Building Chinese Chat Bot with Controlled Sentence
Function

Lue Shen*
Department of Mathematics
Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong
lshenac@connect.ust.hk

Abstract

In this report, three sentence functions, say interrogative, imperative and declarative,
are implemented to control the generation of response to a Chinese sentence.
The proposed conversation model is able to produce informative responses with
controlled sentence functions, which is transformed from a latest research [[1]. A
data set with 2 million labeled Weibo post-response pairs is loaded for training, and
one WeChat API is utilized to construct a Chinese chat bot and conduct experiments
on the trained model in public. Results indicate that the conversation model fulfill
all the expected requirements: it is capable of generating responses with both
controlled sentence function and informative content.

1 Introduction

Sentence function, an elementary linguistic terminology, refers to the purpose of a speaker to speak
out a sentence, phrase or clause. It is an answer to the question "why has this been said?". There are
four fundamental sentence functions in English, including interrogative, imperative, declarative and
exclamative [2]. Similar linguistic phenomenon also appears in Chinese and other languages. Since
each sentence function is different from others in language rules, the transformation between any two
types of them requires word order changes, syntactic pattern modifications, etc. [3]]

As shown in Table[] there can be multiple responses to the same post and each of them has a different
sentence function, say purpose of the speaker. Specifically speaking, An interrogative response is
raising a question to retrieve further information from the listener, and it usually ends with a question
mark. An imperative response, however, is to make requests on the listener, usually ending with
a period or exclamation mark. Exclamatory responses present a strong emotion from the speaker,
ending with exclamation mark while declarative sentences simply state an idea with period ending
them. Therefore, sentence function, say the purpose of a speaker, can be a significant factor during
interactions in conversational systems. On top of that, interrogative and imperative responses are
able to avoid stalemates and they are proactive behaviors in dialogues to lead the conversation to go
further [4]] [5]].

Compared to generic generation and manipulation of text [6], sentence function is a global control
variable instead of local controlling and this will be more challenging since the entire text global
structure needs to be adjusted, i.e. changing word orders and patterns. Another challenge is the
compatibility of sentence functions and contents. There are many universal and meaningless responses
like "*t % ? | Right?", "% - | Isee.", "#1Z ! | Go ahead!" or "# L& - | So do I.". Hence, the
conversation model must manage to generate responses with both controllable sentence function and
informative content.

*Currently studying MSc in Financial Mathematics, submission date: May 26th, 2019

Preprint. Work in progress.

Table 1: Responses to the same post with 4 different sentence functions

BRA A& 2FA°

Why am I so smart?

fRIEAE T 0 A2

Whose genes do you inherit?

TR 2R B 1k KR A0 KARE |
Please help my project in the future!
1R E T BERA T |

What a smart guy!

B ARA = LTI

That’s because you have a smart phone.

Post

Interrogative

Imperative

Responses

Exclamative

Declarative

In this report, a conversation generation model is proposed to take care of the challenges aforemen-
tioned. An encoder-decoder structure with a hidden variable in conditional variational auto encoder
(CVAE) is devised to project sentence functions into different subspaces in the hidden space and
capture corresponding word patterns within each sentence function. More model details will be
covered in the next section. A labeled data set of Weibo post-response pairs are retrieved from Prof
Minlie Huang’s homepage, and it takes more than 169 hours (7 days) to complete the training on my
personal computer (Intel(R) Core (TM) 19-9900K CPU, NVIDIA GeForce RTX 2080) since the data
size is close to 2 million. Experiments using WeChat Python API itchat indicates the effectiveness of
the proposed model. Future studies are discussed at the end of this report.

f R SRR 7'7'777777”""’! P t ’z -__,__...__.________________:
' Decoder happy | Ftud) Type Controller :
‘ (T Mergence

Function-related: 0.1 : Topic: 0.7 : Ordinary: 0.2 3

[= Interrogative

St

S

Concatenation

| Attention |

Concatenation [X; Y]

8-

Recognition/Prior Network

A

/_Encoder (Post) \ ,’
Post: | feel so great today Response: What makes you happy?

