction to Supervised Learning

Basic and standard contents: supervised learning (regression and
classification)

Advanced topics: nonlinear models, tree methods, boosting, svm,
neural networks...

Emphasize model selection (such as regularization, validation) that
are directly related with learning/prediction.

Textbook A: Chapter 2 of An introduction to Statistical Learning
with Applications in R (ISLR)

Textbook B: Elements of Statistical Learning (ESL)
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Statistical (supervised) learning

Suppose that we observe a quantitative response Y and p different
predictors, X1,X2, . . . ,Xp. We assume that there is some relationship
between Y and X = (X1,X2, . . . ,Xp), which can be written in the very
general form

Y = f (X ) + ε, (1)

where f is some fixed but unknown function of X1, . . . ,Xp,and ε is a
random error term, which is independent of X and has mean zero. In this
formulation, f represents the systematic information that X provides
about Y .

In essence, statistical learning refers to a set of approaches for estimating
f . In this chapter we outline some of the key theoretical concepts that
arise in estimating f , as well as tools for evaluating the estimates obtained.

There are two main reasons that we may wish to estimate f : prediction
and inference.
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Prediction

In many situations, a set of inputs X are readily available, but the output Y
cannot be easily obtained. In the context of time series analysis, X could
correspond to Xt−1, . . . ,Xt−p , and Y corresponds to Xt .

We can predict Y using
Ŷ = f̂ (X ), (2)

where f̂ represents our estimate for f , and Ŷ represents the resulting prediction

for Y . The accuracy of Ŷ as a prediction for Y depends on two quantities:

reducible error: f̂ will not be a perfect estimate for f , and this
inaccuracy will introduce some error. This error is reducible because
we can potentially improve the accuracy of f̂ by using the most
appropriate statistical learning technique to estimate f .
irreducible error: Even if it were possible to form a perfect estimate
for f , so that our estimated response took the form Ŷ = f (X ), our
prediction would still have some error in it! This is because Y is also
a function of ε, which, by definition, cannot be predicted using X .
Therefore, variability associated with ε also affects the accuracy of
our predictions. This is known as the irreducible error, because no
matter how well we estimate f , we cannot reduce the error
introduced by ε.
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Why is the irreducible error larger than zero? The quantity ε may contain
unmeasured variables that are useful in predicting Y : since we don’t
measure them, f cannot use them for its prediction. The quantity ε may
also contain unmeasurable variation (any thoughts here?).

Consider a given estimate f̂ and a set of predictors X , which yields the
Ŷ = f̂ (X ). Assume for a moment that both f̂ and X are fixed. Then, it is
easy to show that

E(Y − Ŷ )2 = E[f (X ) + ε− f̂ (X )]2

= [f (X )− f̂ (X )]2︸ ︷︷ ︸
Reducible

+ Var(ε)︸ ︷︷ ︸
Irreducible

, (3)

where E(Y − Ŷ )2 represents the expected value of the squared difference
between the predicted and actual value of Y , and Var(ε) represents the
variance associated with the error term ε.

The focus of this course is on techniques for estimating f with the aim of
minimizing the reducible error. It is important to keep in mind that the
irreducible error will always provide an upper bound on the accuracy of
our prediction for Y . This bound is almost always unknown in practice.
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Inference

We are often interested in understanding the way that Y is affected as
X1, . . . ,Xp change. In this situation we wish to estimate f , but our goal
is not necessarily to make predictions for Y . We instead want to
understand the relationship between X and Y , or more specifically, to
understand how Y changes as a function of X1, . . . ,Xp.

Which predictors are associated with the response?

What is the relationship between the response and each predictor?

Can the relationship between Y and each predictor be adequately
summarized using a linear equation, or is the relationship more
complicated?

How much is the uncertainty of your prediction or estimation given
finite information?
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How to estimate f ?

Depending on whether our ultimate goal is prediction, inference, or a
combination of the two, different methods for estimating f may be
appropriate.

Assume that we have observed a set of n different data points.
These observations are called the training data because we will use
these observations to train, or teach, our method how to estimate f .

Our goal is to apply a statistical learning method to the training
data in order to estimate the unknown function f . In other words,
we want to find a function f̂ such that Y ≈ f̂ (X ) for any
observation (X ,Y ).