Figure 1: Model Framework

2 Theories

The conversation model is supposed to solve the following problem: given a post sentence X =
r129...x¢, and a sentence function [, generate an informative response sentence Y = y1y2..Ym, in
sentence function [, where x; and y; are Chinese characters or words at the ¢-th position within their
sentence. Since a controlled hidden variable z is introduced to ensure the consistency of responses
with sentence functions, the problem can be defined as an optimization problem:

argmax P(Y, z| X, 1) = argmax P(z| X, 1) - P(Y|X, 1, z)
6 %

http://coai.cs.tsinghua.edu.cn/file/DialogwithSenFun.tar.gz
http://coai.cs.tsinghua.edu.cn/file/DialogwithSenFun.tar.gz

Then, the problem can be further divided into two sub tasks: one is to estimate P(z|X,), while the
other is to estimate P(Y'| X, z). The first one can be handled by the recognition and prior network
in the model, whereas the latter one can be calculated as P(Y|X, 1, z) = [[/~, P(vi|Y<i, X, 1, 2)
by the decoder. An overview of the model is presented in Figure[I] Specifically speaking,

Data Preprocessing The model will split Chinese sentences, both post and response into characters
and words at the beginning. These characters and words are so-called hot vectors in natural language
programming. Then each of those characters or words will be converted to a 64-dim numeric vector
according to a Baidu Baike word embedding scheme, which is 1.51 GB and covers 1 million Chinese
words, three times larger than an ordinary modern Chinese dictionary. For those characters or words
that cannot be found in the embedding scheme, a pure 0 64-dimension vector will be used to represent
them. Besides, since there is a word limit for Weibo posts and responses and we need to concatenate
post and response pairs as an input to recognition and prior network, each sentence is converted to a
matrix with a shape of 64 x 128 by filling empty positions with 0 vectors.

Encoder-Decoder Framework The encoder-decoder framework is essentially to bridge the initial
vector representations and hidden vector representations using a gated recurrent unit (GRU). Given
a sequence X = x1Zs...x,, its embedding vector, say E(X) = ejes...e,, can be calculated
straightforwardly based on the embedding scheme aforementioned. Then the numeric vectors is
plugged into the encoder, the output is generated by Equation

H = hihs...h,

hi = GRU(eZ-,hZ-,l) (1)

As for the decoder, another GRU is implemented to generate the response sequence Y = y1ya...Ym,
from a hidden representation variable S = s13...5,,,. Suppose the intended embedding vectors for
Y are E(Y) = ejey...e,, then the rest calculations follows Equation Note that cv is the context
vector, which is a dynamic weighted sum of the encoder’s hidden representation variable, and the
weights « is related to the correlation between decoder’s hidden state and the encoder’s. There are
three word types in response, namely, sentence function-related, topic words and other words. The
word type distribution is captured by type controller network, and it identified the best word type to
use in each word position in the response sentence in the final word generation process.

a}; ~ corr(s;, hy)

cv; = Za};hk
k=1
8; =GRU(sj_1,e;_1,cv;_1,X,1,2) 2
yi ~ P(yi|Y<i, 80, X, 1, 2) = P(yilyi—1, 8, X, 1, 2)
3

= ZP(typei = jlsi, 2) P(yilyi—1, 85, X, 1, 2, type; = j)
=1

Where for j = sentence function-related,

P(yi‘yifla si,X7l7zatypei -]) = softma:v(Wj : f(Si,Z,l))

and otherwise

P(yilyi—1,8:, X, 1, z, type; = j) = softmax(W; - s;])

Recognition/Prior Network Recognition network and prior network in the model is designed to
learn the sentence function hidden variable z and then use the variable to learn word patterns, say
combination order of words, in different sentence function. Recognition network is for training while
prior network is for testing. Both of them are so-called conditional variational auto encoder (CVAE)

framework. As a matter of fact, in the training process, the posterior distribution for P(z|X,[,Y) is
unknown to us, but we can approximate this distribution with a multivariate Gaussian distribution,
say P(z|X,1,Y) ~ N(u,o2I), where I is a 2-dim identity matrix. With this distribution approxi-
mation assumption, the recognition network can learn the distribution of z with a simple multi-layer
perceptron, say [y, 0] = M LPccognition posterior(X,1,Y"). As for prior network in testing, it’s
similar to the recognition one: it also assumes an approximate multivariate Gaussian distribution,
say Q(2|X,1) ~ N(u,o2I), and uses a multi-layer perceptron to learn the hidden variable z, say
(W 0'] = MLPpior posterior(X,1). The loss function for recognition and prior network uses
Kullback-Leibler divergence to bridge the gap between them, see Equation

Ly = Dir(P(2|X,1,Y)||Q(2|X, 1)) 3)

Discriminator The discriminator is essentially serving as a supervisor for z to embed information
about sentence function into a response. This structure will enforce z to learn sentence function’s
hidden features and leverage the role of the introduced hidden variable in producing responses. It is
also a multi-layer perception net, say P(l|z) = softmax(W - M LP 4(z)). Its loss function is
given in Equation 4]

Ly = —Ep(yx,,v)llog P(I|2)] “4)

Topic Word Selection In order to generate informative responses, topic words of posts must be
extracted first and then applied to the generating process. To retrieve topic word information, a
relevance score of a topic word, say y, to a given post, say X = x12s...2,, is implemented to capture
them during training, make use of them during testing. Although there is no prevailing method to
calculate the exact value, it can be approximated by a summation of point-wise mutual information
(PMI) [[7], see Equation[5] High-score words in a response to the post are added to topic words in
training process and the most relevant, say with highest score, topic is selected for a post in testing.

Relevance(X,y) ~ Z PMI(z;,y) = Z log P(P;(;C%)
i=1 i=1 '

Type Controller The type controller handles the compatibility problem between controlling sen-
tence function and informative content. The characters or words in responses can be classified into
three categories, namely, sentence function-related, topic words and other words. The type controller
essentially determines the word type at each decoding position and the type distribution will be used
in the decoder for response word generation. It takes decoder’s hidden representation s; and z from
the prior network as inputs and estimates the word type as shown in Equation [6]

P(type;i|si, z) = softmax(W - MLPyype(si, z)) (6)

Total Loss Function The total loss for the conversation model can be calculated as a weighted
sum of all the networks within it. For Kullback—Leibler divergence from recognition/prior network,
however, is multiplied by a coefficient c, which increase from O to 1 gradually during training, to
avoid vanishing hidden variables in RNN encoder-decoder [8]]. The total loss function is express in
Equation

L=ali+ Ly+ L3 7

3 Process

3.1 Data Description

All the data are downloaded fhere. A preview of the training data is shown in Figure 2| There are
three training/validation files, say post, response and label. The training data set size is 1963382,
0.6 million for each label, and the validation data set size is 24034. Every post has a corresponding

http://coai.cs.tsinghua.edu.cn/hml/dataset/

DA W —

1

9

BN~

response, and every response has a corresponding sentence function label, one of 100, 010 and 001.
Labels are generated by a self-attentive classifier with 0.78 testing accuracy.

3.2 Word Embedding

The word embedding scheme in this model is constructed from Chinese news, Baidu Baike and
Chinese novels, it can be found herel In data preprocessing and post preprocessing, hot vectors, say
Chinese characters or words, and 64-dim numeric vectors are converted to each other under this
scheme. For instance, the code snippet below shows the data preprocessing conversions. For those
words falling out of the scheme, their embedding vector will be regarded as zero vectors.

print ("Loading word vectors...")

vector_model_file = ’wordQVec/news_12g_baidubaike_2Og_nove1_90g_embedding_644bin’

vector_model = gensim.models.KeyedVectors.load_word2vec_format(vector_model_file, binary=True)
embed = []

for word in vocab_list:
if word in vector_model.vocab:
vector = np.array(vector_model[word], dtype=np.float32)
else:
vector = np.zeros ((FLAGS.embed_units), dtype=np.float32)
embed.append(vector)
embed = np.array(embed, dtype=np.float32)

main.py

3.3 Model Settings

The model settings are contained in a global object FLAGS, see the code snippet below. The first three
lines determine the model mode, whether training or testing, whether using GUI mode or WeChat
API mode for testing. The vocabulary size determines the size of word pool for generating responses.
Note that the number of hidden units are only referring to GRU in encoder-decoder framework while
other network is either a multiple times of this number or simply hard coded in their scripts. The
batch size is the number of training pairs fed for one batch optimization iteration. One full iteration is
completed when all the batches are used to train the model once. And the training set will then be
reshuffled to generate new batching scheme for next iteration. A detailed model settings can be found
in Figure 3]

tf.app.flags.DEFINE_ boolean("is_train", True, "Set to False to inference.")
tf.app.flags.DEFINE_boolean("gui_mode", False, "Interaction in GUI mode")
tf.app.flags.DEFINE_boolean("wechat_api_mode", False, "Interaction in WeChat API")
tf.app.flags.DEFINE_ integer ("symbols", 40000, "vocabulary size.")
tf.app.flags.DEFINE integer ("topic_symbols", 10000, "topic vocabulary size.")
tf.app.flags.DEFINE integer ("full_kl_step", 80000, "Total steps to finish annealing")
tf.app.flags.DEFINE_ integer ("embed_units", 64, "Size of word embedding.")
tf.app.flags.DEFINE_ integer("units", 256, "Size of hidden units.")
tf.app.flags.DEFINE integer("batch_size", 128, "Batch size to use during training.")