Most statistical learning methods for this task can be characterized
as either parametric or non-parametric.
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Parametric Methods

Parametric methods involve a two-step model-based approach.

First, we make an assumption about the functional form, or shape, of
f . For example, one very simple assumption is that f is linear in X :

f (X ) = β0 + β1X1 + β2X2 + · · ·+ βpXp. (4)

Once we have assumed that f is linear, the problem of estimating f
is greatly simplified. Instead of having to estimate an entirely
arbitrary p-dimensional function f (X ), one only needs to estimate
the p + 1 coefficients β0, β1, . . . , βp.
After a model has been selected, we need a procedure that uses the
training data to fit or train the model. That is, we want to find
values of these parameters such that

Y ≈ β0 + β1X1 + β2X2 + · · ·+ βpXp. (5)

The most common approach to fitting the model (4) is referred to
as (ordinary) least squares.

The model-based approach just described is referred to as parametric; it
reduces the problem of estimating f down to one of estimating a set of
parameters. Yuan Yao Overview
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Assuming a parametric form for f simplifies the problem of
estimating f because it is generally much easier to estimate a set of
parameters, such as β0, β1, . . . , βp in the linear model (4), than it is
to fit an entirely arbitrary function f .

The potential disadvantage of a parametric approach is that the
model we choose will usually not match the true unknown form of f .
If the chosen model is too far from the true f ,then our estimate will
be poor.

We can try to address this problem by choosing flexible models that
can fit many different possible functional forms flexible for f . But in
general, fitting a more flexible model requires estimating a greater
number of parameters. These more complex models can lead to a
phenomenon known as overfitting the data, which essentially means
they follow the errors, or noise, too closely.
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Non-parametric Methods

Non-parametric methods do not make explicit assumptions about
the functional form of f . Instead they seek an estimate of f that
gets as close to the data points as possible without being too rough
or wiggly.
Such approaches can have a major advantage over parametric
approaches: by avoiding the assumption of a particular functional
form for f , they have the potential to accurately fit a wider range of
possible shapes for f .
Any parametric approach brings with it the possibility that the
functional form used to estimate f is very different from the true f ,
in which case the resulting model will not fit the data well.
In contrast, non-parametric approaches completely avoid this
danger, since essentially no assumption about the form of f is made.
But non-parametric approaches do suffer from a major disadvantage:
since they do not reduce the problem of estimating f to a small
number of parameters, a very large number of observations (far
more than is typically needed for a parametric approach) is required
in order to obtain an accurate estimate for f .
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Figure 2: An illustrative example. Upper Left: A simulated Income data (red
dots) with its true generative model (blue surface). Upper Right: A fitted
Linear model (parametric). Lower Left: A fitted spline model (non-parametric).
Lower Right: A fitted rough spline model with zero errors on the training data.
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“No free lunch in statistics”

Why is it necessary to introduce so many different statistical
learning approaches, rather than just a single best method? There
is no free lunch in statistics: no one method dominates all others
over all possible data sets. On a particular data set, one specific
method may work best, but some other method may work better on
a similar but different data set.

Hence it is an important task to decide for any given set of data
which method produces the best results. Selecting the best
approach can be one of the most challenging parts of performing
statistical learning in practice.

In this section, we discuss some of the most important concepts that
arise in selecting a statistical learning procedure for a specific data
set.
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Measuring the Quality of Fit

In the regression setting, the most commonly-used measure is the mean
squared error (MSE), given by

MSE =
1

n

n∑
i=1

(yi − f̂ (xi ))2, (6)

where f (xi ) is the prediction that f̂ gives for the i-th observation.

The MSE in (6) is computed using the training data that was used to fit
the model, and so should more accurately be referred to as the training
MSE.

But in general, we do not really care how well the method works training
MSE on the training data. Rather, we are interested in the accuracy of
the predictions that we obtain when we apply our method to
previously unseen test data.

Suppose that we are interested test data in developing an algorithm to
predict a stock’s price based on previous stock returns. We can train the
method using stock returns from the past 6 months. But we don’t really
care how well our method predicts last week’s stock price. We instead
care about how well it will predict tomorrow’s price or next month’s price.
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To state it more mathematically, suppose that we fit our statistical
learning method on our training observations
{(x1, y1), (x2, y2), . . . , (xn, yn)} and we obtain the estimate f̂ .