tf.app.flags.DEFINE_string("data_dir", "Data", "Data directory")
tf.app.flags.DEFINE_string("train_dir", "Train", "Training directory.")
tf.app.flags.DEFINE_integer ("per_checkpoint", 1000, "How many steps to do per checkpoint.")
tf.app.flags.DEFINE_integer("inference_version", 0, "The version for inferencing.")
tf.app.flags.DEFINE_boolean("log_parameters", True, "Set to True to show the parameters")
tf.app.flags.DEFINE_string("inference_path", "", "Set filename of inference, default isscreen")
tf.app.flags.DEFINE_string("num_keywords", "2", "Number of keywords extracted from responses")
main.py

3.4 Training Evaluation

Apart from the log loss of every network, perplexity [9]] and accuracy are also implemented to
evaluate the training performance. Both accuracy and perplexity are derived from log loss, say
acc = exp(—L), and ppl = exp(Dk7,). Since these information is ignored at the very beginning
of this project and the training cost is relatively expensive, only metrics for the first 1000 steps are
collected in the results.

3.5 Chat Bot Applications

With the trained model, a Chinese chat bot can be built. In this project, two applications are created,
one is GUI-based chat bot and the other is WeChat-based chat bot. GUI-based chat bot is realized

https://pan.baidu.com/s/1TZ8GII0CEX32ydjsfMc0zw

straightforwardly after loading the trained model into the memory and starting to ask for inputting
Chinese sentences. However, this kind of chat bot application has quite strong programmer smell,
and it is not easy to be commercialized as a product. A Python package itchat provides a perfect
solution by using WeChat web API. Generally speaking, this package provides a QR code to login
a WeChat account. After login, a function will be executed repeatedly reading an input message
from one of the account’s friends and returning a message. Therefore, a Wechat Chinese chat bot is
realized by using the our trained model to process text messages. E]

4 Results

4.1 Model Convergence

As shown in Figure[TT] the total training loss reduces drastically in the first 200 iterations, and the
learning rate becomes quite slow after the initial convergence and the prediction accuracy even starts
to oscillate at 0.125%, which is very low. Similar phenomenon can also be found in the decoder
network. A more obvious convergence is found in the perplexity of the recognition and prior network,
which drops from more than 35000 to 100-level and decreases slowly afterwards, see Figure[5] By
contrast, the log loss of discriminator network appears to be random but the reality is after 2000
iterations, its log loss for both training and validation set is close to 0, say about 0.03, which means
the discriminator has an accuracy of 97% to distinguish sentence functions from one to another. As a
result, the controlled sentence function is accomplished at early stage of training, say 2000 iterations,
and the result 78000 iterations are mainly used to improve decoder at a very slow speed, say the
informative content of the generated responses

4.2 Training Results

The training time for first 1000 iterations is shown in Figure[d The vertical line at the beginning is
caused by the huge initial value for the time record variable. Except that, it is clear the processing
time for every full iteration, say to fit the 2 million training data set, is very stable, approximately
6 or 7 seconds. However, the memory cost and the computational cost is extremely significant,
100% usage of CPU and 95% usage of 16GB memory at post stage, see Figure[I3] The accuracy of
recognition and prior network is 92% in the end while the discriminator network has an accuracy of
98%. However, the informative content examination is not conducted rigorously, and user experience
on applications serves as an alternative, see next section.

4.3 Application Test Results

The application user experience reflects that most of the responses are informative and grammatically
correct, but most of them are not appropriate, say it is replying to something else. In Figure left
hand side speaker is performed by the chat bot, and the right hand side is the tester. The responses
still cannot avoid universal answers like "# 4. | So do 1", but its content does refer to some topic
like "% ®| Movie". Figure|15]is the back-end processing for the chat bot in WeChat. Figure
shows the interactions between the chat bot and the tester. It is obvious that the topic relevance and
the informative content still has a large room to improve, but the sentence function and word patterns
are implemented well enough already.

5 Discussions

5.1 Training Limitations

The training process is conducted on TensorFlow packages not the GPU version though. The reason
for not implementing tensorflow-gpu for training is because the number of parameters in this whole
model is too large for a GPU with 8 GB memory to carry out. An error will be presented after the first
few iterations, see Figure[I7] Even using pure CPU TensorFlow, 16GB memory is still not enough
at late training stage. Hence, a more reliable machine or platform should be considered for further
studies. Besides, although the model is proved to be efficient in the research [1]], only one model

>WeChat demostration can be scheduled by contacting my email.

parameter setting is carried out in this report, so the model may not be tuned to its most appropriate
setting. This should also be investigated in the future, but note that the computational cost would be
much higher.

5.2 Evaluation Limitations

Although a few different models regarding generating responses are studied in background research,
none of them is implemented as a comparison to the conversation model proposed in this report. It is
difficult to evaluate how good the model is. In this report, only the metrics for training and validation
are used to evaluate the conversation model, but the content, grammar, and appropriateness are only
judged at a few cases, rather than a large testing set. The evaluation process can be promoted once
more Chinese-speaker judges join. So far as I know, this evaluation based on understanding could
only be conducted manually. Therefore, a more rigorous evaluation scheme can be formulated to
better prove the appropriateness of the conversation model.

5.3 Multi-Turn Conversation Model

One presumption of our model is that each input sentences are independent and only one-turn dialogue
is handled. However, in practice, most conversations are multi-turn, hence the context of responses
should also be taken into consideration. This model cannot realize the context recognition so far,
but more advanced networks or a combination of networks are possible to implement the multi-turn
feature. Advancements of this model can be further discussed in the future.

6 Conclusions

In this report, a conversation model with sentence function control variable is introduced based on a
latest paper. It is expected to solve the problem of compatibility between sentence function controlling
and informative contents. A large Weibo post-response data set is implemented for training. The
training process converges quickly in the first few hundreds iterations, but the total training time lasts
169 hours (7 days) for a high-end personal computer. The training and validation results indicate that
the networks for controlling sentence function obtain high accuracy while the networks for topic and
decoder still have a large room to improve. Besides, two chat bot applications are implemented on
WeChat and GUI successfully. More appropriate model can be trained and evaluated by overcoming
hardware limitations and introducing more rigorous evaluation scheme. Advancements to enable
multi-turn conversation feature can be studied in the future.

Acknowledgement

This project is completed on my own, and I have 100% contribution to the project: as discussed early
this semester, Prof. Yao acceded to my one-person team proposal. The source code is retrieved from
here, and I updated it from Python 2.7 to Python 3.6, also fixed a few bugs and added my own ideas
in these scripts. Last but not least, thanks Miss Mandy Xu (Baidu Inc.) for her model advice, thanks
Miss Peggy Wang (University of Tianjin) and Mr. Leheng Chen (HKUST) for their model testing.

https://github.com/kepei1106/SentenceFunction

References

[1] Pei Ke, Jian Guan, Minlie Huang, and Xiaoyan Zhu. Generating informative responses with
controlled sentence function. 2018.

[2] Laurie Rozakis. The complete idiot’s guide to grammar and style. Penguin, 2003.
[3] George Yule. The study of language. Cambridge university press, 2016.

[4] XiangLi, Lili Mou, Rui Yan, and Ming Zhang. Stalematebreaker: A proactive content-introducing
approach to automatic human-computer conversation. arXiv preprint arXiv:1604.04358, 2016.

[5] Zhou Yu, Ziyu Xu, Alan W Black, and Alexander Rudnicky. Strategy and policy learning for
non-task-oriented conversational systems. In Proceedings of the 17th annual meeting of the
special interest group on discourse and dialogue, pages 404—412, 2016.

[6] Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P Xing. Toward
controlled generation of text. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1587-1596. JMLR. org, 2017.

[7] Kenneth Ward Church and Patrick Hanks. Word association norms, mutual information, and
lexicography. Computational linguistics, 16(1):22-29, 1990.

[8] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy
Bengio. Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349, 2015.

[9] Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. A diversity-promoting
objective function for neural conversation models. arXiv preprint arXiv:1510.03055, 2015.

Appendices

6.1 Figures

File Edt Selection View Go Debug Terminal Help S —
eibo_pai_train_pattern pos hm

9) 7 i
#

shapes

5
) 7 3000

5 5 W !