We can then compute f̂ (x1), f̂ (x2), . . . , f̂ (xn). If these are
approximately equal to y1, y2, ..., yn, then the training MSE given by
(6) is small.

However, we are really not interested in whether f̂ (xi ) ≈ yi ; instead,
we want to know whether f̂ (x0) is approximately equal to y0, where
(x0, y0) is a previously unseen test observation not used to train
the statistical learning method.

We want to choose the method that gives the lowest test MSE, as
opposed to the lowest training MSE. In other words, if we had a
large number of test observations, we could compute

Ave(f̂ (x0)− y0)2, (7)

the average squared prediction error for these test observations
(x0, y0). We’d like to select the model for which the average of this
quantity-the test MSE-is as small as possible.
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How can we go about trying to select a method that minimizes the test
MSE? In some settings, we may have a test data set available-that is, we
may have access to a set of observations that were not used to train the
statistical learning method. We can then simply evaluate (7) on the test
observations, and select the learning method for which the test MSE is
smallest.

But what if no test observations are available? In that case, one might
imagine simply selecting a statistical learning method that minimizes the
training MSE (6). This seems like it might be a sensible approach, since
the training MSE and the test MSE appear to be closely related.

Unfortunately, there is a fundamental problem with this strategy: there is
no guarantee that the method with the lowest training MSE will also have
the lowest test MSE. Roughly speaking, the problem is that many
statistical methods specifically estimate coefficients so as to minimize the
training set MSE. For these methods, the training set MSE can be quite
small, but the test MSE is often much larger.
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Figure 3: Illustration. Left: Data simulated from f , shown in black. Three
estimates of f are shown: the linear regression line (orange curve), and two
smoothing spline fits (blue and green curves). Right: Training MSE (grey
curve), test MSE (red curve), and minimum possible test MSE over all
methods (dashed line). Squares represent the training and test MSEs for the
three fits shown in the left-hand panel.
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Comments on Left panel of Figure 3

The orange, blue and green curves illustrate three possible estimates
for f obtained using methods with increasing levels of flexibility. The
orange line is the linear regression fit, which is relatively inflexible.
The blue and green curves were produced using smoothing splines
with different levels of smoothness.

n∑
i=1

(yi − g(xi ))2 + λ

∫
g ′′(t)2dt (8)

where λ is a nonnegative tuning parameter. The function g that
minimizes (8) is known as a smoothing spline.
As λ tends to ∞, the function g tends to linear because

∫
g ′′(t)2dt

has to tend to 0.
It is clear that as the level of flexibility increases, the curves fit the
observed data more closely. The green curve is the most flexible and
matches the data very well; however, we observe that it fits the true
f (shown in black) poorly because it is too wiggly. By adjusting the
level of flexibility of the smoothing spline fit, we can produce many
different fits to this data.
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Comments on Right panel of Figure 3: Training MSE

The grey curve displays the average training MSE as a function of
flexibility, or more formally, the degrees of freedom which is a quantity
that summarizes the flexibility of a model. The orange, blue and green
squares indicate the MSEs associated with the corresponding curves in the
left-hand panel.

A more restricted and hence smoother curve has fewer degrees of freedom
than a wiggly curve, linear regression is at the most restrictive end, with
two degrees of freedom. The training MSE declines monotonically as
flexibility increases. In this example the true f is non-linear, and so the
orange linear fit is not flexible enough to estimate f well. The green curve
has the lowest training MSE of all three methods, since it corresponds to
the most flexible of the three curves fit in the left-hand panel.
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Comments on Right panel of Figure 3: Test MSE

In this example, we know the true function f , and so we can also
compute the test MSE over a very large test set, as a function of
flexibility. (Of course, in general f is unknown, so this will not be
possible.)

As with the training MSE, the test MSE initially declines as the level
of flexibility increases. However, at some point the test MSE levels
off and then starts to increase again. Consequently, the orange and
green curves both have higher test MSE. The blue curve minimizes
the test MSE, which should not be surprising given that visually it
appears to estimate f the best.

The horizontal dashed line indicates Var(ε), the irreducible error in
(3), which corresponds to the lowest achievable test MSE among all
possible methods.
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Overfitting

In the right-hand panel of Figure 3, as the flexibility of the statistical
learning method increases, we observe a monotone decrease in the
training MSE and a U-shape in the test MSE.