S35 S S S S S S S
A B 3

sy

#

ik B 0

i W ©
L

S oSS et

! AR BA 7

B i

s

, ! e
R [3 s

seyp

—, kETHB @ F 3k it
@

! BB H KR 7

s

L.

Pmaster O Python 3.7.2 64-bit (User' virtualeny) ©0 A 0 Ln1Coll Spacesi4 GB2312 CRIF

Figure 3: Model Description

ity

Perplex

Training Time

30

251

20

Time (Second)

15 4

10 A

I

T T
0 200 400 600 800

Iteration Steps

Figure 4: Training Time in First 1000 Training Iterations

Perplexity

T
1000

40000 A

35000

30000 4

25000 A

20000

15000

10000

5000 +

T T T T
200 400 600 800
Iteration Steps

Figure 5: Perplexity in First 1000 Training Iterations

10

T
1000

Accuracy

Log Loss

Recognition/Prior Accuracy

10

0.9

0.8

0.7

0.6

0.5

0.4

200

Iteration Steps

600

800

1000

Figure 6: Recognition/Prior Network Accuracy in First 1000 Training Iterations

Discrimination Loss

14

1.2

10

081

0.6 |

0.4

0.2

200

400

Iteration Steps

600

800

1000

Figure 7: Discriminator Network Log Loss in First 1000 Training Iterations

11

Discriminator Accuracy

0.9 4

0.8 4

0.7 1

0.6

Accuracy

0.4 4

0.3

T T
0 200 400 600 800 1000
Iteration Steps

Figure 8: Discriminator Network Accuracy in First 1000 Training Iterations

Decoder Loss

10

Log Loss

T T T T
0 200 400 600 800 1000
Iteration Steps

Figure 9: Decoder Network Log Loss in First 1000 Training Iterations

12

Decoder Accuracy

0.006
0.005 4 I il I

0.004

Accuracy

0.002 4

0.001 4

0.000 +

T T
0 200 400 600 800 1000
Iteration Steps

Figure 10: decoder Network Accuracy in First 1000 Training Iterations

Total Loss

12 A

11 4

10

Log Loss
w
.

T T T T
0 200 400 600 800 1000
Iteration Steps

Figure 11: Model Log Loss in First 1000 Training Iterations

13

Total Accuracy

0.00175

0.00150 +

0.00125 4

0.00100

Accuracy

0.00075 +

0.00050 +

0.00025

0.00000 -

T T T T T
0 200 400 600 800 1000
Iteration Steps

Figure 12: Model Accuracy in First 1000 Training Iterations

I - O X B
File Options View L
Processes Performance App history Startup Users Details Services
CPU C PU .
100% 4.68 GHz Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz
% UHilization 100%
Y 11 Memory
WY 12815968 2190
Disk 0 (D)
0%
Disk 1 (C3)
2%
Ethernet
5 640 R: 176 Kbps
Wi-Fi
Mot connected
Bluetooth PAN
Mot connected
GPU O 60 seconds o
NVIDIA GeForce RTX 2080 .
by 20% Utilization Speed Base speed: 3.60 GHz
100% 4.68 GHz Sockets !
Cores: 8
Processes Threads Handles Logical processors: 16

255 3373 111860 Virtualization: Disabled
Up time Hyper-V support: Yes

L1 cache: 512 KB
8:15:53:56 L2 cache: 20MB
L3 cache: 16.0 ME

Fewer details @ Open Resource Monitor

Figure 13: Computational Performance

14

Q #E + Lucas Shen
m Lucas Shen ﬁ EThE, HBhE, HhIE!
p |
wmTeE. O
SRR L
9; TS, BOEE, SHEDE, SEE
wmTeE. O
b N
& oz
b
momTEE. O
b N
O zoms msmeEs meEs
b
rEEAET, .. €9
ERAMEART 4
4?; RS
ity &9
sonta @
® o= mssmEm, soEss
b S
- .
wezats @
B sove zrenasre
p S
S
wemita @
?; BhE, BOS. . FEFSOEEEaYE.
¢rie 4mstachatbor, . . 9
d} Chatbo A
4?; HHS, BEMEEEHA
@B X% O %, [
HE(S)

Figure 14: WeChat Application

15

Anaconda Prompt

Figure 15: WeChat Application Backend

16

-
=%
E

a
m

-
=
v
]
(3

Figure 16: GUI Application

17

= Select An npt
enzorf Low. python . franevork. sxrors_impl.ResourceExhaustedError: 00M when allocating tensor with shape[2560.400081 and typs float on /job:localhost/replica:@/task:d/device:GRU:A by allocato
[[¢node sequence_lose/decodex out ojoction/Tile 43311
If you want s uhen OOM happens, add report allocations_upon_oon to RunOptions for current allocation info.