This is a fundamental property of statistical learning that holds regardless
of the particular data set at hand and regardless of the statistical method
being used. As model flexibility increases, training MSE will decrease,
but the test MSE may not.

When a given method yields a small training MSE but a large test MSE,
we are said to be overfitting the data. This happens because our
statistical learning procedure is working too hard to find patterns in the
training data, and may be picking up some patterns that are just caused
by random chance rather than by true properties of the unknown function
f .

When we overfit the training data, the test MSE will be very large
because the supposed patterns that the method found in the training data
simply don’t exist in the test data.
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Figure 4: More illustration. Details are as in Figure 3, using a different true f
that is much closer to linear. In this setting, linear regression provides a very
good fit to the data.

Yuan Yao Overview



What is Statistical (Supervised) Learning?
Assessing Model Accuracy

The Bias-Variance Trade-Off

0 20 40 60 80 100

−
1

0
0

1
0

2
0

X

Y

2 5 10 20

0
5

1
0

1
5

2
0

Flexibility

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Figure 5: More illustration. Details are as in Figure 3, using a different true f
that is far from linear. In this setting, linear regression provides a very poor fit
to the data (underfitting).
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In practice, one can usually compute the training MSE with relative
ease, but estimating test MSE is considerably more difficult because
usually no test data are available.

As the previous three examples illustrate, the flexibility level
corresponding to the model with the minimal test MSE can vary
considerably among data sets.

In Chapter 3, we discuss some approaches that can be used in
practice to estimate this minimum point, such as Cross-validation
which is method for estimating test MSE using the training data.
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The Bias-Variance Trade-Off

Let f (X ) be the true function which we aim at estimating from a
training data set D.

Let f̂ (X ;D) be the estimated function from the training data set D.

Are we really interested in

min
f̂

[
f (X )− f̂ (X ;D)

]2

? (9)

Fisher’s view: the measurements are a random selection from the
set of all possible measurements which form the true distribution!

What we really care is

min
f̂

ED

[
f (X )− f̂ (X ;D)

]2

, (10)

where randomness caused by random selection has been taken into
account.
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If we add and subtract ED(f̂ (X ;D)) inside the braces and then
expand, we obtain[

f (X )− f̂ (X ;D)
]2

=
[
f (X )− ED(f̂ (X ;D)) + ED(f̂ (X ;D))− f̂ (X ;D)

]2

=
[
f (X )− ED(f̂ (X ;D))

]2

+
[
ED(f̂ (X ;D))− f̂ (X ;D)

]2

+ 2
[
f (X )− ED[f̂ (X ;D)]

] [
ED[f̂ (X ;D)]− f̂ (X ;D)

]
.

Now we take the expectation of this expression with respect to D
and note that the final term will vanish, giving

ED
[
f (X )− f̂ (X ;D)

]2

=
[
f (X )− ED(f̂ (X ;D))

]2

︸ ︷︷ ︸
Bias2

+ED
[[

ED(f̂ (X ;D))− f̂ (X ;D)
]2
]

︸ ︷︷ ︸
Variance
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(a) High bias,

Low variance
(high precision)

(b) Low bias,
High variance
(low precision)

(c) High bias,
High variance
(low precision)

(d) Low bias

Low variance
(high precision)

Worst Best

Bias refers to the error that is introduced by approximating a
real-life problem, which may be extremely complicated, by a much
simpler model.

Variance refers to the amount by which f̂ would change if we
estimated it using a different training data set. Since the training
data are used to fit the statistical learning method, different training
data sets will result in a different f̂ . But ideally the estimate for f
should not vary too much between training sets.

Bias and variance trade-off: The optimal predictive acpability is
the one that leads to balance between bias and variance.

Yuan Yao Overview



What is Statistical (Supervised) Learning?
Assessing Model Accuracy

The Bias-Variance Trade-Off

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

2 5 10 20

0
5

1
0

1
5

2
0

Flexibility

MSE
Bias
Var

Figure 6: Squared bias (blue curve), variance (orange curve), Var(ε) (dashed
line), and test MSE (red curve) for the three data sets in Figures 3-5. The
vertical dotted line indicates the flexibility level corresponding to the smallest
test MSE.
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Bias-variance tradeoff

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 2
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FIGURE 2.11. Test and training error as a function
of model complexity.
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Figure 7: George Box: “Essentially, all models are wrong, but some are useful.”
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