[[{node sequence_Lo:

ediv3311
« want to see a 1i allocated tensors hen OOM happens, add report_tonsor_allocations_upon_oon o RunOptions for cursent allocation info.

ing handling of the ahove exception, another exception occurred:

raceback Cmost recent call last

Line 268, in <..,,m.|.

incnodel. pre_trainlper]. global &>

Line 144, in train
step_docoder(sess, hatched_data, global t = glob

\sers Wser\Docunents\Gits\lovely. \h«rhar\t—urgnrwﬁmrtmnr—‘t \nodel.py”, line 206. in step_decoder
turn sess fon.unoutput feed. feed_dict=inpuc foed)

dppbaceNTaaning<Python<Pythordpme its-packa Flounpython\client\cession.py”, Line 929, in run

=
iser\ippDataHaaning\Python \Pythan37\s te-packages \censorf lowspython e ient\sess fon.py” line 1152, in _n
in_netadata
ppData\Roaning\Python\Pythond7\eite-packag FlouNpythonseliont n-py". Line 1328, in _do_run
_net: adece
o1 seripBDataoaning\Fython Pyt Hond?s o-packages Censar Louspythan e Lient\sess ion-py” Line 1348, in _do_ca1l

GPu_8_bc

DA pRaUER 00N Ml SN G S sl OGRS (1 e {18 G S0 LR e kR e R e el g

ion/1. e at C:\sers\User\Docunents\Gitslovely_chat n nct ionTest output_projection.pyi6s)
you uant to see a list of add report_tensor_allocations_uponoom £ RunOptions for current allocation info

auence_loss /truediv (defined at C:\Users\serDocunente\Gitelously_chathot\SentenceFun 055 .py:78> 11
allocated tensors when 00M happens, add report_tensor_allocations_upon_oon to RunOptions for current allocation info.

output_projection/Tile 4’ defined at:

chathot\SentenceFunctionTest \nodel.py”, line 149, in _init_
2 e o S Ive ine Tobel wien < selt Lele Swm ot B
e thot\SentenceFunct ionTest -p: It
Targets. expand_extra_infornation. expand_label emrw\dwnq. nax_tine>
chatboc\SencencefunctionTes c\autpuc_projection-py" Line 65, in ny_sequence Lo
Trued, [1, nun_synbo
pDateHoaning BythonPythons? ite-packages \consort low\python\ops\gon_array_ops.-py”s ine 12332, in cile
multiples=nultiples, nane-nane
RS oRe L Pyt hon Pt Rang7 e L e patkages tansats lowsputhon e bensuerirapbaer Il 1beuwsy! po M1 dne 768 i
7eite-packages \tensorf Lowspythonutil\leprecat ion.py”, line 587, in new_func
et e ring Puthon \Pythund7N 1t e ackasss \oonensE Lowspst P\ amane KNosa owr [L ine 32001 i cxastelon
op_def -op_def>
File "C:\Jsers \User\ippDataNRoaning\Python \Pythond7\s ite-packages \tensorf lowpython\Franework\ops -y, 1
Self._tracehack = tf_stack.extract_stacks
e L e e e
cquence_loss/decoder/output_projection/Tile 4 (dofined at C:\is er\Docunents\Gits \lovely_chatbot\SentenceFunct ionTest output_project ion. py:65> 11

PR G () A C A (13 Ev PR CoEs O (o Lo T Eeom S b P et (0 T e P PO (Pl carbr sy Fhies

[node sequent . Fined at C:\Isers\Wser\Docunents\Gits\lavely_chatbot\SentencePunctionTest \ny_lo 1
you vant to see a list of allocated tensors when OOM happos e e S e S e e

sorDocuns hathot\SentenceFunc

Figure 17: Error Using TensorFlow GPU

18

	Introduction
	Theories
	Process
	Data Description
	Word Embedding
	Model Settings
	Training Evaluation
	Chat Bot Applications

	Results
	Model Convergence
	Training Results
	Application Test Results

	Discussions
	Training Limitations
	Evaluation Limitations
	Multi-Turn Conversation Model

	Conclusions
	Figures

